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On finitely Suslinian continua
by

E. D. Tymchatyn* (Saskatoon, Sask.)

Abstract, This paper is concerned with the problem of finding in an arbitrary ﬁnitely Suslinian
continuum that is not regular a canonical subcontinuum that is not regular. The problem is solved
for the case of planar finitely Suslinian continua. The planar regular curves are characterized as
those planar curves in which every sequence of pairwise disjoint connected sets forms a null sequence.

§ 1. Preliminaries. In a 1965 paper in Fundamenta Mathematicae R. Duda
gave an example of a finitely Suslinian continirum that can be decomposed into the
union of infinitely many, connected, mutually disjoint, dense subsets. In Section 2 of
this paper we give a very simple such example.

In Section 3 we prove that if X is a finitely Suslinian continuum which is not
regular then X contains a fairly simple subcontinuum at each of whose points X fails
to be regular, A special case of this theorem was proved in [9] (see the proof of
Theorem 6 in [91), If X is planar we show that X contains a very mice subcontinuum
which is also not regular. We use this to prove that a planar continuum is regular if
and only if every sequence of pairwise disjoint connected sets in it is a null-sequence.
This gives a partial solution to a problem that was stated in [2]. Finally, in Section 4
we give an example of a connected set which is not rim-compact but which can be
embedded in a plane finitely Suslinian continuum. This complements 2 result in [7]
Corollary 4.5.

Our notation will follow Whyburn [11]. A continuum is a non-degenerate,
compact, connected, metric space. A continuum is said to be

(i) hereditarily locally connected if each of its subcontinua is locally connected.

(i) finitely Suslinian it each sequence of pairwise disjoint subcontinua forms
a null sequence, i.e., the diameters of the subcontinua in the sequence converge to
zero. ‘
(iif) regular i it has a basis of open sets with finite boundaries.

It is known that (if)=(ii)==(). The reader may consult [11] Chapter V for
a discussion of hereditarily locally connected continua.

* This research was supported in part by National Research Council Canada grant A5616.
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A point p of a continuum X is said to be a local cutpoint of X'if there is a con-
pected open set U in X such that UN{x} is not connected. The set of local
cutpoints of X is denoted by L{X).

We denote the closure of a set A by CL(4). By a neighborhood we always mean
open neighborhood. The boundary of a set U is denoted by Bd(U).

Let X be a continuum and let x, y € X. A closed set M in X" which contains x
and y is said to have property P(x; ) if no finite set separates x and y in any neigh-
borhood of M.

I wish to thank Professor A. Lelek for several very helpful discussions.

§2. Two examples. The following two examples are prototypes of the objects
" that are discussed in the next section. The first example is of a finitely Suslinian plane
continuum that can be decomposed into infinitely many, connected, mutually disjoint
sets of diameter equal to one. It is homeomorphic to a subset of the continuum de-
scribed in [5], p. 284.

Exampie 1. Let X = [0,1]u 4; U 4, U ... where [0, 1] denotes the line
segment from (0, 0) to (1, 0) in the plane. Ay, is the semi-circle in the upper half-
plane with center (1, 0) and radius }. The sets 4y, 4, ... are defined inductively to
be pairwise disjoint sets such that 4; = 4, and for i>1

Ai = Aii vy AUJ.

where the 4, are pairwise digjoint semicircles. The endpoints of Ay, are (ay,0)
and (b, 0) where a;<b;<a;+1/i and

a,-lsl,:li <@ <by <a3<bp<..<ay<b; - <1- i%i <by,.

Then X is a continuum since it is obtained by attaching a null sequence of arcs
to the fixed arc [0, 1]. It is clear that X contains no continuum of convergence so X is
hereditarily locally connected by [11], V. 2.1. By a theorem of Gehman ([5], p. 519)
X is finitely Suslinian since it is planar,

The sequence & = {4, 4,,..} can be decomposed into infinitely many
pairwise disjoint sequences %, 8B,, ... where %, = {d,, 45,, ...} where 4, # 4,,
it '(j,i) # (k, 7). For each i let X; = [0, 1]U 4;, U dy, U ... It F={f,...N}
is a finite set in XN{(0,0), (1,0)} let k, be an integer so large that
Fndy, =0, A, B, and

1/k;<min{distance(f,, /)| p, g€ {1, ..., r} and p % ¢} .

