On finitely Suslinian continua by ## E. D. Tymchatyn* (Saskatoon, Sask.) Abstract. This paper is concerned with the problem of finding in an arbitrary finitely Suslinian continuum that is not regular a canonical subcontinuum that is not regular. The problem is solved for the case of planar finitely Suslinian continua. The planar regular curves are characterized as those planar curves in which every sequence of pairwise disjoint connected sets forms a null sequence. § 1. Preliminaries. In a 1965 paper in Fundamenta Mathematicae R. Duda gave an example of a finitely Suslinian continuum that can be decomposed into the union of infinitely many, connected, mutually disjoint, dense subsets. In Section 2 of this paper we give a very simple such example. In Section 3 we prove that if X is a finitely Suslinian continuum which is not regular then X contains a fairly simple subcontinuum at each of whose points X fails to be regular. A special case of this theorem was proved in [9] (see the proof of Theorem 6 in [9]). If X is planar we show that X contains a very nice subcontinuum which is also not regular. We use this to prove that a planar continuum is regular if and only if every sequence of pairwise disjoint connected sets in it is a null-sequence. This gives a partial solution to a problem that was stated in [2]. Finally, in Section 4 we give an example of a connected set which is not rim-compact but which can be embedded in a plane finitely Suslinian continuum. This complements a result in [7] Corollary 4.5. Our notation will follow Whyburn [11]. A continuum is a non-degenerate, compact, connected, metric space. A continuum is said to be - (i) hereditarily locally connected if each of its subcontinua is locally connected. - (ii) finitely Suslinian if each sequence of pairwise disjoint subcontinua forms a null sequence, i.e., the diameters of the subcontinua in the sequence converge to zero. - (iii) regular if it has a basis of open sets with finite boundaries. It is known that (iii)⇒(ii)⇒(i). The reader may consult [11] Chapter V for a discussion of hereditarily locally connected continua. ٠. ^{*} This research was supported in part by National Research Council Canada grant A 5616. A point p of a continuum X is said to be a *local cutpoint* of X if there is a connected open set U in X such that $U \setminus \{x\}$ is not connected. The set of local cutpoints of X is denoted by L(X). We denote the *closure* of a set A by Cl(A). By a *neighborhood* we always mean open neighborhood. The *boundary* of a set U is denoted by Bd(U). Let X be a continuum and let $x, y \in X$. A closed set M in X which contains x and y is said to have property P(x, y) if no finite set separates x and y in any neighborhood of M. I wish to thank Professor A. Lelek for several very helpful discussions. § 2. Two examples. The following two examples are prototypes of the objects that are discussed in the next section. The first example is of a finitely Suslinian plane continuum that can be decomposed into infinitely many, connected, mutually disjoint sets of diameter equal to one. It is homeomorphic to a subset of the continuum described in [5], p. 284. EXAMPLE 1. Let $X = [0,1] \cup A_1 \cup A_2 \cup ...$ where [0,1] denotes the line segment from (0,0) to (1,0) in the plane. A_{11} is the semi-circle in the upper halfplane with center $(\frac{1}{2},0)$ and radius $\frac{1}{4}$. The sets $A_1,A_2,...$ are defined inductively to be pairwise disjoint sets such that $A_1 = A_{11}$ and for $i \ge 1$ $$A_i = A_{i1} \cup ... \cup A_{l/l_i}$$ where the A_{ik} are pairwise disjoint semicircles. The endpoints of A_{ik} are $(a_{ik}, 0)$ and $(b_{ik}, 0)$ where $a_{ik} < b_{ik} < a_{ik} + 1/i$ and $$a_{i1} \leq \frac{1}{i+1} < a_{i2} < b_{i1} < a_{i3} < b_{i2} < \dots < a_{ij_i} < b_{i,j_i-1} < 1 - \frac{1}{i+1} \leq b_{ij_i}.$$ Then X is a continuum since it is obtained by attaching a null sequence of arcs to the fixed arc [0, 1]. It is clear that X contains no continuum of convergence so X is hereditarily locally connected by [11], V. 2.1. By a theorem of Gehman ([5], p. 519) X is finitely Suslinian since it is planar. The sequence $\mathscr{A}=\{A_1,A_2,...\}$ can be decomposed into infinitely many pairwise disjoint sequences $\mathscr{B}_1,\mathscr{B}_2,...$ where $\mathscr{B}_i=\{A_{1_i},A_{2_i},...\}$ where $A_{J_i}\neq A_{k_r}$ if $(j,i)\neq (k,r)$. For each i let $X_i=[0,1]\cup A_{1_i}\cup A_{2_i}\cup...$ If $F=\{f_1,...,f_r\}$ is a finite set in $X_i\backslash\{(0,0),(1,0)\}$ let k_i be an integer so large that $F\cap A_{k_i}=\varnothing$, $A_{k_i}\in\mathscr{B}_i$ and $$1/k_i < \min\{\text{distance}(f_p, f_q) | p, q \in \{1, ..., r\} \text{ and } p \neq q\}$$. Then it is easy to see that $([0,1] \cup A_{kl}) \setminus F$ is connected between (0,0) and (1,0). Hence no finite set separates (0,0) from (1,0) in X_l and X_l is not regular. Also, $L(X_l) = A_{1l} \cup A_{2l} \cup ...$ By a slight extension of a theorem of F. Bernstein (see [3], p. 201) $[0,1]=Q_1\cup Q_2\cup ...$ where the Q_i are pairwise disjoint sets and each Q_1 meets each Cantor set in [0,1]. We may suppose since $(A_{1_i}\cup A_{2_i}\cup ...)\cap [0,1]$ is countable that $(A_{1_i}\cup A_{2_i}\cup ...)\cap [0,1]\subset Q_i$ for each i. Note that if a = (0, 0) and b = (1, 0) then [0, 1] is a continuum in X which is irreducible with respect to having P(a, b). Our next example is a finitely Suslinian plane continuum which can be decomposed into infinitely many, pairwise disjoint, connected, dense sets. EXAMPLE 2. Let X be as in Example 1. Set $x \sim y$ in X if any only if x = y or $x, y \in A_{lk}$ where i is a positive integer and $A_{lk} \subset A_i$. Then \sim is an equivalence relation since the sets A_{lk}) are pairwise disjoint. The equivalence classes of \sim are points and arcs. By Lemma 2.3 in [10] \sim is upper semi-continuous and X/\sim is a continuum. It is well-known (and easy to check) that the monotone image of a finitely Suslinian continuum is finitely Suslinian. Hence X/\sim is finitely Suslinian. By Moore's theorem on upper semi-continuous decompositions of the 2-sphere (see [11], IX, 2.1', p. 171) X/\sim is also planar. If $\pi: X \to X/\sim$ is the natural projection then $\pi(P_1)$, $\pi(P_2)$, ... are pairwise disjoint, dense, connected sets in X/\sim . Note that if $a = \pi(0, 0)$ and $b = \pi(1, 0)$ X/\sim is irreducible with respect to having P(a, b). § 3. The main results. Parts of Theorems 1 and 2 were first proved in [9] Theorem 6 for X a finitely Suslinian continuum each subcontinuum of which has a free arc. The ideas in the proofs that are given here are similar to those that appear in [9] but the arguments that are given here are somewhat simpler and also more complete. THEOREM 1. Let X be a finitely Suslinian continuum and let $a, b \in X$. If X has P(a, b) then - (i) There is a subcontinuum P_{ab} in