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Continuous images of continua and 1-movability
by

J. Krasinkiewicz (Warszawa)

Abstract. It is proved that pointed 1-movability, which is an invariant of pointed shape, is also
an invariant for continuous mappings of continua. Several characterizations of pointed 1-movability
are given. It seems to the author that the characterization involving the Mittag-Leffler property for
inverse sequences of fundamental groups is the most useful. We prove that every continuum which
is not pointed 1-movable contains a subcontinuum which is- indecomposable and not pointed
1-movable. In the final section we show that all continua embeddable into 2-manifolds are pointed
1-mecvable,

0. Introduction. In a paper by K. Borsuk [7] the notion of z-movability is
introduced and studied. We find that the case of 1-movability is especially interesting
in the category of pointed metric continua, Our main result states that it is an
invariant of morphisms in .that category, that is: continuous images of pointed
1-movable continua are pointed I -movable. Since continua of trivial shape are point-
ed movable and this property implies n-movability for each n> 1, theabove result
extends a recent theorem of the author which says that 1-dimensional continuous
images of continua of trivial shape are pointed movable (see [L1] for the precise
statement of this theorem). We follow K. Borsuk [6] in writing Sh(X, x,) for the
shape of a pointed compactum (X, xo). It is easy to see that if (X, x,) is n-movable
(movable) and fundamentally dominates (Y, ¥0), Sh(X, x0)8h(Y, o), then so
is (¥, y,). Hence the 1-movability of pointed continua is an invariant of continuous
mappings and an invariant of shape. We prove also that hereditarily decomposable
continua and continua embeddable in surfaces are pointed movable. Hence their
continuous images are pointed I-movable.

These results generalize a theorem of Borsuk [5] on the movability of plane
compacta, Bing [1] has proved that no non-planar circle-like continuum can be
embedded into an orientable surface. The above results combined with a theorem
in [10] (see also [18]) generalize Bing’s theorem to arbitrary surfaces. This fact was
first observed by M. C. McCord [17], who proved it using an algebraic argument.

We assume that the reader is familiar with the equivalence of the Mardesié-Segal -
approach to shape theory to that of Borsuk (in both the absolute and the pointed
case), which can be found in [15]. ) i
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1. Some simple consequences of 1-movability. Let X" be a continuum contained
in M'e ANR(I) and let xo be a point of X. We say that X is movable rel. M if for
every neighbourhood U of X in M there exists a neighbourhood Uy = U of X which
can be shrunk inside U into any neighbourhood of X in M (see [5]). If in addition
the homotopies can be choosen in such a way that they keep x, fixed, then we say
that (X, x,) is movable rel. M (see [6]).

The pointed continuum (X, x,) is said to be 1-movable rel. M if for every
neighbourhood U of X in M there exists a neighbourhood Uy U of X such that
eachloop w: (I, 1)Uy, x,) can be deformed inside (U, x,) into any neighbourhood
of X in M; ie., for each neighbourhood ¥ of X there exists a homotopy
@: (I, 1) xI—(U, x,) connecting w with some loop in (¥, xp). Here [ is the unit
interval [0, 1] of reals and I = {0, 1}.

This definition of 1-movability (in the pointed category) is cquivalent to
that of Borsuk [7]. :

1.1. "THEOREM. The pointed continuum (X, x,) is 1-movable rel. M iff for every
neighbourhood U of X in M there exists a neighbourhood Uy U of X such that each
path w: (I, D)~(Uy, X) can be deformed inside (U, X ) into any neighbourhood of X;
L.e., for each neighbourhood V of X there-is a homotopy ¢: (I, 1 YxI=(U, X) con-
necting @ with a paih in V.

Proof. =. Let U be a neighbourhood of X in M. Then there is a neighbour-
hood U, of X such that :

(1)  any loop in (Us, x,) can be deformed inside (U, x,) into any neighbourhood
of X. ‘

Let ¥ be a neighbourhood of X and let w; be a path in U, with endpoints in X,
By the connectedness of X there exist two paths w2 I=V N Uyand w,: I-V A U,
satisfying the conditions:
@:(0) = @,(0) = x,, (1) = 0g0), (1) = wo(1).

It follows that N
@ ‘ W07 % 0 xwo % 07 %, in U, rel. 1.
By condition (1) there exists a loop wy in (¥, x,) such that
3) W3=oy kO *wr* in U rel I,
Conditions (2) and (3) imply

woor ko kw, in Urel 1.
The pe.lth on the right-hand side is in V. So we have proved that any path in U, with
endpoints in X can be shrunk rel. [ inside U to a path in V.

<. Let U be a neighbourhood of X. By our assumption there exists a neigh-
bourhot?d UocU of X such that every path o in U, with endpoints in X can be
shrunk inside (U, X) into any neighbourhood of X. It is easy to observe that if there
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is a homotopy inside (U, X)) joining @ with some path in ¥= X, then by some simple
modification of that homotopy we can obtain a homotopy in (U, X) joining e with
some path in ¥ and keeping the endpoints of o fixed. Hence every loop in (Ug, x)
can be deformed inside (U, x,) into any neighbourhood of X. This completes the
proof.

1.2. TusoreM. Let X and X' be homeomorphic continua and let xqe XM
e ANR®W), xo e X' <M’ e ANR@). If (X, x,) is 1-movable rel. M, then (X", x;)
is 1-movable rel. M'.

Proof. Let U’ be a neighbourhood of X in M’. To complete the proof it re-
mains by 1.1 to construct a neighbourhood UscU’ of X’ in .M " such t1.1at each
path in Ug with endpoints in X can be deformed inside (U”, X) into any ne{ghbour—
hood of X in M’ Let hbe a homeomorphism from X onto X”. There are neighbour-
hoods G of X in M and @ of X' in M’ and two mappings f: G=-M', g: G'-M
such that

F =h(x) for xeX and g@) =hr"(x) for ¥ e X’.

"Using the Borsuk homotopy extension theorem it is easy to construct a neigh-

bourhood He U’ ng~*(f~(U") of X' in M’ and a homotopy ¥: HxI-U’
such that '
O w0 =x, Y&, 1) =, () for xeH and Y, =x" for
*, HeX xI _
Since U = f~1(U") is a neighbourhood of X in M, there is a nei_ghbourhoot.l UycU
of X in M such that every path in (Uy, X) can be shrunk inside (U, X) into any
neighbourhood of X. We claim that
Up=g " U)n H (U
is the desired neighbourhood of X" in M. : ‘
So let o be a path in Uy with endpoints in X and let V be 2 1nmgh-bourhf)o
of X" in M. Then g o e is a path in U, with endpoints in X’ and f~(¥) is a neigh-
bourhood of X in M. Hence there is a homotopy ¢: IxI—U such that
@ ot 0 =gonl), ol Def ), ¢0,9=g@0) and o¢(,9)=
g(w(1)) for cach t,s5el.
Now for each (¢, s)elx [ let
, Y@, 25) for 0<s<i,
't ) = {fn o(t,25—1) for %<s<l.
By (1) and (2) one easily checks that ¢’ is well-defined continuc‘ms ar.xd ?’(t, (;? ET[}{j.
Hence ¢': Ix I-U" is a homotopy joining @ with some path in ¥/ inside U’. This

completes the proof. » R bility of
It is known that in the definition of movability and pointed mova It iyin
continua the choice of a particular point and a particular ANR (I0)-space containing
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a topological copy of a given continuum is inessential [6]. Theorems 1.1 and 1.2
say that an analogous fact holds for the notion of the 1-movability rel. M of a pointed
continuum. Hence we may speak about the movability, pointed movability and
pointed 1-movability of a continuum (or the 1-movability of a pointed continuum)
without referring to a particular point of that continuum and to a particular
ANR (9%)-space containing it (every metric continuum embeds into the Hilbert
cube Q € ANR).

