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Abstract. The main results of this paper are that the hyperspace 2% of nonempty closed subsets
of a nondegenerate Peano continuum X is homeomorphic to the Hilbert Cube Q, the hyper-
space C(X) of nonempty subcontinua is a Q-factor, and C(X) is homeomorphic to Q if X contains
no free arcs. Proofs are based on previous results of Schori and West for hyperspaces of graphs,
and on partition techniques for Peano continua.

§ 1. Introduction. In this paper, we prove the results announced in [3], that
the hyperspace of nonempty closed subsets of a space X is homeomorphic to the
Hilbert cube if and only if X is a nondegenerate Peano space. This result was con-
jectured by Wojdyslawski [10] in 1938 and this paper is the last of a series of
papers [8], [9] and [4] which prove respectively that the hyperspace of the closed
unit interval, graphs, and polyhedra are Hilbert cubes. These papers, variously by the
authors and J. E. West, use many techniques from infinite-dimensional topology
where each paper uses different techniques and assumes the results of the previous
papers. See [3], [6] and [7] for further historical background.

The proof in this paper that if X is a non-degenerate Peano continuum, then 2% is
a Hilbert cube proceeds from the following basic results:

() Hyperspaces of graphs are Hilbert cubes [9];

(ii) The Inverse Sequence Approximation Lemma 2.1 of [4] and stated as 3.1 of
this paper; and

{iii) Maps between hyperspaces of graphs which are induced by C-monotone
piecewise-linear maps are near-homeomorphisms [4].

The special case of the hyperspace of a polyhedron was treated in detail in [4],
where the construction of the appropriate inverse sequences was accomplished via
the Polyhedral Subdivision Theorem 4.1. The analogue of this theorem in the general
case of a Peano continuum is the Partition Refinement Theorem 2.3 of the present
paper. In §§ 3-5 we use the Refinement Theorem to obtain proofs of the general

hyperspace results. The remainder (and major part) of this paper is devoted to a proof
of the Refinement Theorem.

v
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§ 2. The Partition Refinement Theorem. In what follows, the space X will always
be compact metric.

DerNrTIoNs 2.1 ([11, [S]). A partition of X is a finite collection G of mutually
disjoint connected open subsets whose closures cover X. Two distinct elements of
a partition are adjacent if their closures meet each other.

A metric space has Property S if, for each ¢>0, the space is the union of a finite
collection of connected subsets each of diameter less then . Of course, for compact
metric spaces, Property S is equivalent to local connectedness.

If each element of a partition G has Property .S, we say that G is an S-parrition.
If, furthermore, each element of G has diameter less than &, then G is an &-.5- -partition.
Note that if X admits an S-partition, then it must be locally connected.

If H and G are two partitions of the same space such that each element of H is
contained in an element of G, then H is a refinement of G. We shall be interested in
partitions which admit arbitrarily fine refinements. Clearly, if G is such a partition,
then G must be an S-partition. Conversely, every S-partition does admit arbitrarily
fine refinements (see Theorem 6.1). ,

DEFINITION 2.2. A compact connected graph I'c X is a nerve of a partition G
of X if the following conditions are satisfied:

() for each ge G, I'n g is a connected subgraph for which each point of
I' nBdg is an endpoint;

(i) the set {J {I' n Bdg: g e G} of boundary vertices of the nerve is in 1-1 cor-
respondence with the set of maximal nonempty intersections g1 O O gy of closures

of adjacent eléments of G, with each boundary vertex contained in the corresponding
intersection.

For g € G, define St*(g; G) = U {g": ;é@;ég ngforsomeg € G}.
‘We shall use the Hausdorff metric d* on 2X (and all of its subspaces), induced by an
arbitrary metric d on X.
- PARTITION REFINEMENT THEOREM 2.3. Let G be an S-partition of X, with
a nerve I', and ¢>0. Then there exists an g-S-refinement H of G, with a nerve A and
a C-monotone piecewise-linear map ¢: A—C(I) such that:

(@) for each xe A, ¢p(x)=St’(g; G) for some ge G with x e §;

(ii) diamqo(/i n hy<e for each he H.

§ 3. The hyperspace 2*. In the proof of our main result we will refer to the
different parts of the following result.

INVERSE SEQUENCE APPROXIMATION LemmA 3.1. (2.1 of [4]). Let Y be a com-
pact metric spdce, and let

J1 J2
Q1+ Qo+ ...

be an inverse sequence of maps and copies of the Hilbert cube in Y such that

G) 0~ Y (in 2%);
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0
(ﬁ)‘Z d(f;, id)<oo;
=1
@i {fie...of;: j=i} is an equi-uniformly continuous family for each i; and

(iv) each f; is a near-homeomorphism. Then Y=~ Q.
TeeOREM 3.2. 2= Q for every nondegenerate Peano continuum X.

Proof. The structure of the proof is the same as for the polyhedral special
case [4], with refining partitions and their nerves taking the place of polyhedral sub-
divisions and their one-dimensional skeletons. Suppose that S-partitions Gy, ..., G;
of X have been constructed, with corresponding nerves I'y, ..., I'; and piecewise-
linear C-monotone.maps ¢,: I', 1= C(I,), 1 <n<i, such that each G,,, refines G,
and

1

mesh G, . <min {5—2_—(;;1—) , 8"} ,
where &,>0 is chosen such that if the 4¢,-neighborhoods of the elements of a sub-
collection of G, have a common intersection, then the closures of the elements have
a common intersection. (We may take G; = {X}, with I'; any compact connected
graph in X.) Let f,: 2Tn+1_,2T be the hyperspace map induced by ¢,, 1<n<i. For
1<m<n define f = fj,0 ..o f,_y: 2™=2"". Choose 0<§;<1/i such that for 4
and B in 2" with d*(4, B)<3;, we have d*(fi(4), fi(B))<1/i for each j<i.

There exists by the Partition Refinement Theorem an S-refinement G;, ; of G;,
with

1
meshGi+1<min{W, ai},

a nerve I';,, and a C-monotone piecewise-linear map ¢;: I';y ;= C(I')) such that:
(i) for each xeTI';yy, x)=St?(g;
(i) diamoy(I';s, N B)<56; for each he G, ,.
As before, we apply the Approximation Lemma to the inverse sequence

2“{—12r 22 .. thus constructed. Conditions (i) and (iv) of the lemma are clear. It
follows from the property (i) above that d*(f;, id)<2~% Thus condition (ii) of the
lemma is satisfied.

Before turning to the verification of condition (iii), we show that for m<n and
xel,, fi{x)=St*(g,; G,) for some g, G, such that x € g,,. The proof is by induc-
tion on n—m. For n—m = 1, the result is given by property (i) of ¢,,. By the inductive
hypothesis there exists A, € G+, such that x ek, and fi, ,({x}) =St*(he; Gpro)-
Let Gy, = {geG,: goh for some he St‘*(h\, G+ 1)} Then, since mesh Gy y <8,
the 4¢,-neighborhoods of elements of G5, have a common intersection, and therefore
the closures of these elements have a common intersection. We have

frohe U{g: geGhy.

