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Shape properties of hyperspaces
by

J. Krasinkiewicz * (Warszawa)

Abstract. Using some ideas from shape theory several results on the hyperspaces of subcontinua
are obtained. The hyperspaces of circle-like continua are studied in great detail,

0. Introduction. By a continuum we mean a compact connected metric space.
Given a continuum X by C(X) we denote the hyperspace of nonvoid subcon-
tinua of X with the Hausdorff metric dist(-,7) (see for instance [11] where several
facts about C(X) arc proved). A map f, i.e., a continuous function, from X into Y
defines a map f: C(X)~C(Y) given by f(4) = f(4), which is called the map
induced by f. Throughout this paper maps with hats above will always denote the
induced maps, By X we denote the base of C(X), that is the set of all singletons
in C(X). This space is isometric to X and occasionally is identified with X. Con-
tinvum X regarded as a point of C(X) is called the vertex of C(X). For every two
continua 4, Be C(X) such that A<B there is a maximal monotone collection of
continua between them which forms an arc in C(X). Such a collection will be denoted
by AB and called a segment in C(X). If A is a singleton and B = X, then 4B is
called a maximal segment. A map u from C(X) into reals R is called a Whitney
map on C(X) provided the conditions arc satisfied:

(%) AdcB and A # B = p(d)<u(B),
(%) p({a}) =0

Whitney maps always exist [23]. We take the opposrtunity to show how we can
construet many Whitney maps on C'(X).

Let Uy, Uy, ... be an open base for X and call a palr « = (U;, Up) normal
if U, U;. For such a pair let £, denote the Uryshon map from X into the unit interval
I'=[0,1] sending U, into 0 and JN\U, into 1, and let 0 C(X)—R be given by

1, (A) = diam f,(A) .

for each xe X .

* This paper has been wrilten in the spring of 1975 when the author was visiting the University
of Georgia, Athens, Georgia 30602,
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Arrange the set of all normal pairs into a sequence and let {u,} denote the corre-
sponding maps from C(X) into R. One checks easily that the formula

- A
u(d) = Z &"'2(;“)

defines a2 Whitney map on C(X).

In the first section we are concerned with saturated subsets of hyperspaces (the
definition below). It was Kelley [11] who first observed that these subsets had nice
homotopy properties. Our main result in the first section states that closed upper-
saturated subsets of C(X) have trivial shape. Since compacta with trivial shape are
acyclic in all known senses ([3], [18]) the latter result improves a recent result of
Rogers [20]. We also introduce the notion of horizontal subsets of C(X'). We observe
that horizontal subsets of C(X) have dimension less than that of C(X') provided C(X)
is finite-dimensional, which follows from some considerations in [20] (comp. also [12]).

In the next section we prove a.theorem on inverse limits of disks and derive
a corollary to it. That corollary is a stronger form of a theorem proved by Bennett
and Transue [2]. :

The results from the preceding section are applied in Section 3 to the hyper-
spaces of proper circle-like continva. By a proper circle-like continuum we mean
a circle-like continuum with non-trivial shape. In other words: that continuum which
can be expressed as the inverse limit of circles with essential bonding maps. We show
that those hyperspaces behave similarly to the cones over those spaces. The corollary
from Section 2 applied to those hyperspaces gives a generalization of a result of Ball
and Sher [1].

The author is indebted to Dr. S. Spiez for his interesting suggestions.

1. Saturated subsets of hyperspaces and auxiliary results. In this section we study
upper saturated and lower saturated subsets of hyperspaces, A subset M of C(X)

is said to be upper saturated, lower saturated respectively, if the following conditions
are satisfied.

(w) AeM and Ac=B = Be M,
)] AeM and BcAd = Be M.
The collection of all upper (lower) saturated subsets of C(X) we denote by US(X)
(LS(X), respectively). Let us note that these families are complementary to each

other, that is, if M is an element of one of these families then C(X)\M is an element

of the other. These families are closed with respect to ar bitrary unions and inter-
sections:

@ M,e US(X)for teT = UMt,ﬂMEUS(X),
teT tel

(b) M,eLS(X) for teT = \J M, ﬂ M, eLS(X).
teT teT

icm

. Then J~
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Remark also that every upper saturated subset of C(X) is arcwise connected because
each of its points can be joined with X by a segment, and each such segment is
a subset of the given set.