1.3. PROPOSITION. For a continuum X we have the following implications:

(X movable) < (X pointed movable) = (X pointed 1-movable) .

The next theorem shows the importance of 1-movability.

1.4. THEOREM. If a continuum is movable and pointed | -movable, then it is pointed
movable. .

Proof. Without loss of generality we may assume that the given continuum X is
a subset of the Hilbert cube Q. Let U be a neighbourhood of X'in Q. By our assump-
tion there exists some neighbourhood U, = U such that for every neighbourhood ¥
of X and for every loop w in (Uy, x,) there exists a loop @, in ¥ such that o is
homotopic to @y in (U, x,.

Since X is movable, there exists a neighbourhood Uy, < U, of X such that for
each neighbourhood ¥ of X there exists a contraction of U, inside U, into V. Let Vbe
any neighbourhood of X. To prove the theorem it suffices to show that U, can be
contracted inside U into V in such a way that x, is fixed during this contraction.
There exists a homotopy ¢: U, xI—U; such that

0y (p(x,.()) =x and @, DeV for every xeU,.

We may assume that each of U, Uy, U,, V is a connected ANR-set. By the Borsuk
homotopy extension theorem ¢ can be modified so that

: (2) (P(xm 1) = Xg .

Let () = (%o, #) for te I Hence w is a path in (U, %), So there is a homo-
topy « from (I, [)xI into (U, x,) such that

3) a(t,0) = o) ‘and at,eV.

Let op(?) = alt, 1), tel Set 4= U,x(1) and let f: 4~V be defined by
B(x) = ¢(x,1). Again using Borsuk’s homotopy extension theorem we obtain
a homotopy y: A xI—V such that
@ 7(a, 0) = (a),

Let B = Uy xI and consider a subset C of BxI given by

P(0eo, D, ) = 0y(1—19) for aed, tel.

= (o) X Ix (0) W () x (1) X T U (x0) x I (1) U (X)X (O)x I.
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@ (%, 1) for »v=0,
S(xg, u,v) = <y(xp,1,0) for u=1,

Xo otherwise .

Let ¢ (I, D= (C, (0,0, 0)) be defined by

(9, 42, 0) for O<i<i,
) = (xg, 1, 4t~1) for i<t<t,
O =\, ~4643,1) for  h<r<i,
(%0, 0, —4t+4) for 2#<igl.

Since C is homeomorphic to the circle, 7 is a representative of a generator of the
fundamental group of C. By (3) and (4) one easily sees that composition
5011 (I, =+(U, xo) is homotopic to a trivial loop. Hence & can be extended onto
D = (xo)xIxI Let n: D-U be such an extension. Let

E = Uyx(0)u (xg)xIudAdcB
and let y: ExJIuU B-U be defined as follows:

y for yeUyx(0),
_ o) for yed,

x(y, v) = 7y, for  (y,meD,
leG)  for v=0.

By the homotopy extension property there exists an extension A: BxI-U of the
map y, UeANR. Setting (¥, 1) = A(x, #, 1) one obtains a map from Uy xI
into U such that: (%, 0) = x, W(x, )eV and ¥(xo, 1) = Xo fqr each xe U,
and tel This completes the proof.
We will need the following modification of 1-movability. A subset 4 of a space Y
is said to be 1-movable in ¥ provided there exists a neighbourhood Uo. of Ain Y
such that for every neighbourhood ¥ of 4 in ¥ and for every path o: (I, I) _~+(U0 , A)
there exists a homotopy ¢: (I, 1) x I=(¥, 4) joining o with some path in V.‘The
set U, is called an admissible neighbourhood of 4. Clearly, we may always modify ¢
to a homotopy keeping the endpoints of  fixed.
This notion is related to 1-movability in the following manner.
1.5. PrOPOSITION. A contimum X<M e ANR(W) is pointed 1-movable if
and only if X is 1-movable in U for every neighbourhood U of X in M.
To state our next results we need the following .
1.6. LeMMA. Let Ao and A, be subcontimia of M & ANR(IR). Assume. that A, is
1-movable in G,, where Gy is a neighbourhood of A, in M,i=0,1. Then Ao 4y |
is 1-movable in Gy U Gy. . o
. Prool. In the case where 4’s are digjoint it suffices to take disjoint adm1'ssxlb1e
neighbourhoods of 4’s in G’s. Suppose now that 4’ intersect. Let U, be an admissible
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neighboﬁrhood of 4, in G, and let U, = U, n U, be an open neighbourhood (open
in M) of A = Ay n A, satisfying the condition:

(1) for each xe U, there exist ye 4 and an arc x¥yeUy n U,

The existence of U, follows from the local contractibility of M. The compact sets
B; = ANU, are disjoint. Let ¥; be an open neighbourhood of B; in M, i =0, 1,
such that V, n V; =@ and

(2). for each x eV, there exist a point y € B; and an arc XU, i=0,]1,

Clearly, U = V, u V; U U, is a neighbourhood of 4, U 4y in Gy L Gy. We shall
prove that.it is admissible. Let ¥ be a neighbourhood of 4y U A4 in Gy L G, and
let w: (I, 1)~ (U, 4y U A,). The family % consisting of the scis Vy, Vy, U, is an
open covering of the compact set @ (I). Hence there is a subdivision

fo =0<t; <. <tyyy =1
of I such that w ([, #;.,]) is a subset of an element of % for each j<n. Let p; = w(1)

for j<n+1. According to (1) and (2), for each j<n--1, there exists a point g, satis-
fying the following conditions:

(3) if p;e Us, then g;e 4 and there exists a path <; in Uy n U, from p; to g,
(#) i pye Vi\U,, then ¢;€4; and there exists a path t; in U, from p; to g

Let o; be a path defined by w;(1) = @ (t;+1(t;4;—1)), j<n. Conditions (3) and (4)
imply that

-1 ’ - — .
W=Tg * (TO * Wo * 'Cl) *ok (’Cn i @, * 1'n+1) * Tn-l-ll n UO v Ul rel. I

Hence to finish the proof we need only to show that each of the paths
o =1tk Tis1, J<1, s either in (Uy, 4o) or in (Uy, 4,). Observe that wy(l)
is contai_ned eitherin U or in ¥;for some i = 0, 1.1 oy(7) = U, then o (1) < Uy n U,y
and o;(I)= 4, by (3). Hence in this case o, is a path in both (Uy, 4,) and (Uy, 4,).
Suppose now that w(I) = V; for some i. I p; and p;,. are in Uy, the assertion follows
from (3). It p;¢U,, then py,eU, U ¥, and by (3) and (4) we obtain
a;: (I, )= (U, 4;). The remaining case, Dj4y € Uy, is symmetric to the above one.
This completes the proof. -

1.7. CoroLLARY. Let 4y and Ay be subcontimia of M e ANR(N). If both of
them are 1-movable in M, so is their union Ay U Ay,

Combining this corollary with 1.5, we obtain

1.8. THEOREM. If some contimum can be represented as a union of two peinted
1-movable subcoritinua, then it is pointed 1-movable.

Our last result in this section is based on the next two lemmas.

1.9. LEMMA. Let 4y, 4,, ... be a decreasing sequence of continua in M & ANR (30)

such that A4, is not 1-movable in M for eachn =.1, 2,...Then (\ A, is not 1-movable
in' M. "
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Proof. Let A4 denote the intersection and suppose that 4 is 1-movable in M,
Let U be an open neighbourhood of 4 in M which is admissible for 4. Then 4, U
for some integer n. Since U is not admissible for 4, there exist a neighbourhood ¥
of 4, and a path w in U with endpoints in 4, which cannot be shrunk into ¥ rel. I,
Let o, be some path in U n ¥V from w(f) to some point of 4. Such paths exist by the
connectedness of A,. Then

= wgteonw (DU, 4 and  o~xoyxTtso;trel 1.