X which is minimal with respect to having P(a,b). - (ii) $P_{ab} \cap L(X)$ is at most countable. - (iii) If $x \in P_{ab}$ then there is a unique subcontinuum P_{ax} (resp. P_{bx}) in P_{ab} which is minimal with respect to having P(a, x) (resp. P(b, x)). - (iv) If $x, y \in P_{ab}$ and $x \neq y$ then either $P_{ax} \subsetneq P_{ay}$ or $P_{ay} \subsetneq P_{ax}$. - (v) If \mathscr{A} (resp. \mathscr{A}) is the closure of $\{P_{ax}|\ x\in P_{ab}\}$ (resp. $\{P_{bx}|\ x\in P_{ab}\}$) in the hyperspace of subcontinua of P_{ab} then there are homeomorphisms $h\colon [0,1]\to\mathscr{A}$ and $g\colon [0,1]\to\mathscr{B}$ such that for 0< p< q< 1 $$h(0) = \{a\} \subset h(p) \subset h(q) \subset h(1) = P_{ab},$$ $$g(1) = \{b\} \subset g(q) \subset g(p) \subset g(0) = P_{ab},$$ such that if $h(r) = P_{ax}$ for some $x \in P_{ab} \setminus L(X)$ then $g(r) = P_{bx}$. (vi) If $x \in h(r)$ and $P_{ax} = h(s)$ then $s \le r$. - (vii) There is a continuous selection $f: [0, 1] \rightarrow P_{ab}$ for h such that if $h(r) = P_{ax}$ then f(r) = x. If $x \in P_{ab} \setminus L(X)$ then $f^{-1}(x)$ is a singleton. - (viii) If $x \in (h(r) \cap g(r)) \setminus L(X)$ then $h(r) = P_{ax}$ and $g(r) = P_{bx}$. Hence $(h(r) \cap g(r)) \setminus L(X)$ contains at most one point. - (ix) If A_i is a sequence of disjoint (possibly degenerate) continua in $X \setminus \{f(r)\}$ such that for each i $A_i \cap h(r) \neq \emptyset$ and $A_i \cap g(r) \neq \emptyset$ and if for each i $r_i \in [0,1]$ such that $f(r_i) \in A_1$ then $\lim r_i = r$. - (x) If r < s in [0, 1] then $h(r) \cup g(s) \neq P_{ab}$ and $h(r) \cap g(s)$ is a finite set which is contained in L(X). For $r \in [0, 1]$ $h(r) \cup g(r) = P_{ab}$. - (xi) If r_i is a sequence which is increasing to r in [0, 1] and U is a neighborhood of f(r) then there exists an integer i such that $h(r) \subset h(r_i) \cup U$. In particular $h(r) = (\bigcup h(r_i)) \cup \{f(r)\}$. - (xii) If r < s in [0, 1] then f([r, s]) has P(x, y) for all $x, y \in f([r, s])$. Proof. Parts of this theorem were proved in Theorem 6 Claims 1-8 of [9] for the special case in which each subcontinuum of X contains a free arc. The basic idea of the proof is the same as that given in [9]. Since the property P(a, b) is inducible (see [11], p. 17) it follows by the Brouwer Reduction Theorem that X contains a closed set P_{ab} which is minimal with respect to having P(a, b). It is easy to see that P_{ab} is a continuum. By Whyburn [11], III, 9.2 $P_{ab} \cap L(X)$ is at most countable. We have proved (i) and (ii). I. If $c, d \in P_{ab}$ then P_{ab} has P(c, d). Just suppose U is a neighborhood of P_{ab} and A is a finite set such that $U \setminus A = U_1 \cup U_2$ where U_1 and U_2 are disjoint open sets, $c \in U_1$ and $d \in U_2$. Let $K = P_{ab} \cap \operatorname{Cl}(U_1)$ and let $L = P_{ab} \cap \operatorname{Cl}(U_2)$. Then $P_{ab} = K \cup L$. If $a, b \in K$ (resp. $a, b \in L$) there exists a neighborhood V (resp. W) of K (resp. L) and a finite set
R (resp. R) such that R (resp. R) separates R and R in R (resp. R) by the minimality of R if at least one of R and R is not in R (resp. R) let R if at least one of R and R in in the initial content of R (resp. R). Then R is a neighborhood of R in the initial content of R is a contradiction since R in R is a neighborhood of R in the initial content of R is a neighborhood of R in the initial content of R is a neighborhood of R in the initial content of R in the initial content of R is a neighborhood of R in the initial content of R is a neighborhood of R in the initial content of R in the initial content of R is a neighborhood of R in the initial content of R in the initial content of R is a neighborhood of R in the initial content II. If $x \in P_{ab}$ and U is a neighborhood of x such that $b \notin Cl(U)$ then there exists $c \in Bd(U)$ such that $P_{ab} \setminus U$ has P(b, c). Just suppose that for each $c \in \operatorname{Bd}(U)$ there is a neighborhood V_c of $P_{ab} \setminus U$ and a finite set A_c such that $V_c \setminus A_c = U_c \cup W_c$ where U_c and W_c are disjoint open sets, $c \in U_c$ and $b \in W_c$. Since $\operatorname{Bd}(U)$ is compact there exists a finite set $\{c_1, \ldots, c_n\} \subset \operatorname{Bd}(U)$ such that $\operatorname{Bd}(U) \subset U_{c_1} \cup \ldots \cup U_{c_n}$. Let $V=V_{c_1}\cap\ldots\cap V_{c_n}$, $A=A_{c_1}\cup\ldots\cup A_{c_n}$, $R=(U_{c_1}\cup\ldots\cup U_{c_n})\cap V$ and $S=W_{c_1}\cap\ldots\cap W_{c_n}$. Then V is a neighborhood of $P_{ab}\setminus U$, $\mathrm{Bd}(U)\subset R$, $b\in S$, and R and S are disjoint open sets. Since $\mathrm{Bd}(U)\subset R$ and R is disjoint from S, $S\setminus U=S\setminus \mathrm{Cl}(U)$ is an open set. Now $(V\cup U)\setminus A\subset (U\cup R)\cup (S\setminus U)$. The sets $U\cup R$ and $S\setminus U$ are disjoint open sets, $x\in U\cup R$ and $b\in S\setminus U$. Thus, A is a finite set which separates X and X in the neighborhood $X\cup X$ of X. This contradicts X. III. If $x \in P_{ab} \setminus L(X)$ and P and Q are closed sets in P_{ab} such that P has P(a, x) and Q has P(b, x), respectively, then $P \cup Q = P_{ab}$. Let U be a neighborhood of $P \cup Q$. Just suppose some finite set separates U between a and b. Let A be an irreducible finite set which separates U between a and b. By [11], III, 9.3 $x \notin A$. Since P has P(a, x) x and a lie in the same component of $U \setminus A$. Since Q has P(b, x) x and b lie in the same component of $U \setminus A$. Thus, a and b lie in the same component of $U \setminus A$. This is a contradiction. We have proved that $P \cup Q$ has P(a, b). By the minimality of P_{ab} $P \cup Q = P_{ab}$. IV. If b_i is a sequence in P_{ab} which converges to b and for each i P_i is a continuum in P_{ab} which has $P(a, b_i)$ then $\lim P_i = P_{ab}$. Notice that $\limsup P_i$ is a continuum in P_{ab} which has P(a, b). By the minimality of P_{ab} $\limsup P_i = P_{ab}$. V. If A and B are continua in P_{ab} such that A has P(a, x) for each $x \in A$ and B has P(b, y) for each $y \in B$ and if A_i is a sequence of disjoint (possibly degenerate) continua in X such that for each $i A \cap A_i \neq \emptyset$ and $B \cap A_i \neq \emptyset$ then $A \cup B = P_{ab}$. Let U be a neighborhood of $A \cup B$ and let F be a finite set in $U \setminus \{a, b\}$. Since X is finitely Suslinian the A_i form a null sequence. Hence, almost all of the A_i are contained in U. Let i be a natural number so large that $A_i \subset U$ and $A_i \cap F = \emptyset$. Let $x \in A_i \cap A$ and let $y \in A_i \cap B$. Since A has P(a, x) a and x lie in the same component of $U \setminus F$. Similarly b and y lie in the same component of $U \setminus F$. Similarly b and b lie in the same component of $b \setminus F$. We have proved that $b \cap B$ has $b \cap B$ has $b \cap B$ by the minimality of $b \cap