Then it is easy to see that ([0, 1] U 4, )\F is connected between (0, 0) and (1,0).
Hence no finite set separates (0, 0) from (1, 0) in X; and X, is not regular. Also,
L(Xl) = Al( v AZ: U..

By a slight extension of a theorem of F. Bernstein (see [3], p. 201)
[0,1]1= Q; U 0, U ... where the Q, are pairwise disjoint sets and each Q, meets
each Cantor set in [0,1}. We may suppose since (4;, U A, U ..) A [0,1] is
countable that (4,,u 4,, U ..) " [0, 1]c Q, for each i,
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For each i P; = @,V Ay, U 45, U ... is connected by [11], IT1. 9.4 since X;\P,
contains no points of L(X;) and no perfect set, The sets Py, P,, ... are pairwise disjoint
by construction. Tt is clear that CI(P;) = X, so the diameter of each P, is 1. Further-
more, X = Py U Py U ..

Note that if ¢ = (0,0) and b = (L, 0) then [0, 1] is a continuum in X which is
irreducible with respect to having P(a, b).

Our next cxample is a finitely Suslinian plane continuum which. can be de-
composed into infinitely many, pairwise disjoint, connected, dense sets.

ExaMmpLe 2. Let X be as in Example 1. Set x~y in X if any only if x =y
or %,y € Ay, where i is a positive integer and A, =4,. Then ~ is an equivalence
relation since the sets 4,) are pairwise disjoint. The equivalence classes of ~ are
points and arcs. By Lemma 2.3 in [10] ~ is upper semi-continuous and X/~ is
a continuum. Tt is well-known (and easy to check) that the monotone image of a fini-
tely Suslinian continuum. is finitely Suslinian. Hence X/~ is finitely Svslinian. By
Moore’s theorem on upper semi-continuous decompositions of the 2-sphere
(see [11], IX, 21", p. 171) X/~ is also planar, If 7: X X/~ is the natural projection
then 7(Py), ©(Py), ... are pairwise disjoint, dense, connected sets in X/~.

Note that if ¢ = 7(0,0) and b = n(l, 0) X/~ is irreducible with respect to
having P(a, b).

§ 3. The main results, Parts of Theorems 1 and 2 were first proved in [9]
Theorem 6 for X a finitely Suslinian continuum each subcontinwum of which has -
a free arc. The ideas in the proofs that are given here are similar to those that appear
in [9] but the arguments that are given here are somewhat simpler and also more
complete,

TrreoreM 1. Let X be a finitely Suslinian contimium and let a,be X. If X has
P(a, b) then ' .

(i) There is a subcontinuum P, in X which is minimal with respect to having
P(a, b). .

(i) Py N L(X) is at most. countable,

(i) If x P, then there is a unique subcontinuum P, (resp. Py} in Pay which
is minimal with respect to having P(a, x) (resp. P(b, x)).

(V) If x,y &Py und x # v then elther Py GPyy 08 PoyG Py

) If o (resp. @) is the closure of {Py,| % & Py} (resp. {Ppl % eP,)) in the
yperspace of subcontinua of P then there are homeomorphisms h: [0, 11— and
g: [0, 114 such that for 0<p<g<l

W) = {ay=h(p)=h(@=h() = Pa .,
g = {P}=g@=g(P)=g(0) = Pap

such that if h(r) = Py for some x € PuNL(X) then g(r) = Pyx.
i) If x e h(r) and P, = h(s) then s<r.
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(vii) There is a continuous selection f: [0, 11=P,, for h such that if h(r) =P,
then f(r) = x. If x € Pu,NL(X) then f~'(x) is a singleton. .