G;) for some ge G; with x € 7;
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Let g, be the element of G, containing &,; then g.e GL. Property (i) of )
implies that for each gy € G,,, S " *(go N I'yss) =St3(go; G,). And since St3(g; G, ")'
=St*(g.; G,,) for each g € G, it follows that f"({x})<=St*(y,; G,,). T

We now easily verify condition (iif) of the Approximation Lemma. Let >0
and k21 be given. Choose j>k such that 1/j<e. Choose x>0 such that for x, y e X'
\lith i(x, y)<p, there exist elements ki, and i, of Gj+y With xeh,, y eTzl., and
hy by # B. Now consider points x, y € I';, ij+1, with d(x, y) <p. With lz:and h
as above, we have fi, ({x})=St’(h,; G,4;) and Fie1 (P =Sty G-ﬂ.). Thu:
by property (ii) of ¢;, !

a*(fixD, FyN)<12(5:/12) = ;.

Hence for 4, Be2™, with i>j+1 and d*(4, B)< K i
s s with > » BY<pt, we have d*( fi(4), fi(B))<4;,
and therefore d*(fi(4),fi(B))<1/j<e. Clearly, this implies conditiJon, (iii). ’

§ 4. The hyperspace C(X).

THZEO‘REM.4.1.. C(X)x Q= Q for every Peano continuum X, and C(X)~Q if
and only if X is nondegenerate and contains no free arcs (i.e., contains no open copies
of the line).

4Proof. The result C(X)x Q~ Q is obtained by simply restricting the maps of
the inverse sequence constructed above, and stabilizing with Q. We thereby obtain
an inverse sequence

g2%id

) 0¥ cryx 02

satisfying the conditions of the Approximation Lemma (it is easily seen that
C@T)x Q~CX)x 0). :

To obtain the strogger result C(X)~ Q when X is nondegenerate and contains
no free arcs, we modify the above construction to obtain an inverse sequence

g¥

ﬂ*
crHLcrhe ..,

whfere' each I'; is_ a connected local dendron in X with a dense set of branch points.
This is accomplished by adding stickers to the sequence of nerves {I;}, thereby

constr uCtng a doubl y-lndcxed sequence I ig of connected Iapl 18, such that
ije H

Iy =Tyel; iyl = D Ty.
This parallels the procedure previously employed for C(K), K a polyhedron.

For graphs I'y and I, with I';eI'< X, and >0, we say that ' is an n-sticker

Zylcﬁ;n:éon of. Ff 1f N, = Li‘ {0t eanedge of I'y}, where each , is an arc meeting I’y
an interior point of the corresponding edge e, o, N o, = & i
diama, <7 for each e. 86 mny = @ie s s
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We now describe the inductive hypotheses of the construction. Gy, ..., G,
are S-partitions of X, with

1
meshGi<min{3——2—i, Ei—l} for each i,

where g,_, >0 is chosen as before: if the 4¢-neighborhoods of the elements of a sub-
collection of G;., have a common intersection, then the closures of these elements
have a common intersection. There exist connected graphs {I';: 1<i<j<n} and
a corresponding collection {y;: I'i+y,;~C(y): 1gi<jgn} of C-monotone
piecewise-linear maps. Each I';; is a nerve of G;, and with respect to a suitable
triangulation of I'y;, T, ;.4 is an ;-sticker expansion of I';; (3;>0 is specified below).
Thus for each g € G, the subsets of boundary vertices I';; N Bdg and I'; j14 N Bdg
are the same, and each sticker added to I';; lies in some element of the partition G;.
In obtaining these sticker expansions we use the well-known fact that if a subset 4
of a Peano continuum X has empty interior, then the points of 4 which are accessible
from XA are dense in A. In particular, the interior of each edge e of a nerve ry
contains a countable dense subset 4,, each point of which is accessible from Xe.
The corresponding sticker o, of I'; ;. will meet I';; at a point of 4,. )
For each i<n, the map ¥; ;417 Lot i+1>CT 5, 141) will have the following
properties: ‘
(i) for each x € [ysy 41, Vii+ 1(X) =St?(gy; Gy) for some g, € G, with xeg,;
(i) diamy;, ;o1(Tse1, 541 O B) <750 foreach he Giry (8,>01s specified below).
To set forth relationships between the maps {y;;}, we need to define two auxiliary
maps. For 1<igj<n, let 650 I'y =Ty be the unique monotone retraction.
Let Iy jop = U{e: eanedge of I'iyyq, 14y such that y; ;+; maps the points of e in
2 1-1 fashion onto the points of an edge of I';;4.1}. Thus P14y is the smallest
subgraph (not necessarily connected) of @iy, for which vy 11T 141)
={{x}: xeI; t+1) For i+1<j<m, we inductively define Fiyeli,; by
y = 0, i1l j-1)- Thus I, is a sticker expansion of [';;-;, and there is
a natural 1-1 correspondence between the edges of fij and those of I';;. For i<j<mn,
let 7550 Dipg, a2 41,5 Y f,-’jﬂ be the unique monotone retraction.
We now continue with the description of the maps y; js(: ie1, ;41 C % 5+ )
for i<j<n. Bach of these maps has the following defining properties:
@) 94, 502 = 7)) if xelivq, 3 .
(ii) 7; ;+1 maps the points of each sticker of Iy ;41\ in a 1-1 fashion onto
the points of the corresponding sticker of I'y ;+ PRNATH
(i) vi 1 = Pij+1 © Tije
Of course, for properties (i) and (i) to be consistent, it is necessary that the
stickers of [, j+1\fij and I'; ;,,\I';; be properly aligned with each other: the
attaching points of stickers on corresponding edges of ['; and I';; must be cor-
responding points under the map y;;. There is no difficulty in achieving this alignment
of stickers if we make the easily justified assumption that for each edge e of I';

~
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and corresponding edge e = y,.j(E) of I';;, the map y,;; takes the countable dense
subset 4z of accessible points onto the countable dense subset 4,.

The positive constants §; and #; alluded to above are chosen as follows. For
i<j<n, let g;;: C(yyq, )—C(I';;) be the map induced by yi5. Let

9{ = gij°°Gj-1,j° C(F'j)“'c(rij) .
Choose 0<4;<1/j such that for 4,BeC(I;) with d*(4, B)<4;, we have

a*(gi(4), g{(B))< 1/j for each 1<i<j. Choose z;>0 less than the minimum distance
between points of distinct stickers of I'y;, for each k<i. We now set

1y = min({277} U {2,279 1<igj} U {5,279 D): 1<igj)).

This completes the description of the inductive hypothesis. The construction
can be continued in the obvious manner, with the following results. For each i, the
sequence {I';;: i<j} of graphs converges to a connected local dendron I'f <« X with
a dense set of branch points, and I'} ~invlim(T';;, 0;;). And for each i, the sequence
of induced maps {g;;: C(I';4y, )~ C(I'y): j>i} converges to a map gl C{Tt.)
—C(I'7) which is a near-homeomorphism (by the same argument as given in the
proof of Theorem 6.2 of [4]). Finally, using the form of argument of the previous
proof for 2¥=: Q, it is not difficult to verify that the inverse sequence

*

lolt @ )«-C(Fz)«
satisfies the conditions of the Approximation Lemma, and therefore CX)~Q.

§5. The relative hyperspaces 2% and C,(X). Recall that for A e2%,
2 ={Be2¥: B> 4}, and for 4 C(X), C(X) = {Be C(X): B> 4).