B$ has b VI. If $x \in P_{ab} \setminus \{b\}$ then there exists a subcontinuum of $P_{ab} \setminus \{b\}$ which has P(a, x). Let $x \in P_{ab} \setminus \{b\}$ and suppose no subcontinuum of $P_{ab} \setminus \{b\}$ has P(a, x). Let V be a neighborhood of x in P_{ab} such that $b \notin Cl(V)$ and $Bd(V) = X \setminus L(X)$. For each natural number i let U_i be a neighborhood of b in P_{ab} such that $Cl(U_i)$ is disjoint from Cl(V), the diameter of U_i is less than 1/i and $Bd(U_i) = X \setminus L(X)$. By Π there exists for each i $b_t \in \operatorname{Bd}(U_t)$ such that $P_{ab} \setminus U_t$ has $P(a, b_t)$. For each i let P_t be a continuum in $P_{ab} \setminus U_t$ which is minimal with respect to having $P(a, b_t)$. Then $\lim P_t = P_{ab}$ by IV. We may suppose, therefore, that for each i $P_t \cap V \neq \emptyset$. Since $x \notin P_t$ by I and $b_t \in X \setminus L(X)$ it follows from Π I that $P_{ab} \setminus V$ does not have $P(b, b_t)$. Since the sequence b_t converges to b it follows that for each $t = 1, 2, \ldots$ there exists N_t such that $j \geqslant N_t$ implies $P_{ab} \setminus V$ does not have $P(b_t, b_t)$. We may suppose without loss of generality that the sequence b_t was chosen in such a way that $t \neq j$ implies $P_{ab} \setminus V$ does not have $P(b_t, b_t)$. By Π there exists for each $t \in S_t \cap S_t$ we have $P(b_t, b_t)$ such that $P_t \cap S_t \cap S_t$ has $P(b_t, b_t)$. There is a neighborhood W_1 of $P_{ab} \setminus V$ and an irreducible finite set A_1 such that A_1 separates b_1 from each of $b, b_2, b_3, ...$ in W_1 . (It is possible to find one finite set A_1 which separates each of these points from b_1 because $\lim b_i = b$.) By [11], III, 9.3 $A_1 \subset L(X)$. Let B_1 be an arc in $W_1 \setminus A_1$ with endpoints x_1 and b_1 . Similarly, there exists a neighborhood $W_2 \subset W_1$ of $P_{ab} \setminus V$ and an irreducible finite set A_2 such that A_2 separates b_2 from each of b, b_3 , b_4 , ... in W_2 . Let B_2 be an arc in $W_2 \setminus (A_1 \cup A_2)$ with endpoints x_2 and b_2 . Then $B_1 \cap B_2 = \emptyset$. In this way we construct inductively a sequence B_i) of pairwise disjoint arcs where B_i has endpoints x_i and b_i . This sequence is not null since $b \notin Cl(V)$. This contradicts the assumption that X is finitely Suslinian. VII. For each $x \in P_{ab}$ there exists a unique subcontinuum P_{ax} (resp. P_{bx}) of P_{ab} which is minimal with respect to having P(a, x) (resp. P(b, x)). If $x, y \in P_{ab}$ then either $P_{ax} \subset P_{ay}$ or $P_{ay} \subset P_{ax}$. Suppose A and B are subcontinua of P_{ab} such that A (resp. B) is minimal with respect to having P(a, x) (resp. P(a, y)) and such that $A displays = B \dots = A \dots = A \dots = A \dots = B \dots = A =$ We have proved (iii) and (iv). VIII. \mathscr{A} is an arc and if $z \in C \in \mathscr{A}$ then $P_{az} \subset C$. Inclusion is a partial ordering with closed graph on the hyperspace of subcontinua of X. By VII \mathscr{A} is the closure of a set of continua totally ordered under inclusion so \mathscr{A} is itself totally ordered under inclusion. Let $z \in C \in \mathcal{A}$ and suppose $P_{az} \neq C$. Let $q \in P_{az} \setminus C$. Since \mathcal{A} is totally ordered by inclusion and $P_{aq} + C$ we have by VI $C \subset P_{aq} \subset P_{az} \setminus \{z\}$ which is a contradiction. Since \mathscr{A} is totally ordered under inclusion and compact we need only show that \mathscr{A} is connected to prove that \mathscr{A} is an arc. To prove that \mathscr{A} is connected it suffices to prove that if C, $D \in \mathscr{A}$ with $C \subsetneq D$ then there exists $E \in \mathscr{A}$ with $C \subsetneq E \subsetneq D$. Since $C \subsetneq D$ there exist two points $y, z \in D \setminus C$. By VII either $P_{ay} \subsetneq P_{az} \subset D$ or $P_{az} \subsetneq P_{ay} \subset D$. Suppose $P_{ay} \subsetneq P_{az}$. Then $P_{ay} \subsetneq D$. Since $y \notin C$ and $\mathscr A$ is totally ordered by inclusion $C \subsetneq P_{ay}$. IX. If $z \in P_{ab}$ then $(P_{az} \cap P_{bz}) \setminus L(X) \subset \{z\}$. Let $w \in (P_{ax} \cap P_{bz})$. If $w \neq z$ then by VI $P_{aw} \subset P_{az} \setminus \{z\}$ and $P_{bw} \subset P_{bz} \setminus \{z\}$. Since $P_{aw} \cup P_{bw} \neq P_{ab}$ $w \in L(X)$ by III. X. If $x, y \in P_{ab} \setminus L(X)$ and $y \notin P_{ax}$ then $P_{ax} \subsetneq P_{ay}$, $P_{bx} \supsetneq P_{by}$, $P_{ax} \cup P_{by} \neq P_{ab}$ and $P_{ax} \cap P_{by}$ is a finite subset of L(X). By VII $P_{ax} \subset P_{ay}$. By VI $P_{ax} \subset P_{ay} \setminus \{y\}$. Let $z \in P_{ay} \setminus \{P_{ax} \cup L(X) \cup \{y\}\}$. By VII and VI $P_{ax} \subset P_{az} \setminus \{z\}$ and $P_{az} \subset P_{ay} \setminus \{y\}$. By III $P_{az} \cup P_{bz} = P_{ab}$. Hence, $y \in P_{bz}$. By VI $P_{by} \subset P_{bz} \setminus \{z\}$. Thus $z \notin P_{ax} \cup P_{by}$ and $P_{ax} \cup P_{by} \neq P_{ab}$. By I and III $P_{ax} \cap P_{by} \subset L(X)$. By V $P_{ax} \cap P_{by}$ is finite. The existence of the homeomorphism h of [0, 1] onto \mathcal{A} is guaranteed by VIII. It also follows from VIII that (vi) holds. The existence of the homeomorphism g of [0, 1] onto \mathscr{Q} satisfying the condition that if $h(r) = P_{ax}$ where $x \in P_{ab} \setminus L(X)$ then $q(r) = P_{bx}$ follows from X and the fact that $\{P_{ax} | x \in P_{ab} \setminus L(X)\}$ is dense in \mathscr{A} . XI. If x_i is a sequence in P_{ab} such that the sequence P_{ax_i} converges in \mathcal{A} then x_i converges in P_{ab} . Just suppose that x_i and y_i are sequences in P_{ab} which converge to the points x. and y respectively and the sequences P_{ax_i} and P_{ay_i} both converge to $C \in \mathcal{A}$. By IV we may suppose that for each $i \ x_i, \ y_i \in P_{ab} \setminus L(X)$ and $x_i \neq x_i$ and $y_i \neq y_i$ for $i \neq i$. Since the