Let C2(X) denote the hyperspace C(C(X)) and let o2 C3(X)—C(X) be given by

= U {'A: }‘fc,n{} i

Tt is known that ¢ is continuous and nonexpansive [11]. We say that Mc cX)
is an invariant subset with respect to o provided o(C(M)) = M, where
C(M) = { o & CHX): o <M}, In such a case o is a retraction of C(M) onto M,
regarding M as the set of singletons in C(M) (the base of C(M)). Observe that

(&) every set M e US(X) is invariant with respect to o.

(@)  the intersection of a collection of suta mvcu-mnt. with respect to ¢ is a set in-
variant with respect to o.

Now we give some examples. .

1.1, ExampLE. Let g be a Whitney map on C(X) and let reimp. Then
p= ([t 00)) e US(X), 1 ([0, 1) e LS(X) and each is closed in C(X).

1.2, EXAMPLE. Let fbe a map from X'into ¥ and let M e US(Y) (M e LS(Y)).
I(Mye US(X) (J~"(M)eLS(X) respectively). In particular, if f is
a surjection, then /~1({ ¥}) & US(X) and it is closed in C(X).

1.3. Exampur. Denote by 29 the collection of all subsets of C(X) and define
functions u and / from 267 into 26 by the formula

u(M) = {de C(X): A>8B for some Be M},
(M) = {de C(M): AcB for some Be M}.

Observe that imuc US(X) and im/=LS(X). Moreover, if M is closed in C(X),
then both u(M) and I(M) are closed.

If U, Uy, ..., U, are open subsets of X, then we denote

"

Uy s U = ld e C(X)s de YU and An U # @ fori=1,2,.,n}.
1o , .
The sets of this form constitute a base X for a topology called the Vietoris tf)pology
ot C(X). In our case (that is for metric continisa) this topology coincides with that
induced by the Hausdor(l metric [16, p. 47].

Observe that

(& every clement ¢ of £ is invariant with respect to ¢; if X is locally connected
then G is locally arcwise connected.

, TR — y

The second assertion follows from the following observation. If G = (Uy, «-, U,>
"

and ¥V is a component of {J U,, then (¥, Uy, .., U,y is an arc-component of G.
1=

8 — Fundamenta Mathematleae CI IS .
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Moreover, if 4, BedV, U, .., Uy and C =AU Bu L, where L is an arc in p
joining 4 and B, then AC U BC is an arcwisc-connected subset of

u({ A, BY) AV Uy U

containing A and B. Since u({4, B})) = M for every M e US(X) which contains 4

and B, we have ‘

®
nected.

Since the hyperspace C(X') is a metrizable space, every open covering of a subset
of C(X') has a star-refinement. The characterization of absolute neighborhood retracts
given in [8, p. 122], and the methods developed by J. L. Kelley [11] together with (e)
and the above observation give the following result.

1.4. THEOREM. Every locally arcwise-connected and invariant with respect to « sub-
© set M of C(X) is an absolure neighborhood retract for metrizable spaces. Moreover,
M is an absolute retract provided it is arcwise-connected.

1.5. CoroLLARY. If X is a locally connected continuum, then every set M e US(X)
and every connected element of the base X is an absolute retrucr for meirizuble spuces
(comp. [11]). ‘ :

Using 1.5 we now prove that closed upper saturated subsets of the hyperspaces
have trivial shape. The reader is referred to [3] for the notions and fundamental
results from shape theory. The following proposition is proved in [15] (see also [9]).

1.6. PROPOSITION. For a compactum X the following conditions are equivalent

() ShX =0, i.e., the shape of X is trivial,

(i) X can be represented as the intersection of a decreasing sequence of compact
absolute refracts,

(iii) each map from X into a neighborhood retract is homotopic to u constant map,

() if X = invlim{X,, o}, where X, is a compact ANR-set, then for edach n
there exists an mzn such that the projection o2 XX, is homotopic to a constant map.