Lemma 5.1. Let' X be a nondegenerate Pearo continuum, and peX. Then

pNQ, C(X)x @=Q, and C(X)~Q if X contains no free arcs.

Proof. We may assume that p is in some element of G;, for each partition G;
considered above. Moreover, we may suppose that p is a vertex of each nerve r,,
and that ¢(p) = {p} for each map ¢,: I';,,—C(T).

Application of the Approximation Lemma to the inverse sequence 2P ' 2’ 2{
where the maps { f;} are the induced near-homeomorphisms, gives the result 2" ~ Q
The same procedure,(via the proof of Theorem 4.1) works for C (X))

THEOREM 5.2. If X is a Peano continuum, with X # A 2%, then 2% G~ Q. If
X # 4e C(X), then C.(X)x Q= Q, and Cu(X)= Q if X\4 contains no free arcs.

Proof. The quotient X* = X/A is a Peano continuum. Let 4* be the point
of X* corresponding to 4. Then 2X~2% and for 4 ¢ C(X), CuX)rCu(XH).

L

§ 6. Refinements and nerves of S-partitions. In the remaining sections we consider
some increasingly technical conditions and theorems on S- -partitions and their
refinements, leading ultimately to the proof of the Partition Refinement Theorem 2.3.

icm®
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The boundary of a partition G is defined by
BdG = ) {Bdg: ge G} = X\U {g: g€ G}.

We shall assume that each element of G is a maximal open (in X) subset of its closure,
so that p e BAG if and only if pe g, n g, for distinct elements g, and g, of G.
Let H be a refinement of a partition G. The collection of border elements of His
defined by
BordgH = {he H: hnBdG # B},

and the core elements by CoregH = H\Bord;H. The subscnpt G will be omitted
when it is clear from the context.

The refinement H is a core-connected reﬁnement of G if the following conditions
are satisfied:

(i) each border element of H is adjacent to a core element;

(i) for each element g of G, the union of the closures of the core elements of H
contained in g is connected.

THEOREM 6.1 ([11, [2]). If G is an S-partition of X, then for each >0 there
exists an g-S-partition H of X which is a core-connected refinement of G.

Since each Peano space X has Property S, we may use the above theorem to
construct a sequence [G;} of partitions of X such that each Gy, is a core-connected
refinement of G; and meshG;~0.

LeMMA 6.2. Each boundary point of an element g of an S-partition of X is acces-
sible from g.

Proof. There exists a core-connected S-refinement G of G. Let p be a boundary
point of g € G, g, a border element of G containing p in its boundary, and p, any
common boundary point of g, and a core element of G,. For & = d(py, Bdyg),
take an g;-S-core-connected refinement G; of Gy, and let g, be a border element
of G, containing p in its boundary. Pick any common boundary point p, of g, and
a core element of Gy. Since each connected union of closures of elements of G, is
a Peano space, and therefore arc-connected, there exists an arc «, from p; to p,
which is contained in the union of the closures of elements of G; which are contained
in g, and do not have boundary points in Bdg. Thus diama,<meshG, and
oy " Bdg = &.

Inductively, continuing this procedure, we construct partxtlons {G;} and arcs
{o;} with diamea;<meshG;~0, such that & = {p;, pi+1}, ®; " Bdg =@, and
pi—p. Thus  {o;} is a path from p, to p hitting Bdg only at p, and since
U {o} is itself a Peano space, it contains an arc between p, and p.

LEMMA 6.3.. There exists a nerve for every S-partition G of X.

Proof. Let B be a (finite) subset of BdG formed by selecting exactly one point
from each maximal nonempty intersection g; N ... N gy. For each g € G there exists
a compact connected graph (in fact, a tree) T,=g such that 7, n Bdg = B n Bdg
and each point of T, n Bdg is an endpoint of T (We are using here the accessibility
of points of Bdg from g). Then I' = J {T,: g € G} is a nerve, with I’ n BdG = B.
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For a nerve I of a partition G, we shall always consider a triangulation in which
BdI' = I' n BdGis contained in the vertex set (we say that each p € BAI' is a bound-
ary vertex), and such that for each g € G there is at least one vertex (an inferior
vertex) of I' in g.

§ 7. C-monotone maps on partition nerves. The Partition Refinement Theorem
is proved by the simultaneous inductive construction of a refinement H of G and
a function @: H—C(I') such that, for any nerve A of H, @ induces in a well-specified
manner a C-monotone piecewise-linear map ¢: A—C(I') having the properties
called for by the theorem. In this section, we describe the necessary properties of the
function ¢ (Definitions 7.1-7.3), state the Existence Theorem 7.4 for the pair (H, &),
and show how & induces the map ¢ (Theorem 7.5).

Let H be a partition of X, I' a compact connected graph in X (not necessarily
a nerve of H), and ¢: H—C(I') a function, with H, = {he H: & (k) is degenerate}.

Dernition 7.1, The function @: H—C(I) is C-monotone if the following
conditions are satisfied:

(i) For each vertex v of I', the set ) {h: ®(h) = v} is nonempty and con-
nected;

(i) For each edge e of I', the subset { e Hy: & (/i) € inte} is nonempty, and & is
1-1 on this subset; _

(iii) For adjacent elements / and k of Hy, either &(h) = (k) or & (k) and d(k)
are adjacent points in the subdivision of I' determined by &(H,), and conversely,
each pair of adjacent points of @(H,) arises in this way;

(iv) There exists a relation  in H such that:

a) if Ak, then & and k are adjacent and & (h)> P (k);

b) if AyNEy, hoNky, and By nk;nh, 0k, # O, then &(k,) = d(k,);
©) if Ak and h is adjacent to an element h, of H,, then ke H, and
& (k) = D (ho) if B(hy) is a vertex of I';

d) for each element & of H there exists a chain (f;, #;y, ...,

hye Hy, and by by for i =0, ..., j—1.

DerFNITION 7.2. The function @: H—~C(I') is e-continuous if for each pair of

adjacent elements # and k of H, d*(d‘:(h) & (k))<e and either &(h) n $(k) # & or
h, ke H,.

ho) with h; = h,

DermrTioN 7.3, If the partition H refines the paltition G, we say that the
function @: H-C(T') is limited by G if, for each he H, ®(h)=St(g,; G), where
hcg,e .

THEOREM 7.4. Let G be an S-partition of X, with a nerve I'. Then for each >0
there exists an &-S-refinement H of G, and a function &: H—C(I') such that:

(i) @ is limited by G;

(i) @ is e-continuous;

(iii) @ is C-monotone.
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Constructions leading to the proof of Theorem 7.4 are begun in § 8,

THEOREM 7.5. Let the function ®: H—C(I') be C-monotone and ¢-continuous,
and let A be a nerve of H. Then there exisis a C-monotone piecewise-linear map
¢p: A—>C(I') such that:

(i) for each x € A, either ¢(x)c®(h) U ®(k) for some adjacent pair h, ke H
with xe ki, or @(x)c[®h), Bk)] for some adjacent pair h,ke Hy with x € h;

(ii) for each he H, diame(4 o h)<2e.

Proof. We first define ¢ on the vertices of A subject to the following condi-
tions:

1) for each vertex v, ¢(v) = ®(k) for some ke H such that vek;

2)if veh nk and A\E, then ¢(v) = B(k);

3) if veh for he H,, then ¢(v) is degenerate, and ¢(v) = ®() if &(h) is
a vertex of I ‘

The consistency of conditions 2) and 3) is guaranteed by conditions (iv), b), c) of
Definition 7.1.