(i) I xe (B 0 g(ONL(X) then h(r) =P, and g(r) = P,.. Hence
(B 0 g(MINL(X) contains at most one point. :

(ix) I 4,) is a sequence of disjoint (passibly degenerate) continua in X\{f ()}
such that for each i A,y h(r) # & and A; 0 g(r) # D and if for each i r;e[0,1]
such that f{(r) € A, then limr; = r.

(X) If r<s in [0, 1] then h(r) U g(s) # Py and h(r) 0 g (5) is a finite set which iy
contained in L(X). For re[0,1] A(r) U g(r) = Py.

(xi) If r,) is a sequence which is increasing to v in [0, 11and U is a neighborhood
of f(r) then there exists an integer i such that h(r)<h(r) v U. In particular

h(r) = (Li) h(rd) v {f ()}

(xil) If r<s in [0,1] then f([r, s]) has P(x,y) for all x,yef([r, s]).

Proof. Parts of this theorem were proved in Theorem 6 Claims 1-8 of [9] for
the special case in which éach subcontinuum of X contains a free arc. The basic idea
of the proof is the same as that given in [9].

Since the property P(a, b) is inducible (see [11], p. 17) it follows by the Brouwer
Reduction Theorem that X contains a closed set P, which is minimal with respect
to having P(a, b). It is easy to see that P, is a continuum. By Whyburn. [11]; IIL, 9.2

Py 0 L(X) is at most countable. We have proved (i) and (ii).

L If ¢,deP, then P, has P(c, d).

Just suppose U is a neighborhood of P, and A is a finite set such that
UNA = U, v U, where U; and U, are disjoint open sets, ¢ e Uy and de U,. Let
K =P;nCl(Uy) and let L = P, " Cl(U,). Then Py = KU L It a,be kK (resp.
a, b e L) there exists a neighborhood ¥ (resp. W) of K (resp. L) and a finite set B
(resp. C) such that B (resp. C) separates a and b in ¥ (resp. W) by the minimality
of Py If at least one of ¢ and b is not in K (resp. L) let V = U (resp. W = U) and
let B=@ (resp. C=0). Then (4 U BuU C)\{a,b} separates a and b in
(Vv W) 0 U. This is a contradiction since (¥ U W) o Us a neighborhood of Py,

IL If xe P, and U is a meighborhood of x such that & ¢ Cl(U) then there
exists ¢e Bd(U) such that P,,\U has P(b, o).

Just suppose that for each ce Bd(U) there is a neighborhood ¥, of P,\U and
a finite set A, such that ¥,\4, = U, U W, where U, and W, are disjoint open scts,
ce U and b e W, Since Bd(U) is compact there exists a finite set {e10 s 0} =BA(D)
such that BA(U)cU, v .. L U,,.

Lt V=V, ,n.n¥,, d=4,0..u Apy R= (U 0o 0 U )N Vand
S=W,n..0W,. Then V is a neighborhood of PyN\NU, Bd(U)<R, beSf,
and R and § are disjoint open sets. Since Bd(U)cR and R is disjoint from S,
S\U = S\CI(U) is an open set. Now (¥ u UN4e(U U R) u (S\U). The sets
Uu Rand S\U are disjoint open sets, x e U U R and be S\U. Thus, A4 is a finite
set which separates x and b in the neighborhood ¥ U U of Py, This contradicts I,

i
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T If x € PyNL(X) and P and Q are closed sets in Py, such that P has P(a, x)
and Q has P(b, x), respectively, then Pu Q = Py,

Let U be a neighborhood of P U Q. Just suppose some finite set separates U
petween ¢ and b. Let 4 be an irreducible finite set which separates U between a

“and b. By [11], TIT, 9.3 x ¢ A. Since P has P(a, x) x and @ lie in the same component

of UNA. Since @ has P(h, x) x and b lie in the same component of UNA. Thus, aand b
lic in the same component of UNA. This is a contradiction. We have proved that
Pu Q has P(a, b). By the minimality of P, PU Q = Py, :

IV. It b)) is a seguence in Py, which converges to b and for each i P, is a con-
tinuum in P, which has P(a, b)) then limP, = P,

Notice that limsupP; is a continuum in P, which has P(a, ). By the mini-
mality of P, limsup P, = P,

V. 1T 4 and B are continua in P, such that 4 has P(a, x) for each x e 4 and B
has P(b, y) for cach y & B and if 4)) is a sequence of disjoint (possibly degenerate)
continua in X such that foreachid N4, # Fand Bn A, + Sthen A U B = P,.