Since U is admissible for 4, there is a path 7’ in ¥ such that t~' rel. . It follows
that wg % ©’ * w7 * is a path in  homotopic to wrel. I, contrary to the construction
of V. Hence our supposition about 4 is false, ‘

1.10. LemMmA. Let X be a subcontinuum of M € ANR (). Assume that X is not
1-movable in M. Then there exists a continuum X, <X such that X, is not 1-movable

in M but every proper subcontimuwm of X is 1-movable in M. Moreover, X, is

indecomposable.

Proof. The existence of X follows from 1.9 and the Brouwer reduction theorem.
Suppose that Xy is a union of two proper subcontinua 4, and 4;. Hence both 4,
and 4, arc 1-movable in M. By 1.7 we conclude that X, is 1-movable in M, a cox-
tradiction, \

As o corollary from the above fact we have

1.11. TuroreM. Every contimum which is not pointed 1-movable contains some

" indecomposable subcontinuum with the same property.

In the next section we establish several results from group theory which will be
used to obtain some additional information on pointed 1-movability.

2. Some properties of groups. A group G is the free product of its subgroups 4
and B, notation: G = 4 B, if each element g of G can be uniquely written in the
form
h ) ﬁcl-czl'“'cn’
where ¢;e 4 U B, ¢; % 1, and no two successive elements ¢y, ¢4y belong together
to 4 or B. The following result can be found in [8]. '

2.1, If G and H are finitely generated free nonabelian groups and f+ G—~H is
an epimorphism, then G can be represented as a free product of its subgroups A and B
such that f|A: A—H is an isomorphism and Beker f. .

2.2, Let A and B be finitely generated groups and.let f: A—B be an epimor;fhzsm.
Let B be afinite set generating B such that 1 & B, Then there exisis a finite set A" gen-
erating A such that 1 & A" and f(4) = B

Proof. Choose a finite set M generating 4 such that

o | Bef(n.

5 — Fundamenta Mathematicae XCVIII
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Denote by A* the free nonabelian group generated by M, A* = (,M>,. and let
@ A*—>4 be a homomorphism such that

@ : o(x) =x
Likewise, let B* = (B’) and let ¥y: B¥*—+B be a homomorphism such that
€) Vo) =y

Suppose B’ = {by, b, ..., b,}. For each index i, 1<i<n, there exists, by (1) an
element ¢; € M such that

for each xe M.

for each ye B’.

“@ Sfle) = b.
For each x e M\{e;, €, ..., &,} choose an element b, &.B* such that
® Y(by) = ().

The function y: M—B* defined by the formula

o) = b, if x=g¢
THE=Vh, it x e

can be extended to a homomorphism g: 4%~ B*, because M is a free base for A*.
Conditions (2), (3), (4) and (5) imply

O] fop=yog,

because M is a set of generators for 4*, Observe that B’ < g (M), hence g is an epi-
morphism. By 2.1 there exist subgroups C, D of A* such that A* = Cx D,
Dckery, and g|C: C—»B* is an isomorphism. For each i = 1,2, ..., n choose an
element ¢; € C such that g(c;) = b;. Since each subgroup of a fre¢ group is free
itself and rank C-+rank D = rank4*, the group D is a finitely generated subgroup

of 4*. Let D' be a finite set generating D. Then E = D' U {ci, ..., c,} generates 4*
and

M

for some i<n,
for each i =1,2,..,n

4(E) = B'. )
Put 4" = @(E) u {1}. Since ¢ is an epimorphism (see (2)), the set A’ is finite and
generates 4. Conditions (3), (6) and (7) imply

Fd)=yeogEu {1} =y@B)u{l) =p,
which completes the proof.

Let H = {Iif,,, £} be an.inverse sequence of groups and homomorphisms.
As, usual, we write f,,,, n<m, instead of f,s ... w-1 and f,, instead of 1y . If
H' = {H,, g;}, where n;<#,,, and 91 = Jfu© o 0 Sy, ~1» then we say that J;I’ is
a subsequence of H, The sequence H is said to be finitely generated (frec) if each
group H, is ﬁnitely generated (free nonabelian, respec‘.ively).‘H is an epi-sequence
- if each bonding homomorphism is an epimorphism. We say that H has a regular

icm

©

Continuous images of continua and 1-movability 149
system of generators if for each index n1 there exists a finite set Hy generating H,
and satisfying the condition

S e Y

2.3. Let H = {H,, f,} be an inverse sequence of groups such that for each nx1
there exist A,, G,, HY satisfying the conditions: :

1. HY is a set of generators for H,,

2. .ﬁn(H:'}- 1):}[:‘ H

3. G, is a finitely generated subgroup of H,,

4. f;l(GlM‘l) = G,,

5. A, is a finite set,

6. 4, v G,cHY, ‘

7. each element h & H,' can be written in the formh = g, ag, for some g, g, € G,
and aed,, i.e, H=G,A4,G,.

Then H has a regular system of generators. )

Proof. First we show that there exists a sequence of functions {a,: 4,~H,}
such that

(1) for each ae 4, we have a,(@) = g,ag, for some g,, g, € G,,
2 fioeq(a) €a,(d,) for each ae d,.,,.

Let «; be the inclusion and suppose we have constructed o;, i<n, satisfying the
above conditions, Now we define a,.,.;. Take an ¢ € 4,... By conditions 2, 6 and 7
there exist elements e, e, € G, and a, € 4, such that

®3) ' S(@) = e ase;.

By 4 there exist elements e}, e, € G, such that

@ Fle) =et for i=1,2.

From condition (1) we infer that there exist g;, g, € G, such that
® a(ay) = 91819, -

By condition 4 there exist elements g%, g5 € Gy4 such that

© fg) =g for i=12.

Now we define a,, ,(¢) in the following way:
Oyt 1(“) = (glle;.)a(e;glz) .
Since g} ¢, €395 € G4, condition (1) is fulfilled for w, 1. B}f conditic_nlls 3), (4)—,1(5)
and (6) we have: f,o,..1(a) =fn(ﬂ1)frn(e'1>ﬁu(ﬂ)fn(e’7.)ﬂx(gz) = (181 €,a,€83 4>
= gyay0, = a,(a;), which implies condition (2).
Using 3, 4 and 2.2, we can construct a sequence of finite sets {B,} such that B,
generates G, and

m SuBy+1) = By

B+
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According to 1, 5 and 7 we see that &, U B, is a finite set generating H,,. Setting
H, = B, U o(A4,), one obtains a finite set generating H, (by (1)). Condition )
implies f, (4, +1(4y+ ) =et(4,). Combining this result with (7), we infer tha
FoHye)=H,. 1t follows that {H,} is a regular system of generators for H. This
completes the proof.

An inverse sequence of groups H = {H,,f,} is said to be a Mittag-Leffler
sequence, bricfly: an ML-sequence, if for each index n there exists an ny>n such
that f,.(H,.) = fu(H,) for each mzn,.

2.4. If an inverse sequence has a regular system of generators, then it is an MI.-ge-
quence. Every finitely generated ML-sequence contains some subsequence with g regular
system of generators. If an inverse sequence contains some subsequence which is gn
ML-sequence, the original sequence is an ML~sequence.

The proof is easy and is left to the reader (Hint: use 2.,2).

The sequence H is called movable if for each n there exists an 1o 2n such that
for each m>n there is a homomorphism 4 from H,, to H,, such that S o b= f.