sets P_{ax} for $x \in P_{ab}$ are nested we may assume that one of the following three cases holds: - (1) for each $i P_{ax_i} \subset P_{ax_{i+1}}$ and $P_{ay_i} \subset P_{ay_{i+1}}$, - (2) for each $i P_{ax_i} \supset P_{ax_{i+1}}$ and $P_{ay_i} \supset P_{ay_{i+1}}$, - (3) for each $i P_{ax_l} \subset P_{ax_{l+1}}$ and $P_{ay_l} \supset P_{ay_{l+1}}$. Let us suppose first that case (1) holds. If for each i and $jP_{ax_i} \subset P_{ay_i}$ then $C = P_{ay}$ and the sequence y_i) is a constant sequence. This is a contradiction. We suppose, therefore, that for each $iP_{ax_i} \subset P_{ay_i} \subset P_{ax_{i+1}}$. For each i = 1, 2, ... and each j = 0, 1, ..., i-1 P_{ax_i} has $P(a, x_{i-j})$ and $P(x_{i-j}, y_{i-j-1})$. For each j, i = 1, 2, ... P_{y_ib} has $P(y_{i+j}, b)$ and $P(y_{i+j}, x_{i+j+1})$. By $X P_{ax_i} \cup P_{by_i}$ does not have $P(x_i, y_i)$ since it does not have P(a, b). There exists a neighborhood W_1 of $P_{ax_2} \cup P_{by_2}$ and an irreducible finite set A_1 such that A_1 separates x_2 and y_2 in W_1 . By [11], III, 9.3 $A_1 \subset L(X)$. Let B_1 be an arc in $W_1 \setminus A_1$ with endpoints x_1 and y_1 . For each i = 1, 2, ... let $P_{x_{2i+2}y_{2i}}$ be a continuum in $P_{by_{2i}}$ which is minimal with respect to having $P(x_{2i+2}, y_{2i})$. There exists a neighborhood $W_2 \subset W_1$ of $P_{x_{4y_2}} \cup P_{by_4} \subset P_{by_2}$ and an irreducible finite set $A_2 \subset L(X)$ such that A_2 separates x_4 and y_4 in W_2 . Let B_2 be an arc in $W_2 \setminus (A_1 \cup A_2)$ with endpoints x_3 and y_3 . Then $B_1 \cap B_2 = \emptyset$. Inductively, there exists for each n=2,3,4,... a neighborhood $W_n \subset W_{n-1} \subset ... \subset W_1$ of $P_{x_{2n}y_{2n-2}} \cup P_{by_{2n}} \subset P_{by_{2n-2}}$ and an irreducible finite set $A_n \subset L(X)$ which is minimal with respect to separating x_{2n} and y_{2n} in W_n . Also, there exists an arc $B_n \subset W_n \setminus (A_1 \cup ... \cup A_n)$ with endpoints x_{2n-1} and y_{2n-1} . The arcs B_n form a non-null sequence of pairwise disjoint continua in X. This contradicts the assumption that X is finitely Suslinian. If Case (2) holds then a similar argument leads to a contradiction. If Case (3) holds let U be a neighborhood of x in P_{ab} such that $\operatorname{Bd}(U) \subset P_{ab} L(X)$ and $y \notin \operatorname{Cl}(U)$. For each i and $j P_{ax_i} \subset P_{ay_j}$. For each i let $P_{x_iy_i}$ be a continuum in P_{ay_i} such that $P_{x_iy_i}$ is minimal with respect to having $P(x_i, y_i)$. Since the sequence x_i converges to x we may suppose $x_i \in U$ for each i. Since the sequence y_i converges to y we may suppose $y_i \notin U$ for each i. For each i let $z_i \in P_{x_iy_i} \cap \operatorname{Bd}(U)$. By $X \in P_{ax_i} \subset P_{ay_i}$ hence $\lim_{x \to a_{i+1}} = \lim_{x \to a_{i+1}} P_{ay_i} = C$. If for some subsequence $z_{i,j}$ of z_i) $P_{az_{i,j}} \subseteq P_{az_{i,j+1}}$ for each j then Case (1) applies for the sequences x_i) and $z_{i,j}$). If for some subsequence $z_{i,j}$ of z_i) $P_{az_{i,j}} P_{az} \supseteq_{i,j+1}$ for each j then Case (2) applies for the sequences $z_{i,j}$ and y_i). If the sequence z_i is eventually constant then $C = P_{az}$ for some $z \in P_{ab}$. Let w_i) be a sequence in $P_{az} \setminus \{z\}$ which converges to z. By IV $\lim P_{aw_i} = P_{az} = C$. We can now apply Case (1) for the sequences w_i) and x_i). The existence of the continuous selection f for h follows from XI. XII. If r_i is a sequence which is increasing to r in [0,1] and if U is a neighborhood of f(r) then there exists a natural number i such that $h(r) \subset h(r_i) \cup U$. In particular $h(r) = (\bigcup h(r_i)) \cup \{f(r)\}$. Just suppose that for each i $x_i \in h(r) \setminus (U \cup h(r_i))$. Let $s_i \in [0, 1]$ such that $h(s_i) = P_{ax_i}$. By (vi) $s_i \le r$. Since $x_i \notin h(r_i)$ we have $r_i < s_i$ by (v). Hence $\limsup_{i \in I} \lim_{i \in I} r_i = r$. Since f is continuous $\lim_{i \in I} f(s_i) = f(r)$. This is a contradiction since for each i $f(s_i) = x_i \notin U$. XIII. For $r \in [0, 1]$ $h(r) \cup g(r) = P_{ab}$. By III this is true for a dense set in [0, 1], namely for $\{r \in [0, 1] | f(r) \in P_{ab} \setminus L(X)\}$. Since h and g are continuous it is true for all $r \in [0, 1]$. XIV. If $x \in (h(r) \cap g(r)) \setminus L(X)$ then $h(r) = P_{ax}$ and $g(r) = P_{bx}$. Let $s \in [0, 1]$ such that $h(s) = P_{ax}$. By (vi) $s \le r$. Similarly, $r \le s$. Hence, r = s and $f^{-1}(x)$ is a singleton. XV. If r < s in [0, 1] then $h(r) \cup g(s) \neq P_{ab}$ and $h(r) \cap g(s)$ is a finite set which is contained in L(X). Let $t \in [0, 1]$ such that r < t < s and $f(t) \notin L(X)$. Then $f(t) \notin h(r) \cup g(s)$ so $h(r) \cup g(s) \neq P_{ab}$. By III $h(r) \cap g(s) = L(X)$. By V $h(r) \cap g(s)$ is at most finite. XVI. If $r \in [0, 1]$ and A_i is a sequence of pairwise disjoint (possible degenerate) continua such that each A_i meets both h(r) and g(r) and if for each $i r_i \in [0, 1]$ such that $f(r_i) \in A_i$ then $\lim_{r \to \infty} r_i = r$. If for each $i r_i \le s \le r$ then $h(s) \cup g(r) = P_{ab}$ by V. By XV s = r. XVII. If r < s in [0,1] then f([r,s]) has P(x,y) for all $x,y \in f([r,s])$. Notice that f([0, s]) = h(s) for $s \in [0, 1]$. By VIII the above statement is true for r = 0 and $s \in [0, 1]$. If r > 0 and $f(r) \in P_{ab} \setminus L(X)$ then f([r, s]) plays the same role in $g(r, 1) = P_{bf(r)}$ that f([0, s]) plays in P_{ab} . Thus, the above statement is true for $\{r \in [0, 1] | f(r) \notin L(X)\}$ and for all $s \in [0, 1]$. Since XVII is true for a dense set of r and s it is easy to see that it is true for all $r, s \in [0, 1]$. This completes the proof of Theorem 1. Let X be a finitely Suslinian continuum and let $a, b \in X$ such that X has P(a, b). Let P_{ab} and f be as in Theorem 1. If $s \in [0, 1]$ and $\varepsilon > 0$ then a set A is called an ε -bridge over s if $A \subset S(f(s), \varepsilon) \setminus \{f(s)\}$ is a (possibly degenerate) continuum which is irreducible with respect to meeting both h(s) and g(s). It follows that either A is a point of $h(s) \cap g(s)$ or A is an arc with one endpoint in h(s), the other endpoint in g(s) and with no other points in P_{ab} . The bridge A is said to have ends x and y in [0,1] if $\{f(x)\} = \{f(y)\} = A$ or if A is an arc with endpoints f(x) and f(y). (Note that the ends of A need not be unique since f need not be one to one.) If x < y in [0, 1] the family of bridges $\{A_1, ..., A_k\}$ is said to be *interlaced* from x to y if for each i = 1, ..., k there exists ends x_i, y_i of A_i such that $$[x, y] \subset (x_1, y_1) \cup (x_2, y_2) \cup ... \cup (x_k, y_k)$$. The family of bridges $\{A_1, ..., A_k\}$ is said to be *irreducibly interlaced* from x to y if no proper subfamily is interlaced from x to y. THEOREM 2. Let X be a finitely Suslinian continuum that is not regular. Let $a, b \in X$ such that no finite set separates a and b in X. Let P_{ab} be a continuum in X which is irreducible with respect to having P(a, b). Let $f: [0, 1] \rightarrow P_{ab}$ be as in Theorem 1. Then there exists a continuum Y in X such that - (1) $Y = P_{ab} \cup B_1 \cup B_2 \cup ...,$ - (2) for each positive integer $i B_1$ is the union of a finite family of 1/i-bridges that is irreducibly interlaced between 1/i and 1-1/i, - (3) $B_i \cap B_j = \emptyset$ for $i \neq j$, - (4) $L(Y) \subset (L(X) \cap P_{ab}) \cup B_1 \cup B_2 \cup ...