For each pair p, ¢ of adjacent points of & (H,), ple adjacent elements %, h,
of H, with #(k,) = p and &(h,) = ¢, and pick b,, € Bd4 n hp N Ty Let By chA
be the collection of all such choice b,,. Note that either ¢ (b,,) = p or (b)) = q.

Let H = {hy, ..., h,}. For each b e A n BdA;, let b; be an'interior point of the
unique edge of A in F; containing b. We now define ¢ on the subset

{b;: be A " Bdh;, 1<i<n}
of A as follows: _
1) (&) = (1) v o) if h; ¢ Hy (note that () n ¢(b) % & by the second
part of Definition 7.2);
2) (b)) = (8(h), oB)] if ke Hy and b ¢ By;
3) o) = ®(hy) if h;e Hy and b e B,.
Let A’ be the subdivision of A obtained by the addition of the points {b,} to

the vertex set. Thus ¢ has been defined on the vertex set of A, and there exists a piece-
wise-linear extension ¢: A’ C(I'). This map satisfies the conditions of Theorem 7.5.

We observe that the Partition Refinement Theorem 2.3 follows immediately
from Theorems 7.4 and 7.5. The deferred proof of Theorem 7.4 requires some tech-
nical lemmas which we discuss in the following sections.

§ 8. Refinements which chain partition nerves.

DEFINITION 8.1. Let G be a partition of X, with a nerve I', and let H be a refine-
ment of G such that to each edge e of I' there corresponds a chain & = {Af: | <i<i,}
of elements of H satisfying the following conditions:

(i) elements k{ and hj of e are adjacent if and only if {i—j| =
(ii) the closures of the endlinks h{ and h;, of each chain ¢ contain the end-
points of e;
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(iii) elements of distinct chains e and f are adjacent (or identical) only if they
are the endlinks whose closures contain a common endpoint of e and f;

(iv) an element of a chain ¢ is a border element of H only if it is the endlink
whose closure contains an endpoint of e in BdG. Then we say that the refinement H
chains the nerve I', with the chaining set | {Z: e an edge of I'f< H.

LEMMA 8.2. Let G be an S-partition of X, with a nerve I'. Then for each ¢>0
there exists a core-connected g-S-refinement H of G which chains T,

Proof. There exists by Theorem 6.1, a core-connected ¢-S-refinement F of G.
We may assume mesh F is small enough that the closure of a border element of F
meets an edge e of I only if e 1 BAG # &, and meets distinct edges e, and e, only
if e, ne;nBAG # @. If p is an interior vertex of I' such that peBdF, let
f,=int(J {f: feF and peBdf}). Then f, is a connected open neighborhood
of p with Property S, and the collection { f,} w {fe F: p ¢ Bd f} is a core-connected
S-refinement of G. Thus we may assume that each interior vertex of I" is contained
in an element of F.

Let Fr={feBordF: fnT'# @ and fnBdI =@}. (Recall that
BAI' = I' ~ BAG is the set of boundary vertices of I'). Let C = (J {: fe CoreF},
and for each f e Fr, let §,>0 be the minimum distance between points of f n (I' v C)
and BdG. With § = min{6,: f€Fr}, let F' be a core-connected %5-S-refinement
of F, and let F'(Fp) = {f" € F': f’<f for some fe Fr}. Then clearly the partition
F* = (F\Fy) u F'(Fy) is a core-connected g-S-refinement of G such that F} = @.
Thus we may assume that Fr = &,

For each edge e of I' with a boundary vertex b as one endpoint, let £ be a border
element of F with closure containing b for which d*(b, ];f N €)>0 is a maximum,
(Note that for any fe F with fne # @ and d*(b,fn &)>d*b, f& N e), we must
then have f'e CoreF.) For each interior vertex p of I, let f, be the element of F
containing p.

The partition elements {f3} and {f,} thus selected will serve as the endlinks of
the required chains for edges of I'. It is now easily seen that for any S-refinement F
of F with sufficiently small mesh, H = BordF u {f,: p an interior vertex of I'} L
U F(Core F\{f,}) is a core-connected ¢-S-refinement of G which chains I.

§ 9. Refinements with border element parameters. Let G = {g,, ..., g,} be an
S-partition of X, with a nerve I". For 6>0 and g € G, let N(g) be the open &-neigh-
borhood of g in X, and N(g) its closure. There exists e,>0 such that if
Noool@i) O oo 0 Nayy(gs,) # @, then g;; ... 1 g, 5= D. Since the boundary vertices
of I are contained in the maximal nonempty intersections of the closures of partition
elements, it follows that the distance between distinct boundary vertices is at
least 2s,.

LemMa 9.1, For each 0<e<gy, there exists a core-connected g-S-refinement H
of G which chains T, and functions f: Bord H-I1{I;: 1<i<n}xII{I}: bel' n Bdg,,
1<ign} and n: Bord H—Bord H with the following properties (f; and f? are the comi-

]
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positions of f with the projections on the I, = [0, 1] and IP = [0, 1] coordinates,
respectively):

(i) for each pair of adjacent elements hy and h, of BordH, we have
| filb) —f{h)i<e for each i, |max,{fe(h,)}—max;{fi(h)}|<e for each beBdT,
and if by, by =g, or if fi(hy), (k) >0, then | f2(h,) —f{(hy)| <& foreachbe I' n Bdg;;

(i) for each beBAI, the subcollection H® = {heBordH: fi(h) = 0 = fi(h)
for all i and all a # b} is connected along BAG, i.e., if H = HY U HS where
HY # @ # HS, then Iy 0 hy; "BAG = @ for some hye H, and hy,e Hi. Also,
(h: be B} H < {h: haN,(D)};

(iii) if f(h)>0, then A N,(g7);

@v) if heg; or if f{B)>0, then fi(h) = 1 for some be {g9;: B n Ny(gp) # D};

(V) if f2() >0, then either fi(h) = 1 for some j suchthat be Bdg,,or fi(h) = 0
for all j and all a # b;

(vi) for each he Bord H, I n n(h) # & and f(h)=f (n(h)) (in each coordinate);

(vii) {h: m(h) = B} = {h: fi(h) =0 for all i} U {h: fi() =1 for hegy}, and
some iterate of m is a function onto this set of fixed elements;

(vii) if hy O by N w(hy) 075_(]1;) # B, with n(h,) # hy and w(hy) # hy, then
n(hy) = 7?(hz)§

@x) if by and h, are adjacent and fihy) = O for all i, then fi(n(hy)) = 0 for
all i

Proof. By the chaining Lemma 8.2 there exists a core-connected s-S-refine-
ment H of G = {g,, ..., g,y which chains the nerve I. We construct the desired
functions f and = by defining them inductively on the collections Bord H n H(g)),
1<ign. (Recall that H(g;) = {he H: hcg;}). Thus, for heBordH n H(g),
we will have n(h) € Bord H n H(g;) for some j<i. This inductive construction will
require, at the ith stage, that mesh H(g;) be sufficiently small. Note that if Hy, ..., H,
are core-connected &-S-refinements of G, each of which chains I, then
H=Hg) v ..uv H(g, is also a core-connected -S-refinement of G which
chains I'. To simplify the notation, we therefore assume that for each i, mesh H(g,)
is as small as may be required. Set Bord H(g,) = Bord H n H(g)).