It is easily seen (comp. [11]) that

2.5. If a free sequence has a regular system of generators, then it iy movable,

The sequence']_{ is called simply movable if for each index n there is a homo-
morphism A,: H,, —H,,, such that f, = f,,4, o h,. Let us observe that setting
H, = im f, one obtains H, = f,(H., ). This shows that cach simply movable se-
quence is an ML-sequence. It is evident that each movable sequence contains a simply
movable subsequence. Combining these facts with 2.4 and 2.5, we obtain

2.6. For every finitely generated sequence of

groups H we have the following
implications:

(H is free and an ML-sequence)
4
(H is movadle) = (H is an ML-sequence)

(H has a regular system
of generators)

- (H contains a subsequence with
a regular system of generators),

3. Modifications of ANR-sequences. If (X, %0) = {(X,, x,), £} is a pointed
ANR-sequence, then we denote :

W(& xo) = {TE(X,,, xn)’ (f;:)xlff} s

where 7(X,,, x,) denotes the fundamental group of X,
X € X, and (f)g: 1(Xpis, Xy )on (X, x,) is the homomorphism induced by
the map f,: (X,11, %,41)=(X,, x,). The symbol inv lim (X, i,) denotes the inverse
Limit of the inverse sequence (X, xp). The sequence (X, x,) is said to be assoclated
" with every pointed space homeomorphic to invlim (X, xg).
Theorem below will be used in our subsequent considerations.

with respect to the point

.
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3.1. TrEOREM. Let (X, x,) be a pointed ANR-sequence such that (X, xo) is
an ML-sequence. Then there exists a pointed ANR-sequence (Y, yo) such that
7(Y, yo) i an epi-sequence and

invlim(¥, yo) = inviim (X, x,) .

Proof. Let (__X_'v Xo) = {(-X;19xn)=./;l} and put G, == -Xn:,xn)s By = (fo)s-
By 2.6 there is a subsequence of G = {G,, h,} which has a regular system of gener-
ators, Without loss of generalily we may assume that G has a regular system of gen-
erators, say {G}'} (otherwise we consider the subsequence with this property). For
each n there is a set F, =G} such that F, = h,,( Gy for almost all m>n. Without
loss of generality we may assume that F, = h,,(G¥) for each m>n. Tt follows that
F, = h,(F, 1} for cach n=1. The group {F,] generated by F, in G, is equal to im#h,y,
for each m>n. Now we shall construct seme pointed ANR-sequence (¥, yp)
= {(Y,, ¥)» ¢} With the required properties. Let £, denote the cone over X, and
regard X as the base of K. Put (¥, ) = (£, x,). Let n>2 and suppose we have
constructed ANR-sets (Yy, y1), o, (Yy~ys Ju-1) and the mappings gy, ..., go-z
satisfying the following conditions:

0] X, x)e (X, p),

@ gj-'-l( YyeX;_(,

(3) Gy ofimr = gj-y © &y Where i (X, %)—(¥;, ¥;) denotes the inclusion map,
@ (oS is an epimorphism,

for every j = 1, 2, ..., n—1. Now we construct (¥,,»,) and g,-; such that con-
ditions (1)-(4) are fulfilled for j = #. The space ¥, will be obtained from X,, by a.ttach—
ing to X, a finite number of 2-cells corresponding to the elements of 'the ﬁmt? set
A = GINF,. I 4 =@, then put (¥,,»,) = (X,, x,) and note that this set satisfies
the conditions, with g,-; == i, of,—(. Suppose 4 #@ and pick a point a from
this set. Let w: (I, I)~(X,, x,) be aloop representing a. Since h,(d) € F,-,, there
existis an element [w,] € F, such that

) rel. I,

Let I? denote the boundary of the square [2 = IxI and let ¢,: [*~X,, be defined
by the formula:

Samy o wetfy_q 00y

w() for §=0,
Ot 8 = {x, for t=0o0rit=1,
()  for 5= 1.

Attach the 2-cell to X, according to the map ¢, and observe that by (3) the projec-
tion £, can be extended onto the attached cell. Let y, = x, and let ¥, be the space
obtained from X, by the process of attaching 2-cells by means of the maps ¢,,
ae 4. By the above remark the mapping f,-, can be extended to a map

g: (EI,;I? yn)""(X;lqla xn-l) .
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Put g, = i,—; ° g. The space X}, is naturally embedded in ¥,. Moreover, the space
Y, is an ANR-set by a result of Borsuk and Whitehead ([2] p. 116). Since G¥
generates G,, (i,)4(Gy) = (i,) 4 (F,) and F,cimh,, condition (4) is fulfilled for
J =mn, (comp. [19], p. 146). All the remaining conditions follow from the above
remarks. This completes the construction.

Hence we may assume that conditions (1)-(4) are satisfied for each j >1. Con-
ditions (1) (2) and (3) imply that invlim(¥, yo) = invlim(X, x,). Conditions 3)
and (4) imply that {n(Y,, ), (¢,) 4} is an epi-sequence, which completes the proof.

4. Other characterizations of pointed 1-movability and its invariance under
continuous mappings. This and the next section are devoted to the proof of the fol-
lowing two theorems.

4.1. TreoreM. Pointed 1-movability is an invariant of continuous mappings.
Precisely, if f is a continuous map from a pointed 1-movable continuum X onto Y,
then Y is pointed 1-movable.

4.2. TaeoreM. If X is a -continuum and x, a point of X, then the JSollowing are -

equivalent:
(A) X is pointed 1-movable,

(B) for every ANR-sequence (X, xo) associated with (X, x,) the corresponding
sequence of fundamental groups n(X, xo) is an ML-sequence,

(C) there exists an ANR-sequence (X5 x0) such that m(X, x,) is an epl-sequence,
(D) there exists a decreasing sequence of ANR-sets X 15 Xy oo Such that
X = (X, and for each n=1 the inclusion map
‘ (Xor15 %0) & (X, %)
induces an epimorphism. of fundamental groups,
(E) there exists-a decreasing sequence of locally connected continua X1, X, o
such thar X = (X, and for each n the inclusion
(-X;a-l-ls xO) G (X;n xo)
induces an epimorphism of fundamental groups,

(F) there exists an ANR-sequence (X, %) associated with (X, x,) such that
n(X, x) is an ML-sequence.

‘ Theorems 4.1 and 4.2 will be proved simultaneously in the following manner.
First we prove the implications:

@  (F)=(A)=(B) = (C)= (D)= (E).
Next we shall prove that
B S (X, %)Y, y) is a continuous surjective map and (X, x,) is a pointed

continuum satisfying condition (E), then (Y, yo) satisfies condition (F), where
(X, %), (X, x,) are replaced by (Y, ), (¥, yo), respectively.

Clearly, propositions (o) and (B) together imply both 4.1 and 42,
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Proof of (). (F)=>(A)=>(B). Lel (X, x0) = {(X,, %,), fu} be an ANR-sequences
associated with a pointed continuum (X', x,). Using similar considerations to those
in [13] (or the construction presenied in [12]), one proves that the 1-movability
of (X, %) is equivalent to the following property of (X, x): for each n3>1 there is
an np =0 such that for each m2ny and each loop w: (I, 1)-»(X,,, x,,) there is a loop
o't (I, D= (Xs X) such that f,,, 0 waf,, o @', However, this property says that
n(X, xo) is an ML-sequence. Hence the pointed 1-movability of X is equivalent
to the fact that n(X, xy) is an ML-sequence for any ANR -sequence (X, x,) associated
with (X, xp). On the other hand, by u classical result of Freudenthal, every com-
pactum possesses an ANR-sequence associated with it, This proves the above
implications,

(B)=+(C). This lollows from. 3.1.

. (C)==(D). This is proved in [12].
The last implication, (D)==(E), is trivial. This completes the proof of proposition ().

Proposition (B) is much more complicated and its proof will be given in the next
section.