Let U be a neighborhood of 4 U B and let F be a finite set in U\{a, b}. Since X'
is finitely Suslinian the A;) form a null sequence. Hence, almost all of the 4, are
contained in U. Let { be a natural number so large that 4,cU and 4, F = @,
Let xe A, A and let y e 4; n B, Since A has P(a, x) @ and x lie in the same com-
ponent of UNF. Similarly b and y lie in the same component of UNF. Since 4, is
a continuum in UNJF which contains x and y, a and b lie in the same component
of UNF. We have proved that 4 U B has P(a, b). By the minimality of P,
AU B =P,

VI It x &P, N{b} then there cxists a subcontinuum of P,N\{b} which has
P(a, x).

"Let x € P,\{b} and suppose no subcontinuum of P\{b} has P(a, x). Let ¥ be
a neighborhood of x in P, such that b ¢ Cl(V) and Bd(F)cX\L(X). For each
natural number 7 let U, be a neighborhood of b in P, such that Cl(U)) is disjoint
from CI(V), the diameter of U, is less than 1/i and Bd(U)<=X\L(X).

By 11 there exists for cach I &, e Bd(U)) such that Pyu\U; has P(a, b;). For
each i let P, be a continuum in P,\U; which is minimal with respect to having
P(a, b). Then limP, = P, by IV, We may suppose, therefore, that for each i
PyA Vs @, 8ince x ¢ Py by T and by e XNL(X) it follows from III that PNV does
not have P(b, b;). Since the sequence bj) converges to b it follows that for each
i=1,2,.. there exists N, such that 2N, implies P,\V does not have P(by, by).
We may ‘su])jpom without loss of generality that the sequence b;)-was chosen in such
away that { # f implies P4\V does not have P(b;, b;). By IX there exists for each i
x e BA(V) such that PNV ePy\V has P(b;; x)).

There is a neighborhood W, of PyN\V and an irreducible finite set A, such
that 4, separates b, from each of b, by, by, ... in Wy. (It is possible to find one
finite set 4, which separales each of these points from &, because limb; = b.)
By [11], I1I, 9.3 4, =L(X). Let B, be an arc in W,\d, with endpoints x; and b;.
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Similarly, there exists a neighborhood W= W; of P,,\F and an irreducible finite
set A, such that 4, separates b, from each of b, by, by, ... in W,. Let B, be an arc
in W,\(4; U 4,) with endpoints x, and b,. Then By N B, = . In this way we
construct inductively a sequence B;) of pairwise disjoint arcs where B; has endpoints x,
and b,. This sequence is not null since & ¢ C1(¥7). This contradicts the assumption
that X is finitely Suslinian.

VIL For each x e P, there exists a unique subcontinuum P, (resp. Py,) of P,
" which is minimal with respect to having P(a, x) (zesp. P(b, x)). It x,ye P, then
either P,,cP,, Or Poy <Py, .

Suppose A and B are subcontinua of P, such that 4 (resp. B) is minimal with
respect to having P{a,x) (resp. P(a,)) and such that A¢B and Bd=d. Let
peAN(B U L(X)) and let g € B\(4 U L(X)). By I 4 has P(a, p) and B has P(a, g).
Let C be a continuum in P, which is minimal with respect to having P(b, p). By III
AU C =P, s0 ge C. By VI there exists a continuum D C\{p} such that D has
P(b,q). By Ill Dy B = P, This is a contradiction since D U BaPy\{p}. Since
the points x and y are not necessarily distinct VII is proved.

We have proved (iii) and (iv).