1.7. TasoreM. If M is a closed subset of C(X), then Sh (u(M)) = 0.

Proof. Consider X as a subset of the Hilbert cube Q and let [X,} be a decreasing
sequence of locally connected subcontinua of @ converging to X, i.e. () X, = X.
u

Hence M is closed in each C(X,,).‘ Let u, denote the operation u in C(X,). By
Corollary 1.5 u,(M)1isa compact absolute retract, Moreover the sequence {u,(M)}
converge to u(M). By Proposition 1.6 we obtain the conclusion of the theorem.

1.8. COROLLARY. Every closed upper saturated subset of C(X) has trivial shape.
1.9. CoroLLARY. [12] ShC(X) = 0.

'1.10. CoROLLARY. If W is a Whitney map and t e ;i(C(X ), then
Shj™ (7, o0)) = 0.

icm®

if X is locally connected and M e US(X), then M is locally arcwise-con-
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111, COROLLARY. Let [ beamap from X into Y and let M be 4 closed subset
of C(Y) belonging o ﬂU‘S( Y). Then Shf~'"(M) = 0 unless it is empty. In particular,
if f is onto, then Shf~'(Y) = 0.

A subset M of C(X') is said to be horizontal provided that every segment in C(X)
has at most one point in common with M. For instance, if f1 X— Yis a monotone
mapping onto Y, then fHY) s {f7 ) pe Ve QW) is a horizontal subset
of C(X). Furthermore, if f is open then /7' Yef=Y(¥) is 4 homeomorphism,
hence Y embeds into C(X) as a horizontal subset.

Using an analogous reasoning as in [12] we obtain the following -

1,12, -CoroLLARY. [20]1 I M is a closed horizontal  subser of C(X), then
dim C(X)zdim M+ 1.

1.13. CoROLLARY. If Y is a continuous monotone open image of u continuum X,
then dim Y<dim C(X)~1.

From now on we agree Lo use notation from the theory of inverse limits accord-
ing to the following convention: :

If {X,} is a sequence of spaces and {/, ,..1% X, —X,} a sequence of maps,
then f,, denotes the identity map Ly, £, for n<m denotes the composition
Sant1 0o e, nd fy denotes the projection from invlim{X,, f,,} into X,.

A map f: X= Y is said to be an g-mapping provided diam f~'(y) <e for each
yef(X). Two following facts are stated only for future references.

114, Proposr1ioN. Let X = invim{X,, o,,} be the inverse limit of compacta.
Then we have

@) if all bonding mups ure surjective, the projection is also surjective,

(ii) if the projection o,: X=X, is homotopic to a constant map, then there is an
index m>n such that o,: XX, is homotopic to « constant mup.

(D) for each ¢>0, there exists an index n(g) such that the projection o,: X—X,
is an g-map for edch nzn(c), :

(iv) the map a: C(X)=invim{C(X,), &,.} given by

"

a(Ad) = (8,(A), &y(d), ...)

is a homeomorphism [21).

2. On inverse limits of disks, For the definition of movability and fundamental
results about it the reader is referred (o [4], The letters § and D are used in this
paper to denote the unit cirele and the unit disk in the complex plane respectively,
le.S={zaC: |zl = 1}, D= {zeC: [2|<1} By a solenoid we mean the limit of
an jnverse sequence such that each factor space is § and each bonding map is a finite
product of the identity map, A map /1 X ¥ is called a shape equivalence provided
the fundamental sequence f is o shape equivalence [3].

In this section we shall prove a result on inverse limits of disks, which will be
applied in the next section to the hyperspaces of circle-like continua.