$ Proof. Let P_{ab} , f, g, and h be as in Theorem 1. Let 0 < r < 1 and let $\varepsilon > 0$ be given. A bridge A over r is said to be *avoidable* if for each s such that 0 < s < 1 there exists $\delta > 0$ such that each δ -bridge B over s is disjoint from A. We prove first that there is an avoidable ε -bridge over r. Since f is continuous there exist $p, q \in [0, 1]$ such that p < r < q and $f([p, q]) = S(f(r), \varepsilon)$. By (xii) of Theorem 1 there is an ε -bridge C over r. If C is a point then C is an avoidable bridge. We may suppose, therefore, that $S(f(r), \varepsilon) \cap g(r) \cap h(r) = \{f(r)\}$ and C is an arc. For each $\eta > 0$ let C_{η} be the component of $(S(P_{ab}, \eta) \cup C) \setminus P_{ab}$ which meets C. It follows easily from the fact that X is finitely Suslinian that $\lim_{\eta \to 0} \operatorname{Cl}(C_{\eta}) = C$. Let $\mu > 0$ such that $\operatorname{Cl}(C_{\mu}) = S(f(r), \varepsilon) \setminus \{f(r)\}$. Let $D = C_{\mu}$. Let $M = \operatorname{Cl}(D) \cap h(r)$ and let $N = \operatorname{Cl}(D) \cap g(r)$. If M (resp. N) has an isolated point let c (resp. d) be in [0, 1] such that f(c) (resp. f(d)) is an isolated point of M (resp. N). If M (resp. N) has no isolated points let $$c = \inf\{s \in [0, 1] | \operatorname{Cl}(D) \cap h(s) \text{ is uncountable}\}\$$ (resp. $d = \sup\{s \in [0, 1] | \operatorname{Cl}(D) \cap g(s) \text{ is uncountable}\}$). In this case $h(c) \cap \operatorname{Cl}(D)$ (resp. $g(d) \cap \operatorname{Cl}(D)$) is at most countable. If f(c) (resp. f(d)) is not an isolated point of M (resp. N) let a_k) (resp. b_k)) be a sequence in [c, 1] (resp. in [0, d]) which is strictly decreasing to c (resp. strictly increasing to d) such that for each k $f(a_k) \in M \setminus \{f(c)\}$ resp. $f(b_k) \in N \setminus \{f(d)\}$). Since D is an open, connected subset of the finitely Suslinian continuum Cl(D), D is arcwise connected. By [10] Corollary 2.2 every subset of Cl(D) which contains D is arcwise connected. For each k = 1, 2, ... let $p_k \in D$ (resp. $q_k \in D$) such that there is an arc T_k in $D \cup \{f(a_k)\}$ from p_k to $f(a_k)$ (resp. an arc S_k in $D \cup \{f(b_k)\}$ from q_k to $f(b_k)$) such that T_k (resp. S_k) has diameter less than 1/k. By [11], V, 2.7 D has
property S (see [11], p. 20). For each j=1,2,... let $\{V_{j1},...,V_{jt_j}\}$ be a finite cover of D by connected sets of diameter <1/j which are open in D. We may suppose that for each j the sequence p_k) is eventually in V_{j1} and the sequence q_k) is eventually in V_{j1} . We may also suppose that for each k, j=1,2,... $p_{k+j} \in V_{k1}$ and $q_{k+j} \in V_{kt_k}$. For each k let P_k (resp. Q_k) be an arc in V_{k1} (resp. V_{kt_k}) with endpoints p_k and p_{k+1} (resp. q_k and q_{k+1}). Let $P = \bigcup_{k=1}^{\infty} P_k$ and let $Q = \bigcup_{k=1}^{\infty} Q_k$. Then $P \cup \{f(c)\}$ and $Q \cup \{f(d)\}$ are continua in $D \cup \{f(c)\}$ and $D \cup \{f(d)\}$ respectively. Let E be an arc in $D \cup \{f(c), f(d)\}$ with endpoints f(c) and f(d) such that if f(c) (resp. f(d)) is not an isolated point of M(resp. N) then some neighborhood in E of f(c) (resp. f(d)) is contained in P (resp. Q). Then E is clearly an ε -bridge over r. It remains to prove that E is avoidable. Let $s \in [0, 1]$ such that $f(s) \in E$. Without loss of generality we may suppose f(s) = f(c). Since $$S(f(r), \varepsilon) \cap g(r) \cap h(r) \subset \{f(r)\}, \quad s \leq r.$$ We may suppose without loss of generality that there exists $\eta > 0$ such that $$h(s) \cap g(s) \cap S(f(s), \eta) \subset \{f(s)\}.$$ For each natural number i such that i>1/n let F_i be a 1/i-bridge over s with ends u_i and v_i . By Theorem 1 (ix), we may suppose $|v_i-u_i|<1/i$. We may suppose the F_i are pairwise disjoint. By Theorem 1 (ix) $\lim u_i = s$ so $\lim f(u_i) = f(s)$. If $F_i \cap E \neq \emptyset$ then $f(u_i) \in M$. Since f is continuous $\lim f(u_i) = f(s) = f(c)$. If f(c) is an isolated point of M then it follows that for all sufficiently large $j F_j \cap E = \emptyset$. Let us suppose, therefore, that M has no isolated points. Just suppose that for some subsequence F_{j_m} of F_j if $F_{j_m} \cap E \neq \emptyset$ for each m. For each m $f(u_{j_m}) \in M$. By the choice of c and by the assumption that M is perfect, each neighborhood of $f(u_{j_m})$ contains uncountably many points of g(c). Since g(c) is compact $f(u_{j_m}) \in g(c)$. If $s \leqslant c$ then $g(c) \subset g(s)$ and so $$f(u_{j_m}) \in (h(s) \cap g(s) \cap S(f(s), \eta)) \setminus \{(c)\}$$ which is a contradiction. If c < s then there exists a sequence of pairwise disjoint arcs K_i in $P \cup \bigcup F_{j_m} \cup \bigcup T_j$ such that for each $i \ K_i$ has endpoints $f(a_{k_i})$ and $f(v_{i_i})$ for some integers k_i and l_i . It follows by V of the proof of Theorem 1 that for each $i \ h(a_i) \cup g(s)$ has P(a, b). Since $\lim a_i = c \ h(c) \cup g(s)$ has P(a, b) contrary to Theorem 1 (x). This completes the proof that E is an avoidable e-bridge over f. Let $B_{11}=B_1$ be an avoidable 1-bridge over $\frac{1}{2}$. Let n be a natural number. Suppose B_1,\ldots,B_{n-1} have been defined and satisfy conditions (2) and (3) of the theorem. For each $x \in [1/n, 1-1/n]$ let E_x be a 1/n-bridge over x which is avoidable and disjoint from $B_1 \cup ... \cup B_{n-1}$. This is possible since $B_1 \cup ... \cup B_{n-1}$ is a compact set which meets P_{ab} in a finite set and each of the bridges in B_1, \ldots, B_{n-1} is avoidable. For each x let a_x and b_x be ends of E_x such that $a_x < x < b_x$ and such that $b_x - a_x$ is as large as possible. By Theorem 1 (ix) we may suppose $b_x - a_x < 1/n$. The set of open intervals $\{(a_x, b_x) | x \in [1/n, 1-1/n]\}$ is an open cover for the closed interval [1/n, 1-1/n] hence it has a finite subcover. A family of 1/n-bridges associated with this finite open cover is interlaced from 1/n to 1-1/n. It contains a subfamily B_{n1}, \ldots, B_{nkn} which is irreducibly interlaced from 1/n to 1-1/n. Let $B_n = B_{n1} \cup \ldots \cup B_{nkn}$. By induction Y is defined. Let $z \in P_{ab}$ such that $z \notin L(X)$ and $z \notin B_i$ for any i. By Theorem 1 (vii) $f^{-1}(z)$ is a singleton. If $c, d \in [0, 1]$ such that $c < f^{-1}(z) < d$ then $f([c, d]) \setminus \{z\}$ has at most two components. If $f([c, d]) \setminus \{z\}$ has two components they are f([c, z]) and f([c, d]). It is now easy to see that $z \notin L(Y)$ so Y satisfies condition (4). LEMMA 3. Let X, f, g, h and P_{ab} be as in Theorem 1. If p < q in [0,1] and $x, y \in P_{ab} \setminus (h(p) \cup g(q))$ then for each neighborhood U of f([p,q]) and each finite set F of $X \setminus \{x,y\}$ there is an arc in $U \setminus (h(p) \cup g(q) \cup F\}$ with endpoints x and y. **Proof.** Just suppose there exists a neighborhood U of f([p, q]) and a finite set F such that $$U \setminus (h(p) \cup g(q) \cup F) = A \cup B$$ where A is separated from B and $x \in A$ and $y \in B$. Since A and B are open sets we may suppose by Theorem 1 (i) that $x, y \in P_{ab} \setminus L(X)$. By Theorem 1 (vii) $f^{-1}(x) < f^{-1}(y)$. Let $$\omega = \sup \{ t \in [f^{-1}(x), f^{-1}(y)] | f(t) \in A \}.