5. Proof of (f). The proof is given at the end of this seciion after several auxiliary
lemmas. For the definitions of the undefined terms used in this section the reader is
referred to [19]. A

Amap /1 X= Y is said to be nondegenerare provided each fibre f ~1(y) is totally
disconnected, Tf K is o simplicial conplex, then by |K| we denote the underlying
space of K,

5.1. LeMMA. Let K and L be locally finite complexes and let f |K|—|L| be a non-
degenerate map simplicial with respect to K and L. If A is a continwum in |K| and
V is a neighbourhood of A in |K|, then there exist subdivisions K' of K and L' of L,
and a finite connected subcomplex N of K’ such thar |N| is a neighbourhood of A con- .
tained in V. and f is simplicial with respect to K' and L'. If' x is a point of 4, the
subdivision K' can be chosen is such a way that x is a vertex of K.

52, LemMA. Let (X, xo) be a pointed polyhedron and let G be a subgroup of
n(X, xo). Then there is @ covering projection p: (X s o) (X, Xo) such that imp y = G
(see [19], p. 82).

5.3, LEMMA. Let X be an ANR-set and let p: X—~X be a covering projection.
Assume that A is a compact subset of X and U is a neighbourhood of A in X. Then
there is @ number >0 satisfying the following condition: if f: C—X is a mapping of
a connected space € such that dinm f(C) <e and J: C-X& is a lifting of f, i.e., p of=f,
such thar J(C) n A #@, then J(CO)=U.

Proof. Since X is metrizable, 4 is a compactum, Suppose that the conclu§iou
of the lemma Tails. So for cach #3 1 there is a connected space C, and two mappings
fur €= X, i €= such that
1)

@

./;1 =p sz‘" ) '
diam £,(C) <1/n,
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3 FCYn A #0,
@ T{CyeU.

By (3) there is a point a, € f,,(C,b n 4. The sequence {#,} contains some subsequence -

converging to a point ae 4. Without loss of generality we may assume that
{a,} converges to a. Now take an evenly covered open neighbourhood ¥ of
P(a) in X. Then p~*(V) is the union of open disjoint sets ¥, se S, such that
PVt VeV is a homeomorphism. Assume ae V. Then U’ = U n Vg is a neigh-
bourhood of a in X, hence there is an index n, such that

e a,eU’  for nzun, .

The set p(U’) is a neighbourhood of p(z) in X. Observe that by (1) the points p(a,)
converge to p(a) and p(a,) € £,(C,). Applying (2), we infer that there is an index ny
such that

©® - £(Cep(U)  for

Take nzn;, n,. Since p(U")<V, by (6) we have J(CheV. Thus f(CH= U V.
Since f,(C,) is connected, and (5) implies a,e U’ N f(C)=V, nJi(C,), we have
TACY<V,. Since g = p|Vy maps ¥V, homeomorphicly onto ¥, U'cV, and
9(FC))=g(U"), we have F(C)cU'<T, contrary to (4). This completes the
proof. 5 )

nZn, .

5.4. LeMMA. Let X be a compactum contained in a metric space M. Let f be a map
Jrom X into an ANR-set Y and let fii Vims XY, i=1,2, be two extensions of f to
neighbourhoods V; of X in M. Then for each >0 there is a neighbourhood V of X
in M such that V<V, "V, and f1|V%'f2]V rel. X, ie., there is a homotopy
h: VXI=Y joining these maps, keeping - each point of X fixed and such that
diam A({z} xD<s¢ for each ze V.

The proof is easy and is left to the reader.

5.5. LeMMA. Let (¥, yo) = {(¥,, ), gn} be an inverse sequerice of pointed con-
nected polyhedra with surjective bonding maps gy: (Yuiis Varr)—=(Y,, v,), and let
(Y, p0) = invlim(¥, y,). Assume that (Y, o) can be represented as a continuous
image of a pointed continuum (X, Xo) satisfying condition (E) of 4.2. Then Jor each
nz1 there exist: a compact connected polyhedron (U,, §,), triangulations Ly ¥,
(NII’ ﬁh) of respeCtively (}’;l’ yll)’ (Um .]711)’ C”l(l Inappings h": (Ufl 2 y}l) ')( xl 3 J’II)’
Gnt Uyt 15 Fur)=U,, 5,) satisfying the conditions:

@) . h, is nondegenerate and simplicial with respect to Nyand L, §, is a vertex of N,
(b) ‘ h(U,) = ¥,

@ . by Gy = Gy by

(d G4 (0 (1Y) = im(h,),, .
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Proof. Let f: (X, xo)—(Y, yo) be a surjective map. Let f,: (X, xo)—->(Y,,? V)

denote the composition T, o f, where =, is the natural projection from (¥, y,) into
(¥,, ). Observe that each f, is surjective and

03] Jo=Gnofass-

Put M = X, (see 4.2 (E)). Since Y; € ANR, there is a neighbc?urhood. W of X
in M and some extension ¢} of f; onto (W, x,). Since X is the mters?ctmn of the
decreasing sequence Xy, X7, ..., there is an index m such that X; 1= X,,,lr_;&y’.
Let ¢, denote the restriction of ¢} to (X 1, Xo). According to 5.2 there is a covering
projection py: (¥1, §0)~(¥1, ¥0) sugh that

@) im(p)s = im(ey s -

By the lifting theorem there exists a lifting @y: X1, x0)=(¥1, 71) of o4 (Ii.,e;
Ay = ¢,(X?). Since each covering projection into a polyhedron may b'e reglar'e
as a simplicial nondegenerate map (see [19], p.144), by~5.1 Eherc‘ls a triangn aflt;\c;n
(L4, y,) of (¥, y,) and a finite connected compl.ex Ny, 70)s ¥ being a vertex o 1&
such that U, = |N,| is a neighbourhood of 4, in ¥, and Py is nondegen-era[t]e ail)
simplicial with respect to Ny and L. Let i;: (),( , Xo)—~(Xq, Jfo) anct1 I;ll. d( bl, B
—(¥,, 1) denote the inclusions and let ¢,: (X1, xo)—(Uy, ;) be defined by &;.
Hence the following diagram commutes: :

(YJ H yl)
1 \fl
7 e
%, yl)i‘—(XI s Xo)<— (X, xo)
’ ky o1

(UI: yl)

If we set h; = py o ky, conditions (a) and (b) are satisfied for n = 1. As we shall.
show, the following sublemma completes the proof of 5.5.

- SUBLEMMA. In the notation of the diagram: the're is a ne’ighbf)urhoad .V -;-f t}f{
in M such that for each locally connected continuum X VX ufhlchdcl'ontams e
diagram (Dy) can be completed to a (not necessarily commuratzve)’ iagram

®y)

(Y, ¥)% e (Y3, 72) *
\Q 77’
o/ el |
(T, 1) < (X, 30) 2 (3, ) > (%2, )

ki 31 R ai }/
(U]_s yl)e——ﬂ*—_— (Uz,yz) !
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with the following properties: D» s a covering projection, i,, j; and k, are inclusion
maps, U, is a compact connected neighbourhood of 4, = 6,(X;) in ¥,, im(p,)y

= 1m(p,) 4, there exist finite complexes L, and Ny such that Uy = |N,|, ¥, = |L,|
and .
(3)  hy = p, o ky is nondegenerate and simplicial with respect to N, and Ly, §, is
a vertex of N,, N

(4) ’ hz(Uz) =1,,

(@_ g10h2%h1o§1,

6)  if (1) y is an epimorphism, then (91) 4 (im(hy) ) = im(hy)y ,

(D the diagram.(D,) obtained from (D) by replacing all subscripts 1 by 2 commutes.

Observe that by (3)-(5) properties (2) and (b) are fulfilled for n = 2, and prop-
erty (c) for n = 1. Property (d) follows from (6) because by our assumption about X
we can find some locally connected continunm X;eVn Xy containing X and such
that (j,)4 is an epimorphism. Moreover, the assumption about X, condition @,
and the remaining properties stated in the sublemma enable us to prove a similar
sublemma for (D,) (with X suitably chosen). In the same manner we can define
recussively diagrams (D;), (D,), ... and prove a similar sublemma for each of them
(choosing suitable locally connected continua X 32 X4s -..). This, by induction, com-
pletes the proof of 5.5. Thus it remains to prove the sublemma.