VIII. & is an arc and if ze Ce o/ then P,,cC.

Inclusion is a partial ordering with closed graph on the hyperspace of subcon-
tinua of X By VII & is the closure of a set of continua totally ordered under in-
clusion so & is itself totally ordered under inclusion.

Let ze Ce o and suppose P,,¢:C. Let g € P,,\C. Since & is totally ordered
by inclusion and P,¢C we have by VI CcP,=P,\{z} which is a contra-
diction, )

- Since & is totally ordered under inclusion and compact we need only show
that &/ is connected to prove that &/ is an arc. To prove that & is connected it
suffices to prove that if C, D e o with C& D then there exists E e o with CGEg D.

Since Cg D there exist two points y, ze D\NC. By VII either P,,&P,,<D
orP,, GP,,<D. Suppose Py & P,,. Then P, & D. Since y ¢ Cand & is totally ordered
by inclusion C¢P,,.

IX. If z& P, then (P,, N Pyp)NL(X) < {z}. )
Let we(P,, 0 Py). T w # z then by VI P,,cP,Nz} and Py, =Pz}
Since P,, U Py, # P, weL(X) by IIL

X I x,yePyNL(X) and y ¢P,, then PG luyy Py Pyy, Pry Pyy o Py
and P, N Py, is a finite subset of L(X).

By VI Poy < Pyy. By VI PPy \{p}. Let 2. PyN(Poy W L(X) L {}). By VII
and VI P, =P, \{z} and P,, =P, \{y}. By Il P,, U Py, = P,,. Hence, y € P,,. By VI
Py Py \{z}. Thus z ¢ P,y U Py, and P U Py, 5 Py, By Tand T P, A Py, e L(X).
By V P, 0 Py, is finite, .

The existence of the homeomorphism 4 of [0, 1] onto & is guaranteed by VIIL
It also follows from VIII that (vi) holds. The existence of the h omeomorphism g of
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[0, 1] onto & satisfying the condition that if () = P,, where x e PyNL(X) then
g(r) = Py, follows from X and the fact that {P,.| x € PLNL(X)} is dense in o,
XL 1f x;) is a sequence in Py, such that the sequence P,y converges in o
then x,) converges in P.
Just suppose that x;) and y,) are sequences in P,, which converge to the points x -

« and y respectively and the sequences P,,,) and P,,) both converge to C e o. By IV we

may suppose that for each i x;, y;€ PyN\L(X) and x; # x; and y, # y; for i # j.
Since the sets P, for X & P, are nested we may assume that one of the following
three cases holds:

(1) for each 1 Py &Py, and Py Py, .,
2) for cach i PuyoPoy,, and Py =Py,
(3) for each i Py &Py, and PyoPy, .
Let us suppose first that case (1) holds, If for each i and j P,,, = P,, then C = P,,

axy
and the sequence y,) is a constant sequence. This is a contradiction. We suppose,
therefore, that for each [ P <Py, <Py, ‘

For cach #==1,2,.. and each j=0,1,..,i~1 P, has P(g,x;,_;) and
P(%y_y, ¥i-j-1)- For cach f,i=1,2,.. Py, has P(y;.y, b) and P(yi4, Xpppae)
By X P, U Py, does not have P(x;, y)) since it does not have P(a, b).

There exists & neighborhood Wy of P, U Py, and an irreducible finite set 4
such that 4, separates x, and y, in Wy, By [11], 11T, 9.3 4, <L(X). Let B, be an
arc in Wy\d, with endpoints x; and y,. For each i = 1,2, ... let P, , ,,, bea con-
tinuum in Py, which is minimal with respect to having P(x342, ¥2;). There exists
a neighborhood W, Wy of Py,,, U Py, <Py, and an irreducible finite set 4, <L (X)
such that A, separaties x, and y, in Wy, Let B, be an arc in Wy\(4; U 4,) with
endpoints x; and y;. Then B, n B, = @. .