$$ Then $f^{-1}(x) < \omega < f^{-1}(y)$. Let x_i be a sequence strictly increasing to ω such that for each i $f(x_i) \in A \setminus \{f(\omega)\}$. By Theorem 1 (ix) $(h(p) \cup g(q) \cup F) \cap f([p, q])$ is at most countable so there is a sequence y_i) which is strictly decreasing to ω such that for each i $f(y_i) \in B \setminus \{f(\omega)\}$. Let G_1 be an arc in $X\setminus \{f(\omega)\}$ with endpoints $f(x_1)$ and $f(y_1)$. Since $\lim f([x_i,y_i])=\{f(\omega)\}$ there is an integer i_2 such that $G_1\cap f([x_i,y_{i_2}])=\varnothing$. By Theorem 1 (xii) there is an arc G_2 in $X\setminus (G_1\cup \{f(\omega)\})$ with endpoints $f(x_{i_2})$ and $f(y_{i_2})$. Inductively there is a sequence G_j of pairwise disjoint arcs such that G_j has endpoints $f(x_{i_j})$ and $f(y_{i_j})$. If infinitely many of the G_j meet h(p) then $h(p)\cup g(\omega)$ has P(a,b) by V of the proof of Theorem 1. This contradicts Theorem 1 (x). Similarly, if infinitely many of the G_j meet g(q) then g(q) then g(q) has g(q) has g(q) and g(q) which is a contradiction. Since g(q) is expressed as g(q) from g(q) and g(q) and g(q) is finite at least one of these two cases must hold. The lemma is proved. If C is a subset of a topological space we let $C^{(1)} = C^d$, the derived set of C. If α is an ordinal we let $C^{(\alpha+1)} = (C^{(\alpha)})^d$. If λ is a limit ordinal we let $C^{(\lambda)} = \bigcap_{\alpha < \lambda} C^{(\alpha)}$. The set $C^{(\alpha)}$ is called the α th derived set of C (see [4], p. 261). LEMMA 4. Let X be a finitely Suslinian continuum and let $a, b \in X$ such that no finite subset of X separates a and b. Let P_{ab} and f be as in Theorem 1 and let Y be as in Theorem 2. Suppose $C \subset Y$ and $x \in [0,1]$ such that f(x) is an isolated point of C. If X is planar or if f is at most countable to one then there exists a neighborhood U of x in [0,1] such that $f(U) \setminus C$ is contained in one component of $Y \setminus C$. Proof. Suppose first that X is planar. Let $y = \inf f^{-1}(f(x))$ and let $z = \sup f^{-1}(f(x))$. If y = z let U be any open interval in [0,1] such that $x \in U$ and such that $f(U) \cap C = \{f(x)\}$. By the construction of $Yf(U) \setminus C$ is contained in one component of $Y \in C$. Let us suppose, therefore, that y < z. By Theorem $1(x) h(y) \cap g(z)$ is finite. We may assume X is embedded in the plane in such a way that $[0,1] \times \{0\} \subset h(y)$ and $[1,2] \times \{0\} \subset g(z)$. It follows that f(y) = f(x) = (1,0) = f(z). Let U be an open interval about x in [0,1] such that $f(U) \cap C = \{f(x)\}$ and the diameter of f(U) is less than $\frac{1}{2}$. Let U_1, U_2, \ldots be the components of $U \setminus f^{-1}(f(x))$. For each i let p_i and q_i be the endpoints of U_i . Suppose for each i $p_i < q_i$. Let $r, s \in U \setminus f^{-1}(C)$ such that r < s. Suppose $r \in U_1$. If $s \in U_1$ then f(r) and f(s) lie in the same component of $Y \setminus C$. Let us suppose, therefore, that $s \in U_2$. Let n be a natural number such that $f(x) \notin B_n$ and $1/n < \min\{q_1 - p_1, q_2 - p_2\}$. Suppose $B_n = A_1 \cup ... \cup A_{k_n}$ where each A_j is a 1/n-bridge with ends $a_j < b_j$. By the way B_n was chosen in the proof of Theorem 2 $b_j - a_j < 1/n$ for $j = 1, ..., k_n$. Let $j \in \{1, ..., k_n\}$ be the largest integer such that $a_j \in U_1$ and let k be the smallest integer in $\{1, ..., k_n\}$ such that $b_k \in U_2$. By the proof of Theorem 2 $j \le k$. We wish to show that $$\bigcup_{i=j}^k A_i \cup \bigcup \left\{ f(U_r) | U_r \cap \{a_i, b_i\} \neq \emptyset \text{ for some } i \in \{j, ..., k\} \right\}$$ is connected. This is clear if k = j. We shall show that $$A_j \cup A_{j+1} \cup \bigcup \{f(U_r) | U_r \cap \{a_r, b_r\} \neq \emptyset \text{ for some } r \in \{j, j+1\}\}$$ is connected. The rest of the argument will be similar and we shall leave it to the reader. Let U_3 be the component of $U \setminus f^{-1}(C)$ such that $b_j \in U_3$. Just suppose $f(a_{j+1}) \notin f(U_3)$. We may suppose without loss of generality that $a_{j+1} \in U_4$. Then $q_4 < p_3$. By Theorem 1(x) $f([a_{j+1}, q_4]) \cap f([a_j, q_1])$ is finite. Thus, there exist arcs C_1 in $f([a_j, q_1])$ and $C_4 \subset f([a_{j+1}, q_4])$ such that $C_1 \cap C_4 = \{f(x)\}$. Suppose U_5 is the component of $U \setminus f^{-1}(C)$ such that $b_{j+1} \in U_5$. We shall assume $U_5 \neq U_3$ since otherwise there is nothing to prove. As above there exist arcs $C_5 \subset f([b_{j+1}, q_5])$ and $C_3 \subset f([a_{j+1}, q_3])$ such that $C_t \cap C_s = \{f(x)\}$ for $t, s \in \{1, 3, 4, 5\}$ and $t \neq s$. We may suppose since $(1,0) \in f(U)$, $f(U) \oplus [0,2] \times \{0\}$ and the diameter of $f(U) < \frac{1}{2}$ that f(U) meets the open upper half-plane. By Lemma 3 f(U) is contained in the closed upper half-plane. We wish to show that there is a
homeomorphism of the plane onto itself which carries $[0,2] \times \{0\}$ by the identity onto itself and which carries C_4 into the ray with parametric equation $\theta = \frac{1}{2}\pi$ and carries C_3 into the ray with parametric equation $\theta = \frac{1}{2}\pi$. If the above is not true then there exists a homeomorphism of the plane onto itself which carries $[0,2] \times \{0\}$ by the identity onto itself and which carries C_4 (resp. C_3) into the ray with parametric equation $\theta = \frac{1}{3}\pi$ (resp. $\theta = \frac{1}{2}\pi$). By Lemma 3 $g(q_3)$ does not separate a from $C_4 \setminus \{f(x)\}$ in any neighborhood of P_{ab} . It follows that every neighborhood of $h(q_4)$ separates $C_3 \setminus \{f(x)\}$ from b. Thus $h(q_4)$ separates $C_3 \setminus \{f(x)\}$ from b. This contradicts Lemma 3. We may suppose therefore that C_3 (resp. C_4) is contained in the ray with parametric equation $\theta = \frac{1}{3}\pi$ (resp. $\theta = \frac{1}{2}\pi$). By a similar argument we may assume that C_1 (resp. C_5) is contained in the sector $\frac{1}{2}\pi < 0 \le \pi$ (resp. $0 \le \theta < \frac{1}{3}\pi$). Since $C_1 = f(U_1)$, $C_3 = f(U_3)$, $C_4 = f(U_4)$ and $C_5 = f(U_5)$, A_f is an arc in $X \setminus \{f(x)\}$ from $f(U_1)$ to $f(U_3)$ and A_{f+1} is an arc in $X \setminus \{f(x)\}$ from $f(U_4)$ to $f(U_5)$ we have $$f(U_1) \cup f(U_3) \cup f(U_4) \cup f(U_5) \cup A_1 \cup A_{i+1}$$ is connected. Suppose now that f is at most countable to one. Let U be a neighborhood of $f^{-1}(f(x))$ such that $f(U) \cap C = \{f(x)\}$. Notice that by the construction of Y the lemma holds at each point $y \in f^{-1}(f(x))$ such that y is an isolated point of $f^{-1}(f(x))$. It follows that if Y is an interval in U such that Y contains no points of $(f^{-1}(f(x)))^{(1)}$ then $f(Y) \setminus C$ is contained in one component of $Y \setminus U$. By induction on the countable ordinal α it follows that the lemma holds for each $y \in (f^{-1}(f(x)))^{(\alpha)} \setminus (f^{-1}(f(x)))^{(\alpha+1)}$. Since $f^{-1}(x)$ is compact and countable there exists a countable ordinal β such that $$f^{-1}(x) = \bigcup \left\{ \left| f^{-1}(f(x)) \right|^{(\alpha)} \setminus \left| f^{-1}(f(x)) \right|^{(\sigma+1)} \right| \ \alpha \leq \beta \right\} \cup \left| f^{-1}(f(x)) \setminus \left| f^{-1}(f(x)) \right|^{(1)} \right|.