Proof of sublemma. Since Int U, is a neighbourhood of Ay in ¥, and
Y, €e ANR, we infer from 5.3 that there exists a number >0 such that

®

if ® is a mapping of a connected space Cinto ¥; such that diamw(C)<e¢
and &: C~ ¥, is a lifting of w, then the condition B(C) 0 4, #G implies
B(C)cInty,.
Let ¥y (77, X0)—= (Y, y,) be an extension of ¢,
of X{in M, and let y,: (V,, X)) (¥,
hood ¥, of X in M.

For every x € X we have by Y1) = @4(x) = @ 0 iy () = f1(%) = gy o fo(x)
= gy o Yr5(x). So v, and g1 ° Y, are both extensions of the same map from X into ¥7.

Since ¥ is a neighbourhood of X in M, by 5.4 there is a neighbourhood ¥ of X'in M
such that V=¥, A ¥, and

® WiVag, o talV 1ol X

We shall prove that ¥ is.a desired neighbourhood of X. Let X =V X, 1 be a locally
connected continuum containing X. Setting ¢, = 21X, one obtains the equality
(10) '

and using condition ©), we
following conditions hold:

over some neighbourhood ¥,
¥2) be an extension of f, over a neighbour-

Jo=@y01,,

infer that there is a map h: X, x I+ ¥, such that the

A1) alx,0) = @, o ji(x), h(x, D) = g0 0,(x),

h(%o,1) = y; and diamh({x}x I)
v <e for every x€X, and ter,
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According to 5.2 there exists a covering projection 2% (¥,, .)72)—>(Y%, ¥2) su(zl
that im(p,)s = im(p,)4. Since ¥, is a polyheflron leth a tr‘langulatlon, say i;
we may assume that ¥, is an infinite polyhedron with a triangulation K such th.at pgn-
simplicial with respect to K and L (see [19], p. 14'4).. Obse_rve also tha:;c pzdllsol:au

degenerate. Being a locally connected continuum, X, 2 is arcwise copnecte al?t O};
arcwise connected. Hence the inclusion im(¢,) 4 =im(p,) s implies the existence

a lifting @, of ¢,. Thus we obtain

(12) @2 =Py Py .

Using (11) we have ¢4 ojj~g; o @, rel. x,. It follows that

13 (@104 = (G1° 04 - .

From this equality we derive in succesion: im(g, o %72)* = im (gg #i,noléng#
= (gx)#(im(]’z)#) = (QL)#(im((Pz)#) = im(g;° @2)s = im(py otJE)theinc]ilioi
= im(p,) 4. Since ¥, is arcwise connected and locally arcwise ccznflec ; ot o
im(gy o po)s =im(p;)y implies the existence of a map §,: (Y, F, 1> P1
satisfying the condition ’ )

(14 giop2=pi°ds o

(see the lifting theorem in [19], p. 76). Since each covering proje~ctxo%1 1';3; 216}3(1;)1‘110.3.
topy lifting property (see [19], p. 67) and by (11) we have p; o (64 ° j1)(x) = A(x, 0),
there is a map h: X; x> ¥ such that
) E0) =i
Now we shall show that

(16) (X, xD<lntl, E({xo} x D) = {J1} - §
According to- (11) and (15) we have ﬁ({xo}fI)c: pflgyl). anlq thfhiatszzoiﬁiac;art
discrete. Therefore the equality h(xp,0) = q’l(xf’) = 1 imp ies B
of (16). To prove the first part, consider an arblt.rary point x IEt ; znows i
o: I Y, given by o(f) = h(x, . By (11) we hgve dlan}w(D'<f3. (f) i
that the map &: I—Y, defined b'y &(#) = hix, 1) is ;1 hﬁjing;:g iy
B(0) = R(x,0) = @y o ji(x) € @1(.X1) = 'A%; hence  &( )”e 1‘1” co;ldition 16) i
dition (8) implies @(J) =Int U;. Since this is true for every x € X5,

and p10ﬁ=h.

and

provijc.)te that conditions (11) and (15) together imply py o ﬁ(x, 1)) ——; gy (p;l(:)

for every xeX,. Hence, setting 1/1(x).=. R(x,1), we obtain by (16) 2 3

Y (X3, xo)—(7;, 7;) satisfying the conditions ,

an prov=giop, and Y(X)cIntUs. I
i ofy0Py = groP2=P1°VY.

Ejsm% ("1 4)’—— (”12)—- ?pn((jc )g;)i )Zeis ::ﬁi:::till, weglhaxfpezzﬁ = {0 B, (see [I9J,.p. 67).

gét:iz;(}:;z =-_- 22(;(;) WZ obtain from the last equality and (17) the following in-

clusion:

(18) §1(4z)<Int Uy .
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Let G = §¢ '(IntUy). Hence G'is an open subset of ¥, and A,=G. So by 5.1 there
exist subdivisions K,, L, of K, L, respectively, and a finite complex N, <K, such
that j, is a vertex of N, and

(19) U, = |N,|=G is a compact connected neighbourhood of 4, in ¥, and
hy = p, o k, is simplicial with respect to N, and L,, where k, denotes the

inclusion map (so we have (3)).

It follows that gl(Uz)cUl. Since §,(¥,) = §1, by setting §(x) = §,(») for every
X € U, one obtains a well-defined map ¢, : (U,, §,)~(U,, #,). In particular, we have

(20) 571 °k2 = kl Ogl .

By (14)and (20) we have gy o b, = gy opy ok, =piefioky=piokied, =hiog

which is (5). Since f; is onto, by (10) and (12) we see that Pa(dy) = Y, B;Z
ho(x) = py(x) for x€ ;. Since A, U,, condition (4) follows. Let $,: (X}, x,)
=( U.Z ; $2) be defined by ¢,(x) = @,(x). Let us observe that in this notation
condition (7) is also fulfilled. It remains to show (6). Thus suppose that
(J)s: (X3, x%)—n(X7, x;) is an epimorphism. Let us note that ¢, = p, ok, o ¢
and im((pi)#; = im(p;) 4 ; hence by (12) we obtain im (), = im(h;)y, for i = tI, 2.i
He.nce condition (13) implies (g,) 4 (im(hy)4) = (904 ((m(p5)4) = im(g, o 0,) 4
=1im(py o j)s = (@) 4(im{;)y) = im(p,)y = im (%) 4, which is exactly (6). This
completes the proof of the sublemma, and therefore the proof of 5.5.

) Let X be the underlying space of a simplicial complex K, and let e be a path
in X.. We say that @ is an s-parh provided that o is simplicial with respect to some
subdwl'.sion of I'and K. If, in addition, & is an embedding or w(I) is degenerate,

then o is said to be an sh-parh. Recall that by a torn loop in X based at x, e X, brieﬂyi
a t-loop in (X, x), we mean a pair of paths (@°, w') in X such that w°(0)0= co’l(l):x.
(see [11]). In such a case we write (w°, ') I-(X, xo). A t-loop (0%, wl) is callec‘;
an st-loop (an sht-loop) provided both @° and ! are s-paths (sh—’paths, resp.)

o fh6 LOEMMA. If}}" = |K|, xo 15 a vertex of K and («°, oY) is a t-loop in X, xo).
”z:: zco :C;,-;?O,(ng): and ©0*(0) are vertices of K, then there exist Paz‘hs @, 01, W, Wy satisfying

(1) @1,y are loops in (X, Xo)s

() o is an sh-path from x, to w°(1),
(®) ¥ is an sh-path from ©'(0) to x,,
@) o=p xg rel I,

(5) o'~pxyy el I

o Proof. Point x, and the endpoints of the paths are vertices of K belonging to
¢ same component of K; hence there exist paths ¢ and y satisfying (2) and (3).