For an element 4 of Bord H(g,) adjacent to a boundary vertex b of I', we set
73(h) = 1 and all other coordinates of /' (h) equal to 0. This definition is unambiguous
and consistent with property (i), since for elements &; and /; adjacent to distinct
boundary vertices « and b, respectively, we must have ko E = @, otherwise
d((l, b) <2e<2g.

For each # and b as above, we obviously have

{g:: beBdg}={g: FaN(g) # 9}.

By choice of the set BAI of boundary vertices, the collection {g;: be Bdg,} must
be maximal with respect to having a nonempty intersection. Since

N {g:: EaN(g) + B}
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is also nonempty (by our stipulation that e<e,), we must have {9:: beBdg)
= {g;: R N{g;) # &}, and therefore property (iv) is satisfied.
For each boundary vertex be Bdg,, set L) = {keBord H(g,): b € Bd A},

and inductively define L**1(}) = {h e Bord H (gONU LiB): k is adjacent to some
: i<k

element of L*(5)}. We may assume for convenience that ¢ = 1 [N for some integer ¥,
We assume meshH(g,) is small enough that L'(a) NLIb) = B for 0<i, J<2N
and distinct boundary vertices « and b.

The function f has been defined above on elements of LO(b), for each
bel'nBdg,. In general, for heL(b) with 0<i<N, we set Ji) =1 and
Ji(h) = i/N, with all other coordinates of f (1) equal to 0. For heL(b) with
N<IS2N, we set fi(h) = fi(h) = 1, Ji(h) = i/[N—1 for each ael A Bdg, with
@ # b, and all other coordinates of (%) equal to 0. Finally, for & € Bord & (g,) not
in any layer Li(b), bel' nBdg;, i<2N, we define SUB) =fi(h) =1 for all
bel n Bdg,, with all other coordinates equal to 0.

We assume that mesh H(g,) is small enough that every element of L'(p), i<2N,
is contained in N,(b), for each bel A Bdg,. Thus

{€G: beBdglc{geG: hnN(g) o}

for each helLi(d), I<2N, and it follows as before that {9eG.beBdg}
=1{geG: kN N,(g) # @}, and therefore property (v) is satisfied.

We linearly order the elements of Bord H(g,) in such a way that h; < h; whenever
h; e L'(b), by e L(b), be I' A Bdg,, and i<j<2N. Then for each & e L(b), 0<i<N,
we define n(%) to be the first element of Bord & (9,) adjacent to . Thus n(h) e LI4(b).
For all other # e Bord H (91) we set w(h) = h. Clearly, this is consistent with proper-
ties (vi)-(ix).

Suppose now that functions f and 7 with properties (i)-(ix) have been defined
on ;kaordH (9:), with each n(%) an element of U Bord H(g,), and fi(h) = f(h) = 0

3 i<k

for all i>k and all b. Suppose also that the elements of |) Bord H(g,) have been
i<k

linearly ordered in such a way that <%’ whenever /i € Bord H(g;) and 4’ € Bord H(g B

with i<, and the function x has the property that for each 1 e () Bord H(g,), either
i<k

n(h) = h, or fi(n(#)) = 0 for all ;, or n(h)<h and 7(h) is the first element adjacent

to 4.

We assume that meshH(g,)<}d

(p, ¢), for any pair of points » and ¢ in non-
adjacent elements of ) Bord H (g
i<k

)- Thus if adjacent elements 4, and /;, of Bord H(g,)

are adjacent to elements h; and %, respectively, of U Bord H(g,), then by and 1}
i<k

must be adjacent. '

For each bel nBdg, such that beBdg; for some i<k, Ilet MO(b)
= {heBord H(g,): h is adjacent to an element of H A (U Bord H(g))}. (Recall
i<k

that H' = {h e BordH: £(h) = £(h) = 0 for all i and all a = b}.) For each
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he MO(b) we select an adjacent element &' of H” ('E)kBordH(g,‘)) and define

f(h) = f(h') with the exception that &) = 1. Thus ke H®. Properties (i) and (iv)
are satisfied if mesh H(g,) is small enough. We set n(k) = &

For each boundary vertex b as above, we now consider the collection M *(b)
= {heBord H(g)\M °(b): h is adjacent to an element of M°(B)}. L-ineargy order
MO(b), and for each ke M*(b) consider the first adjacent element 4’ in ]l{ (%). We
set f(h) = f () with the exception that fi(h) = e, and we set 7.c(h) T K. )

‘We next consider those elements of Bord H(g,) which are not in M°(b) u M *(b)

for any boundary vertex b, but which are adjacent to some element of igjk Bord H{(g,).

For each such element £, define 7 (k) to be the first adjacent element iniyk Bord H(g)).
We define (k) = f(n(h) with the exception that, for each beI n g, ng; for
some i<k, ‘we set Funy = max,{ fi(x(h)): beBdg;, i<k}.

Let L°g,) = {heBordH(gy): h is adjacent to an element .of BOl:dH (g for
some i<k, or he M'(b) for some boundary vertex b}, and inductively define

L*Y(g) = {he Bord H(gi)\U Li(gy): k is adjacent to an element of L(gy)}-
js<i
We linearly order the elements of Bord H(gy) such that hi</1,j' whcne;’ver
hye L(g), b € L(g,), and i<j. (The previous orderings of the subcollections M...(b)
olf Bord H(g,) are no longer relevant; they served only to insure property (viii).)
For each e Li(g,), i>0, let a(k) be the first adjacent element in Bord H(g,); thus
a(h) e L'"1(g))- _

( For h ezi(gk) with 0<i<N (recall that Ne = 1), we set'n(h) =ah). If iZN,
set w(h) = h. The function f is defined on the layers L¥(g,) as fo]lowg For
heLigy), 0<i<N, we set f(h) = f(«(R)) with the exceptionl7 that fi(h) = II)S. For
N<i<2N, set f(h) = f(«(h) with the exceptions that fi(h) = max{ ffc(oz(h)),
(i—N)s} for each bel nBdg,. For 2N<i<3N, set f(h) = f(a(h) with the
exceptions that fi(h) = min{fj(«(h), BN—i)e} for eaf:h bel n (Bd :qj\Bdgk),
j<k. Finally, for 3N<i<4N, set f(h) =f(«(h) with the exceptions that

. - <k .
f(h) = min{ f;(e(h), @N—i)e} for each j< . _

’ It can be Jveriﬁcd that properties (i)-(v) of the function f (as 1't h?.s been defined
so far) are satisfied if meshH(g,) is small enough. Properties (vi)-(ix) of the func-
tion 7 are also satisfied.

For each beT n (Bdg,\U {Bdg;: j<k}), set

L°(b) = {he BordH(g,): be Bdh}, ‘
and inductively define” L'*1(b) = {heBordH(gk)\j&)th(b): h is adjacent to an

element of L'(h)}. We assume mesh H(g,) is small enough that Li(gy) ? L(b) ,= anc;
0<i<4N, 0<j<2N, and each boundary vertex b as above, and that L'(a) n L (b? =

for 0<i, j<2N and distinct boundary vertices a a_nd b as above: The funct%ons ¥
and w are defined on the elements of each layer If'(b) in the fashion as picvmusly
defined on the layers in H(g,). Thus, for he L(b), 0<i<N, we set fith) = 1;
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fi(hy = ie, and set all other f-coordinates equal to zero. For N<i<2N, we set
fulh) = fih) = 1, and fi(h) = (i—N)e for each ae ' n Bdg, with @ # b, and set
all other coordinates equal to 0.