$$ THEOREM 5. Let X be a finitely Suslinian continuum. Suppose $a, b \in X$ such that no finite subset of X separates a from b. Let P_{ab} and f be as in Theorem 1 and let Y be as in Theorem 2. If X is planar or if f is at most countable to one then no finite subset of Y separates a and b in Y. In particular, Y is not regular. Proof. The theorem follows immediately from Lemma 4 and the compactness of [0, 1]. It is well-known (see [1]) and easy to show that if X is a regular continuum then every sequence of pairwise disjoint connected sets in X is a null sequence. Theorem 6 asserts that the converse is also true for plane continua. Theorem 7 gives another condition under which the converse holds. THEOREM 6. A plane continuum X is regular if and only if every sequence of pairwise disjoint connected sets in X forms a null sequence. Proof. Let X be a plane continuum that is not regular. We shall prove that X contains a non-null sequence of pairwise disjoint connected sets. We suppose X is finitely Suslinian for otherwise there is nothing to prove. Let $a, b \in X$ such that no finite subset of X separates a and b. Let $Y = P_{ab} \cup B_1 \cup B_2 \cup ...$ be as in Theorem 2. Decompose the family $\{B_1, B_2, ...\}$ into infinitely many pairwise disjoint infinite families $R'_i = \{B_{1i}, B_{2i}, ...\}$ where i = 1, 2, ... Then $B_{J_i} \cap B_{r_s} = \emptyset$ $(j, i) \neq (r, s)$. For each i let $R_i = B_{1i} \cup B_{2i} \cup ...$ For each $i P_{ab} \cup R_i$ is not regular by Theorem 5. We prove first that no countable set in $P_{ab} \setminus R_i$ separates $P_{ab} \cup R_i$. Let C be a countable set in $P_{ab} \setminus R_i$. Since X is completely normal we may assume C is closed. It suffices to prove since [0, 1] is connected and $f^{-1}(C)$ is nowhere dense in [0, 1] that for each $x \in [0, 1]$ there is a neighborhood U_x of x in [0, 1] such that $f(U_s) \setminus C$ is contained in one component of $(P_{ab} \cup R_t) \setminus C$. By Lemma 4, such a neighborhood exists for each $x \in [0, 1]$ such that f(x) is an isolated point of C Let $x \in [0, 1]$ such that $f(x) \in C^{(1)} \setminus C^{(2)}$. Let U be an open interval about x such that $f(U) \cap C^{(1)} = \{f(x)\}$. Let U_1, U_2, \dots be the components of $U \setminus f^{-1}(f(x))$. For each $i f(U_i) \setminus C$ is contained in one component of $Y \setminus C$ by Lemma 4. By the argument of Lemma 4 $f(U)\setminus C$ is contained in one component of $Y\setminus C$. By induction on the countable ordinal α the theorem holds for each $x \in [0, 1]$ such that $f(x) \in C^{(\alpha)} \setminus C^{(\alpha+1)}$. Since C is countable and compact there is a countable ordinal β with $$C = \bigcup \left\{ C^{(\alpha)} \backslash C^{(\alpha+1)} \middle| \ \alpha \leq \beta \right\} \cup \left(C \backslash C^{(1)} \right).$$ This completes the proof that no countable subset of $P_{ab} \setminus R_i$ separates $P_{ab} \cup R_i$. By a slight extension of a theorem of F. Bernstein (see [3], p. 201). $$P_{ab} \setminus \bigcup R_i = Q_1 \cup Q_2 \cup ...$$ where the Q_i are pairwise disjoint sets such that for each i Q_i meets each Cantor set in P_{ab} . For each $i Q_i \cup R_i$ is connected since no Cantor set of $P_{ab} \cup R_i$ is contained in $P_{ab} \setminus (Q_i \cup R_i)$ and no countable subset of $P_{ab} \setminus R_i$ separates $P_{ab} \cup R_i$. Thus, $Q_1 \cup R_1, Q_2 \cup R_2, ...$ form a sequence of pairwise disjoint connected sets in X. This sequence is not null since for each i a and b are limit points of O_i . THEOREM 7. Let X be a finitely Suslinian continuum and let a and b be two points of X such that X has P(a, b). Let P_{ab} be a continuum in X which is minimal with respect to having P(a, b). Let $f: [0, 1] \rightarrow P_{ab}$ be as in Theorem 1. If f is at most countable to one then X contains a non-null sequence of pairwise disjoint connected sets. Proof. The proof is exactly the same as that of Theorem 6. § 4. Rim compactness. It was proved in [6] Corollary 4.5 that a hereditarily locally connected, rim compact, separable, metric space has a hereditarily locally connected, metric compactification. The main purpose of this section is to show that the converse of that result fails. In particular, we give an example of a finitely Suslinian plane continuum that contains a subset that is not rim compact. The following proposition shows that the construction in Theorem 2 cannot yield such an example. PROPOSITION 8. Let X be a finitely Suslinian continuum that is not regular. Let Y be as in Theorem 2. Then every connected subset of Y is rim compact. **Proof.** Let C be a connected subset of Y and let $c \in C$. If $c \notin P_{ab}$ then there is a basis of neighborhoods of c in Y with two point boundaries. Let us suppose, therefore, that $c \in P_{ab}$. Let U be a neighborhood of c in Y. There exist disjoint intervals $[x_1, y_1], ..., [x_n, y_n]$ in [0, 1] such that $c \in P_{ab} \setminus \bigcup_{i=1}^n f([x_i, y_i]) \subset U$ and $c \in f([y_i, x_j])$ for $i \neq j \in \{1, ..., n\}$ Let $z = \inf f^{-1}(c)$ and suppose $y_1 < z$. Then either a finite set separates $f([x_1, y_1]) \cap C$ from c in C or there exists $\omega \in [0, 1]$ such that $y_1 < \omega < z$ and $f(\omega) \in C$. Suppose $\omega \in [0, 1]$ such that $y_1 < \omega < z$ and $f(\omega) \in C$. Then by the construction of Y and by Theorem 1 (ix) $$K_1 = g(\omega) \cap (h(\omega) \cup \{A \mid A \text{ is a bridge in } Y \text{ which meets } h(\omega)\})$$ is a set with at most one limit point namely $f(\omega)$. If $c \notin K_1$ then K_1 separates $f([x_1, y_1])$ from c in Y. If $c \in K_1$ then c lies in a non-degenerate bridge of Y which meets $h(\omega)$. Let d be a point other than c in that bridge. Then $(K_1 \cup \{d\}) \setminus \{c\}$ separates $f([x_1, y_1])$ from c in Y. Suppose $e, d \in [0, 1]$ such that f(e) = f(d) = c, if $x \in [0, 1]$ such that e < x < dthen $f(x) \neq c$ and $e < x_1 < y_1 < d$. By an argument similar to the one above there is a compact subset of C which has at most two accumulation points and which separates $f([x_1, y_1])$ from c in C. A similar argument may be used if $\sup f^{-1}(c) < x_1$. Thus, there is a compact subset K of C which separates $P_{ab} \setminus U$ from c in C. Since $C \setminus P_{ab}$ consists of a null sequence of free arcs it follows that a compact subset of C separates $C \setminus U$ from c in C. Example 3. Let S be the Sierpiński triangular curve (see [5], p. 276). It is defined as follows: Let T be the equilateral triangle in the plane with vertices (0,0), (1,1)and $(\sqrt{2}, 0)$. Partition T into four congruent triangles T_0 , T_1 , T_2 and T_3 . Let T_0 , T_1 , and T_2 be the triangles which have a vertex in common with T. The triangles T_0 , T_1 , and T_2 are numbered clockwise and T_0 is the leftmost triangle of the three. Let v_0, v_1 , and v_2 be the vertices of T_3 where v_0 is the leftmost vertex of the three and the numbering is clockwise. In a similar way, partition each of the triangles T_t for i=0,1,2 into four congruent triangles T_{i0} , T_{i1} , T_{i2} , T_{i3} . Let v_{i0} , v_{i1} , v_{i2} be the vertices of T_{l3} . The triangles and vertices are ordered clockwise starting with the leftmost one. Continue inductively in this manner. Let $$S = \operatorname{Cl}(\bigcup \operatorname{Bd}(T_{\alpha_1\alpha_2...\alpha_k}))$$ where the subscripts α_l take the values 0, 1 and 2 and k = 1, 2, ... The local cutpoints of S are the