The loops ¢; = w® * ¢~ and = =1 g ot ) . ; :
completes the proof, Y1 =¥"' % o' have the desired properties. This
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Let f: (X, x0)—(Y, yo) be a mapping, w a loop in (¥, y,) and (0°, ©*) a t-loop
in (X, x,). Then we say that («°, o) is a ¢-lifting of w, and write © = f(°, oY),
provided the following conditions are fulfilled:

6] (@) = f(0'©®),
" foa®(21) for 0<r<%,
(11) CD(t) = {f" 601(2['-1) for %$t<i

If (0, wi) is another f-loop in (X, x,) such that w’~w? and o'~w], then
f(@°, Y)=f (03, ®}) (all homotopies rel. I). In other words, the loops f (0°, o?)
and F(w?, ®}) generate the same element of the fundamental group of (Y, o) i-€.5
[f(@° ob] =[S (@8, w})]. The following homotopies are easily checked:

F(@°, ot)~fo®xfowt,
fooktfoakfor,

whére o, © are paths in X such that ¢(1) = 7(0).

57. TemMA. Let X = |K| and Y = |L| be compact connected polyhedra and
let x, be a vertex of K. Assume that F1 (X, x0)>(Y, yo) is a surjective map nondegener-
ate and simplicial with respect 10 K and L. Then for H = a(Y,¥0), G = im fy,

H* = {he H: h = [f(e° 0")] for some t-loop (@°, ') in (X, x0)}

an
g A4 = {heH: h = [f(0° ob)] for some sht-loop (&°, o) in (X, %0)}
we have: '
(L) H* is a set of generators for H,
@ G is a finitely generated subgroup of H,
3) GuAdcH*
@ A is a finite set, )
(5) for each he H* there exist gy, 4> e G and a€ A such that h = g,ag,-

Proof. Condition (1) follows from 6.4 of [11]. The group G is finitely generated
because the fundamental group of every compact polyhedron is finitely generated.
So we have (2). Condition (3) is obvious. By a slight modification of the proof of 6.3
in [11] we obtain condition (4). To prove (5) consider an arbitrary ke H *.‘Hence
h = [f(0° o")] for some t-loop (@°, ") in (X, xo). Using an argument almost
identical with that used in the proof of 6.2 in [11] (Case II of the proof), we may
here o = f(w®, ©'). Since f is simplicial and

assume that w(}) is a vertex of L, W] ;
nondegenerate, the points ©°(1) and *(0) are vertices of K. Hence by 5.6 there exist

paths @, @y, ¥, W, satisfying the conclusion of 5.6. So we have

b= [f(@° o)) = [floix o, ¥ *¥)] = Lfegs*fopafoysfodil
= [fopi*f (@, ¥)*f Y]
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The paths @,, ¥, are 16ops in (X, x,). Hence g3 = [p;] and g, = [i/,] arc well-

defined elements of n(X, x,). Moreover, [f(¢, )] € 4. Thus

. h=fulg0) 1f (@0, )] -F4(g2) »
which proves (5).

Noxy we are ready to prove proposition (B). Since for every pointed continuum
the}‘e et)usts some pointed inverse sequence of compact connected polyhedra with
§urjef:t1ve bonding maps associated with that continuum [9], the following theorem
implies ().

5.8. THEOREM. Let (Y, y,) be a pointed inverse sequence of compact connected

palyhedrc{ with surjective bonding maps. If (Y, yo) = invlim (Y, yo) can be represented
as a continuous image of a pointed continuum (X, x,) scttisfy—i;zg condition (E) of 4.2
then (Y, yo) is an ML-sequence. ”

Proof. I.Jet (X, 30) = {(Ys, ¥)> gu} and let f1 (X, x0)—>(¥, yo) be a surjective
map.~Accor’dmg to .5.5 for each n>1 there exist: a compact connected polyhedron
(Un’ -YH)’ trlangula'tlons (LH= yﬂ)’ (Nrn fn) Of (Ym yll)’ ((]Il’ y")’ resp" lnappings

:( n y) ( n) ﬁ.(cil +1)7 Vy) Such ht i
My U > Fn. ¥ > Vuds Gut nt1s Vn Lfna n, ht < ifi
? ! n ) ( ) a the fOHOWll'lg COndI“O S

(1) h, is nondegenerate and simplicial with respect to N, and L,

@ h(U) = Y, ,
(3) Il,,°§" = gnohu-f-].:
(4) ) (£1n)11;(i17f1(]1wr 1)#) = im(h,,)# .

Let us denote:
Hy=n(Y )y Gy =im(h)y ,
HY = {he H,: h = [h,(° )] for some t-loop (&, ®!) in (Uys 53
4, ={heH,: h = [h(0° 0")] for some sht-loop (©°, ') in (U,, N}
Observe that by (3) we have '
©)] (gn)#(l—InT+1)CH: .
According to (1) and (2) we can apply 5.7 to the map h,. Thus we obtain:
(6) HY generates H,,

() G, is a finitely generated subgroup of H,,
®) G,ud,cH},
() A, is a finite set,
(10) each ke H can be written i
. ,, written in the form k = g, ag, for some g,, g, € G, and

Ey conditi(in.s (4)-(10) the hypotheses of 2.3 are fulfilled for the sequence 7(Y, y,)
coencie,d applying 2.‘3, we see th‘at n(Y, y,) has a regular sysiem of generators. By3.4 Vove
onclude that this sequence is an ML-sequence, which completes the proof
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6. Movable curves. Recall that by a cwrve we mean any l-dimensional con-
tinuum, We have the following

6.1. TueoreM (A. Trybulec). If X is a curve, then the following are equivalent:

() X is movable,
@) X is pointed movable,
(3) X is pointed 1-movable.

Proof. The equivalence (1)@('2) was proved by A. Trybulec in [20]. Hence,
by 1.3, it remains to prove (3)=(2). To prove this let X, € X be some point and
let (X, x,) be some inverse sequence of graphs associated with (X, x,) (see [9])
(by a graph we mean a compact connected 1-dimensional polyhedron). Hence if
(X, xo) is 1-movable, then by 4.2 we infer that n(X, Xg) is an ML-sequence, Since
the fundamental group of a graph is finitely generated and free (see [19]), n(X, xo)
is a finitely generated free sequence. By 2.6 it is movable. Using 5.10 of [11] and the
fundamental result of [13], we get the pointed movability of X. This completes
the proof. '

The following results follow from the preceding theorems:

6.2. THEOREM. Curves being continuous images of movable curves are movable,

6.3. THEOREM. Every hereditarily decomposable continuum is pointed movable.
Continuous images of hereditarily. decomposable continua are pointed 1-movable.

This theorem follows from the observation that hereditarily decomposable
continua are at most 1-dimensional [16]. The first part of the above theorem is
a solution of Problem 3 from [I1]. .

6.4. THEOREM. Every nonmovable curve contains some indecomposable subcurve
which is also nonmovable. -

In [11] the present author has proved that 1-dimensional continuous images
of tree-like continua are pointed movable. Since tree-like continua are of trivial
shape ([11], 2.1), and every continuum with a trivial shape is pointed movable,
Theorems 4.1 and 6.1 generalize this result.