[
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2.1. THEOREM. For each nz1 let S, =S, D, =D and let w, be an interior
point of D,,. Assume o, ;11 Syy1=>Sy and By w12 Dury— D, are mappings satisfying
the conditions:

(1) “u,n+1 $ Os
(2’) :Bn,n+ l(x) = ‘xn,n+1(x) f()}' XE Sn+1»
(3) Wps1€ ﬁrl—.lli-i-l(wn):
@ Briei(w,) is connected.
Let X = invlim{S,, t}, Y = invhim{D,, By}, W = (Wi, Wa, ) and regard X as
the subset of Y. Then there is a space X* and « mapping
£ N{w-X*
having the following properties:

() the restriction f|X: X-X* Is a shape equivalence; consequently
ShX* = ShX,

(i) if X is movable, then X* is a simple closed curve; if X is not movable, then X*
is a solenoid,

(iii) if A is a compact subset of Y separating Y between X and w, then there is

« component C of A such that f(C) = X*. Morcover, there is an index ny such that
B(C) separates D, between S, and w, for each nzny,

(iv) if C is a subcontimuum of Y separating Y between X and w, and for edch .

compact subset M of YN\C there exist two disjoint continua A and B in YNC such
that McA U B, then f|C: C—X* is a shape equivalence,

() if C is a subcontinuum of YN{w} containing X such that for every com-
pactum M < YNC there is a continuum in YNC' containing M, then f|C: C—X* is
a shape equivalence. :

Proof. If P denotes a perforated disc in the plane, then by P we denote its
interior.
Using (4) one can easily construct a sequence of sets Uy, U,, ... and a sequence

of perforated discs P,, Py, ... such that

(5) U, is an open subset of D, and w, & U, ]3,,,
©  Brisi0n)eBiri Py S Bt U,
(7) Un+1an+1’

® N O = {wh

Let 7,541 Spe1—S, be a mapping such that

(®)  Vunt1 ™0 ns1 a0d P, 4y IS 2 covering projection.
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The existence of such a map follows from (1). With a little effort one can construct
(using (2), (3), (6), (9) and the homotopy lifting theorem [22]) a sequence of mappings
815025 s Opt DN{W,}=S,, satisfying the conditions:
(10) 5n|Sn'§1$n7
(1 1) ﬁn,n%-l(z) ¢ UII = 5uﬁn,n+1(z) = %.,,.4-15n+ 1(2): for each )"l>1 and ze D,,+1-
By (6), (7) and (11) we get
(12.> [),”Ill(z)¢ U" = (Sllﬁlllﬂ(z) = yl“l!(slﬂ(z) for ea‘c}l nsm alld. Z E D"X'

Let G, = YNy '(U,) for each nx1. '

Let X* = invlim {S,, Yy }. It follows from (12) that the function f,: G,~X*
given by the formula:

.ﬁy(y) = (y]n “ 51! © ﬁn(y); '))Zn e 5!1 e ﬂn(y):v srey 51) ° Bn(y): 5u+1 ﬁu-l« l(y): "-)

is well-defined and continuous (because each coordinate function is continuous).
Since for k>»max(n, m) we have
WS = o Bl() = vefuly) for  yeG,n Gy,
we infer that
(13) ye G, n Gm = u(y) =.f;n(y)'
Observe that U G, = YN() Bri(T,) = Y\{w} (see (8)). Setting f(») = f,(») for
. n n
y & G,, and noting that each G, is an open subset of ¥, we obtain by (13) a mapping
2 IN{w}oX*.

This is the map we were looking for. To complete the proof it remains to check con-
ditions (1)-(v).

Observe that for each n3>1 the following diagram commutes:

%, nt 1 %t

Sy Sy X

Sy 41[Sn+1 fix

Tu,n+1 v n v
X*

Sy S

3plSy

(see (2), (5) and (12)). Moreover, by (10) the map 6, S, is a homotopy equivalence.
It follows that /| X is a shape equivalence (see [18]). This proves (i).

If X is movable, then there is an index no such that |deget,,,| = 1 for each
n=nq (see [14]). It follows from (9) that y,,, is a homeomorphism; thus X* is homeo-
morphic to S,,,. In case X* is not movable, X is a selenoid by (1), (9) and an argument
used in [14]. This proves (ii).

To prove (iii) assume that 4 is a compact subset of Y separating Y between X
and w. Then there exist open subsets M and N of ¥ such that

N4 =MUN, XcM, weN and MnN=@.
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Since M U A is compact and G, =G, <., (see (6) and (7)), there is an index k sych

that
Mo AcGy.