‘We may assume that the previously constructed linear ordering on Bord H(g,)
is such that h,<h; whenever h;e L(b) and hjeLj(b), with 0<i<j<N. Then for
h e L(B), 0<i< N, we define n (%) to be the first adjacent element; thus 7 (k) € L= (b).
Otherwise, set w(h) = h.

Finally, for all elements / of Bord H(g,) not contained in any layer L(g,) for
0<i<4N, or in any layer L(b) for 0<i<2N and & a boundary vertex as above,
we set fy(h) = fa(h) = 1 for each beI N Bdg,, with all other coordinates equal
to 0.

This completes the inductive step, and with it the proof of the lemma.

§ 10. Stratification of border elements of a refinement.

LEmMA 10.1. Let H be a core-connected S-refinement of a partition G of X, and m
a positive infeger. Then there exists an S-refinement K of H such that K> Core H,
and K(BordH) = {keK: kch for some heBordH} has a decomposition
8%V ... U S™ U R with the following properties:

@SS =Gifi#j, and AR =0 for each i;

(i) there exist adjacent elements of S* and 8% only if li=jl<1, and adjacent
elements of S* and R only if i = m;

(iif) BordsK=S°;

(iv) R = {k e K(Bord H): k is adjacent to'an element of Core H 1

(V) for each ke S, =S N K(h), heBordH, 0<l<m, there exists a chain
between k and an element of S,** such that, with the possible exception of k, each link
of the chain is an element of CoreyK, and each interior link is an element of S} non-
adjacent to every element of Si™1;

(vi) for each ke S,, 0<I<m, there exists a chain between k and an element
of Syt such that, with the possible exception of k, each link of the chain is an element
of Coteg K, each link except the last is an element of S, and each link except k or one
of the last two links is nonadjacent to every element of S.™*;

H
(vii) each pair of elements k, k' € Sj is connected by a chain in Sy for which each
interior link is an element of CoreyK;

(vili) each element of R, = R K(k), heBordH, is adjacent to an element
of Sy

. (ix) each element of Sy is connected by a chain to an element of Ry, such that each
interior link is an element of Sy’ ~ Corey K and is nonadjacent to every element of Sy~ 1,

_Proof. Choose 0o>0 such that the §y-neighborhood of BdG does not meet
U {h: heCoreH}, and let K° be a core-connected ,-S-refinement of . Let
§° = {ke K°(BordH): k is nonadjacent to every element of CoreH}. Choose
6;>0 such that the §&,-neighborhood of |J {k: ke S° does not meet
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U {h: heCoreH} and the §,-neighborhood of Bd H does not meet any element),
of CoreyK® Let K' be a core-connected §,-S-refinement of K° With
R® = K°Bord H)\S°, set S = {k e K'(R%: k is nonadjacent to every element
of Core H}. Let R* = K*(R®)\S*, and choose §,>0 such that the §,-neighborhood
of {J {k: ke S'} does not meet |J {h: heCoreH} and the &,-neighborhood of
Bd H does not meet any element of CoregoK®.

Continuing this procedure, we obtain the desired S-refinement

K=8%0U..uS8"URu CoreH,

where at the last step we take K™ to be a core-connected §,,-S-refinement of K™~ 1,
S™ = {ke K™(R"""): k is nonadjacent to every element of CoreH}, and
R = R™ = K"™(R™""')\S™. The verification of the listed properties is routine.

§ 11. Proof of Theorem 7.4. Let &,>0 be chosen with respect to the partition
G ={gy, ..., g,y asin § 9, and let M be a positive integer such that 1/M <min{g, &y}
Then choose >0 such that u<1/2M and Mu<d(p, q), for every pair of adjacent
vertices p and ¢ of I'. Let p be the minimum path-length metric on I', where each
edge of I' is metrized linearly and has unit length.

Let H be a core-connected u-S-refinement of G which chains I', and f and = the
functions on Bord H (constructed with respect to ), given by Lemma 9.1. Let X be
an S-refinement of H given by Lemma 10.1, where we take m = 3M. (The desired
C-monotone function ¢ will eventually be defined on a refinement of X.)

Let C<H be a chaining set for I'. Since each chain = C has at least M+1
links, there exists a function @: C—1I such that &#(c) = p if ¢ is an endlink whose
closure contains the vertex p, ®(c) is an interior point of the edge e if ¢ is an interior
link in a chain e, and o (®(c,), P(c,))<1/M for adjacent links ¢; and c,. (Actually,
we are interested now only in the restriction @ |¢ , core ir» Since we shall be considering
the stratification K(Bord H), of the border elements of H.)

For each endlink ¢ of a chain & such that ¢ contains a boundary vertex b of I',
let r¥ be an element of R, = R n K(c) (where R <K (Bord H) is given by Lemma 10.1)
adjacent to the next link of the chain & We set &(r2) = b.

For bel nBdg;, let L{(b) = {heBordH(g,): beBdh}, and inductively
define L*1(b) = {he Bord H(g)\U Li(b): h is adjacent to an element of L7 (8)}.

j<m
We may assume that for each he |J {L}'(b): OSm<M+1}, fiH) =0 if a #£ b,
fi(h) = 0if i # j, and f;(h)<1. (This assumption is justified by our construction of
the function f and the fact that (M+1)u<2Mpu<1, provided mesh H(g,) is chosen
small enough that no element of LY'(b), m<M+1, is adjacent to an element of
Bord H(g)\NH", for any j<i. And since H’>{h: beBdh}, it is certainly possible
to do this.)

The function & is defined on the subcollection §° U ... U §*¥ of K(Bord H)
by use of the parameter provided by the [unction f on Bord H. The first step is to
define on the subcollection S° U ... u S*¥ a parameter function with the same

3 — Fundamenta Mathematicae CI
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properties as f. Accordingly, there will be no confusion if we use the same notation —
Fofif? — for this function. For k e 5}, 0<I<M and

heBord Hg)\U {LT(b): m<M,bel nBdg},

we set f(k)=f(h), with the exception that fy(k) = max{f;("),//M}. For
M<I<2M, set f(k) =f(#) with the exceptions that fi(k) =1 and f by
= min{f} (h),2—I[M} for each boundary vertex b not in Bdg;. And for
IM<IL3M, set f(k) = f(h) with the exceptions that fi(k) = 1, Fik) =0 for
each boundary vertex b not in Bdg;, and fj(k) = min{fy(h), 3—I/M} for each
J#i

For elements of S., where he L'(h) for some m<M and bel nBdg;, we
modify the above assignment of f-coordinates as follows. For k € Sh, 0<I<m, f (k)
'is defined as above. However, for k e S, I<m, we set f (k) = f (k") for some (any}
k' e Sy,

Note that the function f thus defined on S° U ... U $*™ is constant on each
subcollection S}, 0</<3M and € Bord H. The desired C-monotone function & can
now be defined on S°u..u S by the use of expansion homotopies
é;: C(T)xI-+C(T)oneachtreeT; = I' N g;, 1 <i<n. Specifically, let D; = diamT;
(with respect to the minimum path-length metric ¢ on I'), and define the expansion
map e; by e(A,?) = {xeT;: o(x, A)<tD;}. Then for each ke $®uU..u S,
set ®(k) = U {ei(b,f,-(k)ff(k)): bel n Bdg; with fi(k)>0, 1<i<n}.