7. Movability of compacta embeddable in surfaces. Recall some commonly used
terminology (see e.g. [3]). Bya bounded surface we understand a nonempty continuum
such that each of its points has a neighbourhood homeomorphic to the unit square.
Such homeomorphs are called disks. The points of a bounded surface M which have
a neighbourhood homeomorphic to the Buclidean plane E? constitute a set M called
the interior of M. The complement MNJ is denoted by M and is called the boundary
of M. If M is empty, then M is called a surface. If M is not empty, it is the union of
a finite number of mutually disjoint simple closed curves. By a perforated disk we
mean the set which remains after removing from the sphere S* the interiors of
a finite number of mutually disjoint disks. If M has a nonempty boundary and any
simple closed curve in M separates M, then M is a perforated disk. The maximal
number of mutually disjoint simple closed curves in M which together do not sep-
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arate M is called the genus of M and is denoted by y(M). Hence M is a perforated
disk iff the boundary of M is nonempty and y (M) = 0. The genus of M is not changed
by the operation of removing the interior of a disk lying in M. Observe that if Nis
a bounded surface in M, then y(N)<y(M). Hence if {M,} is a strictly decreasing
sequence of bounded surfaces in M, that is, M, <M, for each n3>1, then there is
an integer k>0 such that y(M,) = k for almost all ». If X" is a continuum in M
and X # M, then there is a strictly decreasing sequence of bounded surfaces in M
such that X is the intersection of that sequence. If §is a simple closed curve in M, D is

h

a disk and % is a homeomorphism of D onto S, then the marching D © M is another
bounded surface containing M with the same genus as that of M. Hence for any
bounded surface M there is a surface M’ = M such that y(M") = y(M). The following
evident fact will be useful in the sequel:

7.1. LeMMA. Let N and N' be bounded surfaces in a surface M such that
M=NUN and NN’ = N. Then

YM)Zy(N)+y(N)+r—1,
where r is the number of simple closed curves in N.
7.2. THEOREM. Let X be a subcontimumwm of a surface M and let xy € X. Then
(X, xo) is movable,

Proof. We may assume that X # M. Let {M,} be a strictly decreasing se-
quence of bounded surfaces in M such that M, is not empty and X = (| M,. We
n

may also assume that y(M,) = c for each n>1. Let M™ be a surface containing M,
s;ch that y(M*) = y(M,). Let Gy, G,, ... be the components of M*\X. We assert
that

(1) each G is hbmeomo.rphic to E2

.To prove (1) we need only to show that any compact set 4 in G, is ¢contained in
the interior of a disk D<= G;. We may assume that A is connected. Since M’s con-
verge to X, theren is an integer n such that M, is disjoint with 4. Let .D be the com-
pc?nent of M*\M, which contains 4. Then D and D’ = M*\.D are bounded surfaces
with nonempty boundaries such that M = Du D' and D n D’ = D. It Tollows
from 7.1 that .

P(M*Zy(D)+y(D)+r—1,

where 731 is the number of simple closed curves in D. Since M, =D’ cM*, we
see that ¢ = p(M,)<y(D)<Y(M*) = c¢; hence the above inequnllity states ’tlmt
» (D) =1—r =0,
The.refo.re D is a perforated disk with a connected boundary. Tt follows that D is
a disk in G; containing 4 in its interior, which proves (1).
Let D}, D}, ... be a strictly increasing sequence of disks such that

G,= D, iz,
k21
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and for each m>1 put
Up=M* U

itksm+1

.
i
bi.

Tt follows that {U,,} is a strictly decreasing sequence of bounded surfaces converging
to X such that the inclusion j,: (U g, %o)=(Un» Xo) induces an epimorphism: of the
corresponding fundamental groups. (Let us note that almost all U’s lie in the original
surface M.) Since U, is a bounded surface, there is a subset Y, < U, containing xo
which is homeomorphic to the wedge of a finite number of circles (which may reduce
to the point x) such that x, corresponds to the centre of the wedge and Y, is a strong
deformation retract of U, (because Uy is not empty). Thus there is a homotopy
@i Uy x 1=+U,, such that ¢,(x, 0) = x, @u(x, 1) € Y, for xe U, and @,(x, N==x
for (x,1) & Y,,x 1. Consider the following diagram, mz=1,

Jm
(Uma xo) ‘ (Um+1> xo)

e | | im fmes | | Imtd

fm
(Y» X0y (Yos15 X0)

where i, J,, are inclusion maps, kn(X) = @nx, 1) and Ful%) = K (x). Since ()
is an epimorphism and (ko im)s> (inokm) s ore the identities on the cor-
responding fundamental groups, (f.)« is an epimorphism for each m>1. If follows
that (Y, yo) = invlim {(¥;, %o)» fu} is a movable continuum because ‘dim ¥<1
(see 4.2 and 6.1). Since (X, xg) = invim {(Un» X0, Jjn} and the diagrams commute
up to homotopy, we have Sh(Y, xp) = Sh(Y, yo) (see [15]). Movability is preserved
even by fundamental domination; hence (X, x¢) i8 movable, which completes the
proof.

Tf each component of a compactum is movable, the compactum is also mov-
able [5]. Hence the following theorem results from 7.2 and answers 2 question
raised by Professor K. Borsuk in a conversation with the author.

7.3. COROLLARY. Every compactum embeddable in a surface is movable.

We close this paper with the following problem:

ProbLEM. Let X be a movable continuum and let x, € X. Does there exist a locally
conmected contimum Y such that Sh (X, x0) = Sh(Y’, ¥o) where yo is a point of Y1

I acknowledge my gratitude to Professor K. Borsuk for his help in the prep-
aration of this paper. I am grateful to A. Trybulec and J. Olgdzki for an interesting
discussion on the subject of this paper. I am also grateful to the reviewer for several
interesting suggestions.
entitled: One-dimensional shape properties and
three-manifolds (Studies in Topology, U.N.C.C. Proceedings), D.. R. Mc Millan has
independently obtained several results from this paper. In particular, .he has also
proved the invariance of pointed 1 -movability under continuous mappmngs and the
movability of pointed compacta lying in surfaces.

§ — Fundamenta Mathematicae XCVII

Addendum. Tn his recent paper
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Whitney properties
by

J. Krasinkiewicz and Sam B. Nadler, Jr. *

Abstract. Some properties and structure of the “levels” u~(¢) are investigated, where X is
a (metric) continuum and g is a Whitney functioz for the space of all nonempty subcontinua of X.

1. Introduction. By a continuum we mean a nonempty compact connected metric
space. The letter X will always denote a continuum. By the hyperspace of X we mean
C(X) = {4: 4is a (nonempty) subcontinuum of X} with the Hausdorff metric H [5].
In [17], in another context, Whitney defined a function u: C(X)—[0, o) satisfying

(1.1) p is continuous on C(X);

(1.2) it A=B and A4 s B, then u(4d)<u(B);

(1.3) p({x}) =0 for each xeX.

We will call any function from C(X) to [0,00) satisfying (1.1) through (1.3)

" a Whitney map for C(X), and denote any such map by the symbol u. Kelley [5] was

the first persom to introduce Whitney’s function into the study of C(X). The first

‘explicit work done after Kelley on the nature of the sets x~'(z) was done in [3] where

it was shown, among other results, that u is both monotone and open. Next in [6]
several results on the topological type of the sets u~!(f) were obtained. The next
paper concerning the sets 7 *(f) was [12]. Several papers on Whitney maps have
recently been written (see our bibliography).

Let P be a topological property. We say that P is a Whitney property provxded
whenever X has property P, so does u"l(r) for any Whitney map u for C(X) and
each t<u(X). The purpose of this paper is to continue the work mentioned above.
We give some general results about the levels u~*(2) (see, for example, 3.1 and 5.1)
and some specific facts about p~*(?) for certain classes of continua (see, for exam-
ple, 3.4, 3.5, and 4.4). Our results and examples show for many properties whether
or, not they are Whitney properties.

¥ This paper was begun when the second author was a visitor at The Polish Academy of Sci-
ences, Warsaw, and was completed when the first author was a v1sltor at the University of Geor-
gia, Athens, Georgia 30602. :
3’
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