We shall show that

(14) Yeof A4 0.

Suppose, to the contrary, that (14) does not hold. Then by the Borsuk homotopy
extension theorem the map y,«f |4 can be extended to & mup g: Nu A=,
Setting

yeMuAd,

AC
/z(y)—-{ yeNuwd

g(y) for

we obtain a map A: Y—S,. Since Sh Y = 0, by Proposition 1.6 we have h=0. Tn
particular k| X'~0. But for x € X we have

Bx) = p 0 f(X) = o ill) = 0 filx) = &y o o)

(see (2)). Thus by (10) we infer that o, =0, contrary to Proposition 1.14 (ii) and (1).
This proves (14).
It follows from (14) that there is a component ¢ of 4 such that

Yo f|C 0 (seo [16, p. 425)) .

This implies that for each nk we have y, o f1C 4 0. In particular we have
7(f(C)) = 8, for each nzk. Thus £(C) = X*. Let n,:k be an index such that
By (C) 1 (Spy W W) = @, Tt follows that for each n3zn, we have f,(C) N S, = &
(see (2)). Note that 8,(C) = D,\[mw,}. We claim that the inclusion map £3,(C") @ D,\[#,}
is not homotopic to a constant map. For otherwise d,[f,(¢) would be homotopic
to a constant, and so would be the map 8§, o f8,| €' == y, » /'] C, contrary to our previous
observation. Thus the Borsuk theorem [16, p. 470] implics that f,(C) separates D,
between S, and w, for each #3n,, which proves (iii).

Now we prove (iv). Let C be & continuum in ¥ satisfying hypothesis of (iv) and
let M\, M,, ... be an increasing sequence of compucta such (hat Y5 = ) M,

"

Let C, = B,(C). First we construct a sequence of natural numbers i1, < sy < ... and
a sequence of annuli Q,, @,,, ... satisfying the following conditions,

(s) Coye Oy, Qo By Ny
(16) Bupisi(@uyu V= Qo)
(17 Moy B Dy Ny ) s

for each j>1.
By (iii) there is-an index 5, such that C, separates D, between S, and w, for
each nzng. Let ny = n, and let Qu, be an annulus satislying (15) for j = 1. Assume
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the numbers #; and the annuli @, have been constructed for each 1<j<k. We shall

‘show that each of these sequences can be extended by one term.

Observe that £ = M, U [3,,“,“(1),,,‘\53,,,() is a compact subset of Y\C (see (15)).
By our assumption there exist continua A and B in Y\C such that Ec4 U B and
An B =@. Withount loss of generality we can assume that we A and X<B
because X U {w}cE (see (15)). Since 4, B and C are mutvally disjoint continua
in Y and each f8, is an ¢,~map such that lime, = 0, there is an index ny,  >n, such

n
that 4" = f,,, (), C,.,., and B = f,  (B) are mutually disjoint subcontinua
of Dy, Since myy( >y, Wy, €A and S, =B, it follows that C,,,, separates
D,.,, between A" and B'. Now it is easy to find an annulus Q,,,, in D,,,, containing
Cpyr In its interior and missing A" U B'. Any such annalus satisfies conditions (15),
(16) and (17) for j = k+1, which completes the construction.
" The limit of the inverse sequence

Qm*"’Qn;"‘"‘s

where the bonding maps are determined by the maps B, ,, (see (16)), is (homeo-
morphic to) C, which follows from (15) and (17). The map 9, | Q,,: @,,~S,, is
a homotopy equivalence for cach j=1 (see (10)), This implies that f|C: C—X* is
a shape equivalence (comp. the proof of part (i)). This proves (iv).

An argument similar to the above one works for the point (v).

2.2. COROLLARY. Keeping the notation of the theorem we have: if Y embeds in
Euclidean 3-space, then X embeds in the plane. Moreover, Y is always embeddable
into Euclidean 4-space. ) ‘

Proof. Since Y is a disk-like continuum, it can be embedded in E* [10].