We verify that each & (k) e C(I') by using the properties (iii)-(v) of the function f
described in Lemma 9.1 Let k<h e Bord H(g,). By property (iv), /2(h) = f2(k) = 1
for some be() {g;; hn Ng)) # B}, and thus be &(k). Suppose fj(k)>0 for
some j and some a # b. Then fj(h)=fj(k)>0, and by property (v), f3(h) = 1 for
some j' with aeBdg;.. By property (iil), & n N,(g;) # @, and thus beg;. By
property (iv), f%(#) = 1 for some a' € g; N g ;. Then also f5(k) = 1. If f;.(k) = 1,
then ®(k)>T;>{a,b}. On the other hand, if f.(k)<1, then we must have ke A
for some !>2M, and aeBdg; (since fj(k)>0). Then fi(k) =1, so that
P (k) T;> {a, b}. In either case, there is a subcontinuum of @ (k) containing both &
and b, and since a was arbitrary with f5(k)>0, it follows that @ (k) is connected.

Note that (k) = f(k"), and hence @ (k) = & (k") for elements k and k' in the
same subcollection Si;if I = 3M and h e Bord H(g )\ {LT'(b): m< M, beI nBdg,},
then ®(k) = T;; and in any case, if / = 3M and he BordH(g,), then & (k) <=T.

The function @ has now been defined on the subcollection X° of the u-S-refine~
ment K, where '

K°=Su..usMy
U {rh: be I nBdG N Bde, ceC A BordH} U (C n CoreH) .

Note that $° U ... u §*M and C n Core H have no adjacent elements; they are linked
only by the connecting elements {r?}. We have Bord; K< §° <K, and for any el-
ement k of K°adjacentto an element of K\K°, we have ®(k)=T;, where k=g;.
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The function @, as constructed to this point, satisfies the conditions (i)-(iii) of the
C-monotone Definition 7.1. To verify condition (i) we use the fact that for a boundary
vertex b of I, the subcollection H” of Bord H is connected along BdG, given by
property (i) of Lemma 9.1, together with the following observation. For ke K°,
with k=he Bord H(g;) and b eI’ n Bdg;, we have & (k) = b if and only if one of
the following conditions holds: either b e BdA, or he H® and ke S°.

& will be ¢-continuous provided M is sufficiently large (exactly how large will
depend not only on ¢ but also on the diameters D; of the subtrees T, i =1, ..., 7,
of I'). The typical problem that might arise, for example, would be the case in which,
for adjacent elements 4 and k' of Bord H, 0<max, f () <u while max, f;2(#) = 0,
for some boundary vertex 5. Then for adjacent elements kh and k' <=k’ of $°, we
have b e ®(k), while &(k") conceivably could contain no points near b. However,
properties (iv) and (v) of Lemma 9.1 imaply that f;(h) = 1 for some i such that b € Bd g;.
Hence fi(h')>1—y, and by property (iv), fi"(#) =1 for some a e Bdg;. Then
(B f1(h)y>1—p, and it follows that @ (k") contains almost all of T}, and therefore
contains points near b € Bd g;. The other similar verifications of this sort, for adjacent
elements in S° U ... U 3™, also use properties (i), (iii), (iv), and (v) of Lemma 9.1
and are left to the reader. If k €S}, is adjacent to an element r%, then / = 3M and
either & = ¢ or h is adjacent to ¢. Thus either ®(k) = b or @(k) is the 1/M-neigh-
borhood (with respect to the metric @) of » in T;, where hcg;, so that
d*(®(k), () <e provided again that Af is large enough. Finally, we must show
that, for adjacent elements kche BordH(g;) and k'ch’' eBordH(g;) of K°,
&(k) n (k") % &. By property (iv) of Lemma 9.1, i) = f¥#) =1 for some
bel nBdg; nBdg;, and hence by property (i), ff(k) = ff(H)>1—p>0 for
some j with be Bdg;. Hence d(k) n ¢(k')={b} # @.

Choose §>0 less than the minimum distance between points of non-adjacent
elements of K° and points of non-adjacent elements of H. Since we could take
a 6/2M- S-refinement K of K, and then consider the refinement K* = K(K\K°) U K°
of K, simply assume that for each ke K\K°, diamk < §/2M. We now extend & over all
of K by defining it on layers built up from X°. Inductively define K™** = {ke K\|J K*:

i<m
k is adjacent to an element of X™}. We linearly order the elements of X in such a way
that k,, <k, for every k,, € K™, ks € K™Y, and k<k’' for k, k' e K® if & (k)
is a vertex of I and & (k") is not. For k € K™** define a.(k) € X to be the first adjacent
element; thus o (k) € K™. We then inductively define &(k) = e,(®{a(k)), 1/M)e C(T),
for ke (J {K™: O<m<M} with k=g;. Thus &(k) = T; if ke K™, Finally, for
ke K(g)\U {K™: 0<sm< M}, we set (k) =T;.

The function ¢: K—C(I") thus constructed is certainly limited by G (use prop-
erty (iii) of Lemma 9.1), and is e-continuous if M is large enough. Since
{kek: ®(k) is degenerate}=K°, and the restriction @, satisfies conditions
(i)-(iii) of the C-monotone Definition 7.1, so also does &. It remains only to describe
a relation W in K satisfying the C-monotone condition (iv). Here we make use of
the function 7n: Bord H—Bord H satisfying properties (vi)-(ix) of Lemma 9.1. We
3*
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first define a function ay: U {K™ 0<m<M}—~H. For ke K", consider the mth
iterate of the previously defined function o; thus a™(k) € K°. Then let ay(k) be the
element of H containing o™(k). Note that if ke K™, with k<he H, then by our
assumption on the diameters of elements of K\K°, either ay(k) = h or ay(k) is
adjacent to h. '

We set k \ k' if & and k' are adjacent elements of K, #(k)= P (k"), and at least
one of the following situations occurs:

1) Either k& or k' is an element of K\ {K™: O0<m<M}. (In this case
&) = &(k') =T, for k, k'=yg;.)

2) Either k or k' is an element of

ag'(Bord N\ {L'(}): be I nBdg;, 0<Sm<M, 1<i<n}).

(In this case also @(k) = ¢(k) =T, for k,k'cyg;.)

3) ke J{K™: O<m<M} and a(k) =K'

4) k, k' e S, for 0<I<3IM, heBordH, and either k or k' is an element of
CoregK and is nonadjacent to every element of S~ (however, we will not set kK™ k'
in this case if k € S} is adjacent to an element k, of S§ such that & (k,) is degenerate —
see situation 7 (below).

5) ke Sy and k' e Sp*! for 0<I<3M, he Bord H, and either k or k' is an el-
ement of CoreyX.

6) k, k' e BordgK, k<h and k'’ for distinct 4, ' € Bord H, and n(h) = &'

T keSi, k' eS8y, and &(k') is degenerate.