vertices $v_{\alpha_1...\alpha_k}$ where the subscripts α_l take the values 0, 1 and 2 and k = 1, 2, ... Let $X = S \cup K_1 \cup K_2 \cup ...$ where - 1) the sets K_t are pairwise disjoint arcs in the plane whose diameters converge to zero. - 2) $L(X) = K_1 \cup K_2 \cup ...$ - 3) for each $i K_i \cap S \subseteq S \setminus L(S)$ and $K_i \cap S$ consists of the two endpoints of K_i , - 4) for each i there is a $k \in \{1, 2, ...\}$ and $\alpha_1, ..., \alpha_k \in \{0, 1, 2\}$ such that the endpoints of K_l are contained on one side of $T_{\alpha_1\alpha_2...\alpha_k}$ or on one side of T. It is clear that X is a Peano continuum. We shall prove that X is hereditarily locally connected. We proceed by contradiction. Suppose $A_1, A_2, ...$ is a sequence of pairwise disjoint continua in X such that $\lim A_1 = A$ where A is a non-degenerate 5 - Fundamenta Mathematicae XCVIII continuum which is disjoint from $A_1 \cup A_2 \cup ...$ Notice that $A \subset S$. We may suppose that each A, is an arc which meets both of the horizontal lines $y = \frac{1}{4}$ and $y = \frac{1}{4}$ We may also suppose that no proper subarc of A_i meets both of the horizontal lines $v = \frac{1}{4}$ and $v = \frac{1}{4}$. Then A is contained in the closed horizontal strip bounded by the lines $v = \frac{1}{4}$ and $v = \frac{1}{4}$ and A meets both the top and bottom components of the boundary of that strip. Thus, either $v_0 \in A$ or $v_1 \in A$. We may suppose without loss of generality that $v_0 \in A$. Then $A \subset T_{01}$ and for each i $$A_i \subset T_{01} \cup \bigcup \{K_j | K_j \cap T_{01} \neq \emptyset\}.$$ For each $i A_i$ is disjoint from the line segment $\overline{v_0 v_{01}}$ with endpoints v_0 and v_{01} otherwise A_i would separate A between v_0 and $A \cap v_{00}v_{01}$. By the minimality of the arcs A_i) it follows that $A \subset T_{010} \cup T_{011}$. Since A_i does not separate A between v_0 and $\overline{v_{00}v_{01}}$ $A_i \cap \overline{v_{010}v_{011}} = \emptyset$. Similarly $A_i \cap \overline{v_{010}v_{012}} = \emptyset$ for each i. Hence, $$A \subset T_{0111} \cup T_{0110} \cup T_{0100} \cup T_{0101}$$. In this way one can prove inductively that for each k = 1, 2, ... $$A \subset \bigcup T_{\alpha_1\alpha_2...\alpha_k}$$ where $\alpha_1, ..., \alpha_k \in \{0, 1\}$. Thus, $A = v_0 v_{00}$. This is a contradiction since each A_1 meets $v_0 v_{00}$ We have proved that X contains no continuum of convergence. By [11], V, 2.1 X is hereditarily locally connected. By a theorem of Gehman (see [5], p. 519) X is finitely Suslinian. By a slight extension of a theorem of F. Bernstein (see [3], p. 201) $S = Q_0 \cup Q_1 \cup ...$ where the Q_i are pairwise disjoint sets and each Q_i meets each Cantor set in S. Since L(S) is countable we may suppose $L(S) \subset Q_0$. The family $\{K_1, K_2, ...\}$ can be decomposed into infinitely many pairwise disjoint families $R_j'=\{K_{1j},\,K_{2j},\,\ldots\}$ such that $L(R_j\cup S)=R_j$ where $R_j=\bigcup\limits_{i=1}^{\infty}K_{ij}$ for j=1,2,... Since $R_j\cap S$ is countable we may suppose that $R_j\cap S\subset \mathcal{Q}_j$ for each j = 1, 2, ... Now Q_0 is connected since any set in $S \setminus Q_0 = S \setminus L(S)$ which separates S contains a Cantor set by [11], III, 9.4. Similarly $Q_i \cup R_i$ is connected for each i=1,2,...since any set in $$(S \cup R_i) \setminus (Q_i \cup R_i) \subset S \setminus Q_i \subset (S \cup R_i) \setminus L(S \cup R_i)$$ which separates the continuum $S \cup R_i$ contains a Cantor set. Finally we shall show that $Q_j \cup R_j$ is not rim compact for each j = 1, 2, ...Let a and b be two points of Q_j . Just suppose K is a compact set in $Q_j \cup R_j$ which separates a and b in $Q_j \cup R_j$. By a theorem of Mazurkiewicz (see [5], p. 244) we may suppose no proper subset of K separates a and b in $S \cup R_j$. There exists an irreducible compact set K^* in $K \cup (S \setminus Q_j)$ such that K^* separates a and b in $S \cup R_j$. Now $K^*\setminus K$ is topologically complete. Since $L(R_j\cup S)\subset R_j$ K^* has no isolated points by [11], III, 9.3. Since K is countable $K^*\setminus K$ has no isolated points. Thus, $K^*\setminus K\subset S\setminus Q_i$ contains a Cantor set. This is a contradiction since Q_j meets each Cantor set in S. We conclude that no compact subset of $R_j \cup Q_j$ separates a and b in $R_j \cup Q_j$ and so $R_i \cup Q_i$ is not rim compact. We have proved that X is a finitely Suslinian continuum which can be decomposed into the pairwise disjoint connected sets $Q_0, Q_1 \cup R_1, Q_2 \cup R_2, ...$ Each of the sets Q_i is dense in S. For each j = 1, 2, ... the set $Q_j \cup R_j$ is not rim compact. Remark. T. Nishuira has pointed out that by modifying slightly the argument in the above example X can be decomposed into countably many large disjoint connected sets no one of which is rim compact. ## References - [1] R. Duda, On a singular plane continuum, Fund. Math. 57 (1965), pp. 25-61. - [2] J. Grispolakis, A. Lelek and E. D. Tymchatyn, Connected subsets of finitely Suslinian continua, Colloq. Math. 35 (1976), pp. 209-222, - [3] F. Hausdorff, Set Theory, New York 1962. - [4] K. Kuratowski, Topology, Vol. I, New York-London-Warszawa 1966. - [5] Topology, Vol. II, New York-London-Warszawa 1968. - [6] A. Lelek, On the topology of curves II, Fund. Math. 70 (1971), pp. 131-138. - [7] T. Nishuira and E. D. Tymchatyn, Hereditarily locally connected spaces, Houston J. Math. 2 (1976), pp. 581-599. - [8] E. D. Tymchatyn, Continua whose connected subsets are arcwise connected, Collog. Math. 24 (1971/72), pp. 169-174, - Continua in which all connected subsets are arcwise connected, Trans. Amer. Math. Soc. 205 (1975), pp. 317-331. - [10] Characterizations of continua in which connected subsets are arcwise connected, Trans. Amer. Math. Soc. 222 (1976), pp. 377-388. - [11] G. T. Whyburn, Analytic Topology, AMS Colloq. Pub., vol. 28, New York 1942. UNIVERSITY OF SASKATCHEWAY Saskatoon, Canada Accepté par la Rédaction 24. 9. 1975