Now, suppose ¥ embeds in E* and let h: Y—E3 be such an embedding. We shall
prove that X is planar using an idea from [2]. Let S2 be a 2-sphere with centre at 4 (w)
separating £° between #(X) and A(w). Let 4 = h™*(S? A ~(Y)). Hence 4 is a com-
pact set separating ¥ between X and w. So by (iv) there exists a component C of 4
such that f(C) = X*. By (i) the space X* is either a solenoid or a simple closed

“curve. It follows that X is a simple closed curve, because C embeds in $? and no

subcontinuum of $?* can be mapped onto a solenoid [7]. So X is movable and
by (i) we see that X is movable because movability is an invariant of shape [4].
Hence X is & movable circle-like continuum. Tt follows that it can be embedded in
the plane [14]. This completes the proof.
The above corollary implies the following result proved by Bennett and Transue.
2.3. COROLLARY [2]. The corie over a nonplanar circle-like continuum can not be
embedded in E°, . ‘
(Clearly, the cone can be represented as the limit of disks satisfying the
hypothesis of the theorem.) - v
ProBLEM. Suppose X is a continuum such that the cone over it can be cmbeddgd
in the Euclidean 3-space. Does it follow that X can be embedded in the sphere §*?
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3. Applications to hyperspaces of circle-like continua. Recall that by S and D we
denote the unit circle and'the unit disk in the complex plane respectively. Let ex: R—S§

be the mapping of reals given by

ex(f) = e*™".

Given a point 4 € C(S) there is an interval [£, 7,]< R such that ex([t, t,]) = 4.
Setting

P(4) = max(0, I—|t —tz|)ex<f‘!.f2t.fzﬂ>

we obtain a map y from C(S) into D (it is easy to check that y is well-defined).
Moreover, y is a homeomorphism between C(S) and D. We will refer to it as the
standard homomorphism.

Consider now a fixed proper circle-like continuum X. By [17] we can represent
it as the limit of an inverse sequence {S,, «,,} Wwhere S, = S for each n>1. Ac-
cording to 1.14 and [13](*) there exists an index n, such that for each n>n, the
projection «,: XS, is not homotopic to a constant map. Without loss of generality
we may assume that a, 42 0 for each nz1. Since «, = «,,0°0%,, Mm=n, it follows that
Oy & 0 for each nz1. For each n>1 let D, = D and let y,: C(S,)-D, be the
copy of the standard homeomorphism. Let 7,: S,—C(S,) and B, ...t D,.—~D, be
given by

in(x) = {.\'} and ‘Bu,u-l-l (JC) =Ya° nynek L 2 ')’;4}1 .

Observe that «’s and f’s satisfy the assumptions of the theorem from Section 3
see Corollary 1.11). Let ¥ = invlim{D, f,,} and let w,, = (0,0, ..) € Y. Regard X
as the subset of Y (the inclusions {y,oi,} define such an embedding). For each
nx1 the following diagram commutes:

int1 . Yn-1
Syi1 > C(Sys )= Dy iy
o |

Tyt L “uymd 1 Bu,net 1

n T

C (SII)

; S > D,
For each 4 e C(X) put
h(d) = ()’1 1(4), 7205(4), ) .
The above discussion and Proposition 1.14 imply that
h: (COO), R, X)~>(Y, X, we)

dejﬁnes a homeomorphism between the triples. We agree to identify the first triple
with the second one according to that homeomorphism. So applying the theorem
from Section 3 to the triple (C(X), X, X ) we obtain the following result:

. ® ’.l"heorems 3.3 and 3.4 from this paper have fitst been obtained by C. E, Burgess [5], This
information was communicated to the author by Professor C. E. Burgess.
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3.1. THEOREM. Let X be a proper circle-like continuum. Then there exist a space X*
and @ continuous map
i Si CON X} X*
having the following properties:

Q) the restriction f|R: X—X* is a shape equivalence,

(i) if X is movable, then X* is a simple closed curve; if X is riot movable, X'* is
a solenoid, ‘ )

(i) #f A= C(X) is a compact set separdting C(X) between X and X, then there
exists « component C of A such that f(C) = X*,

Gv) if C is « subcontinuwm of C(X) separating C(X) between X and X and for
each compuct subset M < C(XWNC there exist two disjoint continua A and B in C(X)\NC
such that M=A U B, then f|C: C—X* is ¢ shape equivalence.