Condition (iv), a) of Definition 7.1 is automatic (if one were to define the re-
lation ™ by condition (iv), a) alone, then (iv), b) and (iv), c) would not in general
be satisfied). Condition (iv), b) is insured by the restrictions appearing in situations
3), 4), 5), and 6) above, together with the properties of the functions o and n. The
restrictions of situations 3), 6), and 7) insure condition (iv), c).

We outline the lengthier argument for condition (iv), d). Suppose k € K(h),
for i e Core H. Since H is a core-connected refinement of G, there exists a chain y in
Core H between / and an element ¢ of K°® ~ CoreH (i.e., a core element of the chain-
ing set for I'). We may assume ¢ is the only element of y in K°. Let y¢ be a chain
in K which “refines” y and goes from % to ¢. Then ¢ is the only element of yx in K°.
Let k&’ be the first element of yx which is in the set

ag (U {L(®): beT nBdg;, 0<m<M+1,1<i<n} v Core H).

Then the subchain of yg from k to &’ is a chain in the relation ., by situations 1)
and 2) above. By 3) there exists a “ chain (not necessarily a subchain of yx) from k'
to an element k" of K°, and either & (k") is degenerate or k'’ & S with k e L(b),
for some bel nBdg;,, l<m<M+1, and 1<i<n. In the latter case f(h) = 0
ifa# b, fi(h) = 0if i # j, and fi() <1 (see the remark in the fifth paragraph of this
section). By situations 4) and 5), by the properties (vi) and (vii) of the layers S},
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0<I<3M, given in Lemma 10.1, and by the definition of the function & on the
elements of S, there exists a . chain between &'’ and every element k"’ of Bordg K (OB
If fi#h) = 0, then ®(k"") = b is degenerate for any such k. If f(h)>0, then
7(h) # h, and 7'(h) € H® for some iterate n" of m. In this case there exists an el-
ement k' of BordgK(h) adjacent to an element of BordgK(m(%)). Then repeated
occurrences of situations 4) and 6) yield a “ chain from &’ to an element kY of
BordgK(n"(h)), and @ (k™) = b. Thus condition (iv), d) is satisfied for elements of
K(Core H).

Now consider ke K(h) for heBordH. Suppose helLi(b), for some
bel nBdg;, 0<m<M, and 1<i<n. If k¢ U {K/: 0<j<M}, then since £ is
connected there exists a minimal chain in K(%) from k to an element k' of k™. By
situation 1) this is also a “ chain from k to k. Since ay(k') is either identical or
adjacent to h, we have ag(k) e U {LT'(b): m<M+ 1} U Core H, and it follows by the
same argument as in the previous paragraph that there exists a “x chain from k' to
an element of X whose @-image is degenerate. If k € {Kj : 0<j< M} this argument
applies perforce.

Now suppose that ke K(h) for heBord ANU {L{'(b): m<M }. We consider
first the case when k e S, for M<I<3M. If ] # 3M, then by construction of ¢, and
by situations 4) and S), there exists a ™ chain from k to an element of S2, Hence
we may assume / = 3M. Recall that, since initially obtaining K by invoking
Lemma 10.1, we have actually been considering a refinement K* of K for which
K9 K*. However, for simplicity of notation we have continued to refer to K* as K.
Thus the elements r of the subcollection R described in (10.1) will not in general be
elements of K (unless re {2} = K°), but we may consider instead the subcollection
K() = {keK: ker}, for each such r.

Resuming our argument for k e $3M_ we have by property (ix) of (10.1) that k is
chain-connected to an element r of R contained in k, such that each interior link of
the chain is an element of S3* A Core, K and is nonadjacent to every element of
S3M=1 Tet k' be the (interior) link of this chain adjacent to r. Then k is ™ chained
to k' by 4). Since r is connected and is adjacent to an element of Core H, there exists
an element k' of K() adjacent to k' (thus kK™ k” by 2)), and a chain of elements
of K(r) between k'* and an element k"’ adjacent to an element k' of CoreH. Then
by 1) and 2) there exists a  chain from k'’ to k", and by 1), k"™ k" for any adjacent
element k¥ of K(%'). By a previous argument k' is “ chained to an element of X
whose ®-image is degenerate. Obviously the case where k e K (r) for some re R is
subsumed under the above -argument (we then have k = k).

Finally, we consider the remaining case where ke S,f, for 0<I<M and
J e Bord H. By situations 4) and 5), there exists a “ chain from & to an element k' of
S% A BordgK. If n(h) # h, let t be an integer such that n'(h) = ='T (k). Then by 4)
and 6) there exists a . chain from &' to an element k'’ of S%ay 0 Bordg K. Thus we
may assume n(f) = h. If fi(f) = O for all 7, then A e H® for some be I n BdG,
and ®(k') = &(h) = b. Otherwise, we must have f;(k) = 1 for hcg; (which implies
that ¢ U {LI'(b): m<M}). In this situation there exists, by 1) and 2), and the
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construction of @, a “ chain from k' to an element k'’ of S¥ (note thﬁt
Tic®(k) = <15.(k”), since fi(k") = fi(h) = 1). By the argument of the previous
paragraph £ is “ chained to an element of X with degenerate ®-image. This com-
pletes the proof that condition (iv), d) of the C-monotone Definition 7.1 is satisfied,
and with it the proof of Theorem 7.4
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A degree theory for almost continueus functions
by

H. Arthur DeKleine and Jack E. Girolo * (San Luis Obispo, Ca.)

Abstract. A degree theory is developed for almost continuous functions. This theory is used to
prove certain fixed point theorems as well as a generalization of the Borsuk-Ulam theorem.

I.' Introduction. In recent years non-continuous functions have been studied
and applied to fixed point theory. :

Let 2 X— Y be a function from a topological space X to a topological space Y.
For C<X, the graph over C is defined to be {(x,f ()): x e C}, a subspace of the
topological space X x Y. The graph of f, denoted by I7f, is defined to be the graph
over X. A function f: X— Y is called a connectivity furiction if the graph over each
connected set is connected. O. H. Hamilton [7] initiated the study of connectivity
functions when he proved the following theorem:

TuEoREM 1. Every conmectivity function from the n-cell I" to the n-cell has a fixed
point.

Let bd(#) denote the boundary of N. In order to prove Theorem 1, Hamilton
defined an additional class of functions: ' .

DazrNITION 1. If f: X—»Yis a function, theri f is peripherally continuous if for
each x e X, each open V< X for which x € V, and each open Uc Y for which f(x) e U,
there exists a neighborhood N of x such that NV and f (bd(M)sU.

He then proceeded to show, for n>2, that every connectivity function is per-
ipherally continuous and every peripherally continuous function has a fixed point.
John Stallings [11] discovered a gap in Hamilton’s argument, corrected it, and
generalized the result to polyhedra. In doing so he defined a third class of functions:

DEEINITION 2. A function f: X— Y is almost continuous if for every open sub-
set U of X'x ¥ with I'f< U there exists a continuous function g: X—->YwithIgeU.

As a consequence of a key theorem in Stallings paper we have:

TrEOREM 2. If f is a peripherally continuous function from either I" or S", n>2,
into R™ then f is almost continuous.

* This paper is dedicated to the memory of William Carroll Chewning, a friend and a bright
young mathematician who was a source of inspiration to the second author.
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