() if' C is a subcontinuum of C(QXIN{X} containing X such that for every compact
set M= C(XINC there exists « continuum in C(X)\C containing M, then f|C: C—X*
is a shupe equivalence.

3.2. COROLLARY. Let u be « Whitney map on C(X) with u(X) =1 and let
p*: S(X¥)—1 be the map from the cone over X* given by p*([x, )] = t. Then there
exists a surjective map f* such that the diagram

c(x) L S(X*)
N4

commutes, and jor each closed connected subset AcI the map defined by f* between
1 NA) and pyH(A) is a shape equivalence.

Proof. Let f *(4) = [f(d), n(4)] for 4 # X and f*(X) = the vertex of S(X*).
The properties of f* are easily verified.

Since movability is an invariant of shape and for circle-like continua movability
is equivalent to embeddability in the plane we have:

3.3, COROLLARY. Let ju be a Whitney map on C(X) and let 0<t<maxp (cx).
Then .

@ Shp~1) = ShX, ‘

() (X movable) = (u~*(f) can be embedded in the plane).

The second observation follows from the fact that p~4(r) is a proper circle-like
continuum [13]. (That observation answers a question raised in [13]) .By a ps'eudo-
circle we mean a hereditarily indecomposable proper circle-like continuum in th‘e'
plane. Tt is known that any two pseudocircles are homeomorphic [6]. If X is heredi-
tarily indecomposable, then there exists a monotone (open) map from X onto
=17, hence 1= !(7) is hereditarily indecomposable. Hence we conclude that

3.4, COROLLARY. If X is the pseudocircle, then = X(t) is homeomorphic 1o X for

each 0<t<maxp(C(X)).
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(Since each proper subcontinuum of the pseudocircle is a pseudoarc, the above
corollary follows also from the Moore theorem [16, p. 533])

Applying Corollary 2.2 to our situation we obtain:

3.5. COROLLARY. If X is a circle-like continuum, which can not be embedded in

the plane then C(X) can not be embedded into E3.

This result extends a theorem of Ball and Sher [1] who proved it in case where X
is hereditarily indecomposable.

*In [19]J. T. Rogers proved that C(X) embeds into E* if X is a planar circle-like’

continuum. Combining this result with the corollary we have

3.6. COROLLARY. If X is a circle-like continuum, then C(X) embeds into B>
iff X embeds in the plane.

3.7. TueoreM. If X is a circle-like continuym and g¢: X Y is a mapping into
an ANR-set, then there exists a map h: C(XON{X}—Y which extends g.

Proof. Consider C(X) and S(X*) as subsets of the Hilbert cube and let 7 be
an extension of g onto a neighborhood U of X in Q. Tdentify X* with the base
of S(X*). Let f: 0—Q be an extension of f|£: X—X* and let f, = J for each
nz1. Since £|X is a shape equivalence the fundamental sequence f = {fi}: X=X+

the existence of an index n, such that
fao1X=1g
Let v denote the vertex of S(X*) and let p: S(X*)\{v}-X* be the projection onto
the “first coordinate”. Let ¢: C(X)\{X}— Y be given by
qA) = G o faopof*A),
where f* is the map from 3.2. Let us observe that

91X =Fofpol1X=G1& =¢.

Since X is a compact subset of C(X)\{X}, by the Borsuk homotopy extension
theorem there exists a map h with desired properties.

Remark. Since each map from C(X) into any ANR-set is homotopic to a con-
stant map (§ 2), and there are essential maps from X (X is assumed to be proper
circle-like) into ANR-sets (for instance into a citcle), the above fact says that the
vertex X of C(X) fills, in some sense, the “hole” in C(X)N{X'}. If X is a solenoid
then no other point from C(X)\X has this property.

in U for each nzny .
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