Inductively, there exists for each n=2,3,4,.. a neighborhood
Wy e Wy © oo W 0f Pryyar 2 I Py &Py, ., and anirreducible finite set 4, = L(X)
which is minimal with respect to separating x,, and y,, in W,. Also, there exists
an arc B, W,\(dy W ... U 4,) with endpoints x,-; and yay-,. The arcs B,) form
a nen~null sequence of pairwise disjoint continua in X. This contradicts the assump-
tion that X is finitely Suslinian,

It Case (2) holds then a similar argument leads to a contradiction.

1t Case (3) holds let U be a neighborhood of x in Py, such. that Bd(U)e P \NL(X)
and y & CI(U). For each 1 and J Py, &P,y For each ilet Py, be a continuum in Py,
such that Py, is minimal with respect to having P(x;, y). Since the sequence x;)
converges Lo x we may suppose x, e Ufor each i. Since the sequence y;) converges
10 y we may suppose y, ¢ U for each i, For each i let z; € Pyy, 0 Bd(U). By X
Pr @ Py Py, hence HImP,,, = limP,y, = limP,, = C. )

If for some subsequence 2;,) of 2) Posy FPan,, for cach j then Case (1) applies
for the sequences ;) and z;). It for some subsequence z,,) of z)) P,,,,JPaz?ﬂm fO.r
each j then Case (2) applies for the sequences z;) and ). I the sequence z;) is
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eventually constant then C = P,, for some z € P,;. Let w)) be a sequence in PNz}
which converges to z. By IV limP,,, = P,, = C. We can now apply Case (1) for the
sequences w;) and x;).

The existence of the continuous selection f for & follows from XI,

XIL. If r;) is a sequence which is increasing to r in [0, 1] and if U is a neigh-
borhood of f(r) then there exists a matural number i such that A()<h(r) u U,
In particular A(r) = (U h(r)) v {f (D}

Tust suppose that for each i x;€ A(IN(U U h(r)). Lot s,€[0, 1] such that
h(s) = P, By (vi) s,<r. Since x;¢h(r) we have r<s; by (v). Hence
lims; = limr; = r. Since f is continuous lim f'(s;) = f(r). This is a contradiction
since for each i f(s;) = x; ¢ U.

XIII. For ref0,1] A(r) U g(r) = P,

By II this is true for a dense set in [0, 1], namely for {r & [0, 11|/ () & P,\L(X)}.
Since & and g are continuous it is true for all re [0, 1].

XIV. If x e (h(¥) n g(INL(X) then A(r) = P, and g(r) = Py,.

Let s& [0, 1] such that i(s) = P,,. By (vi) s<r. Similarly, r<s. Hence, r = g
and f~(x) is a singleton.

XV. If r<sin [0, 1] then A(r) U g(s) # P, and h(¥) N g(s) is a finite set which
is contained in L(X).

Let ze[0, 1] such that r<t<s and f(2) ¢L(X). Then £ ¢h(r) v g(s) so
h(r) ©w g(s) # Pgy. By IIL A(r) N g()cL(X). By V 2(r) n g(s) is at most finite.

XVL Ifre 0, 1] and 4,) is a sequence of pairwise disjoint (possible degenerate)
continua such that each 4; meets both A(r) and g(r) and if for each i r, € [0, 1] such
that f(r;) € 4, then limr; = r.

If for each i r;<s<r then A(s) U g(r) = Py by V. By XV 5 = r.

XVIL It r<s in [0,1] then f(Ir, s]) has P(x;y) for all x,yef(r,s).

Notice that £([0, s]) = A(s) for s € [0, 1]. By VIII the above statement is true for
r=0and se[0, 1]. If r>0 and £ (r) € P,NL(X) then £([r, sT) plays the same role
in g(r, 1) = Py that £([0, sI) plays in P,,. Thus, the above statement is true for
{rel0, 1] ¥ () ¢ LN} and for all se (o0, 1]. Since XVII is true for a dense set
of r and s it is easy to see that it is true for all r,sel0,1%

This completes the proof of Theorem 1.

Let X be a finitely Suslinian continuum and let @, b € X such that X has P (a, b).
Let P, and f be as in Theorem 1. If s& [0, 1] and e>0 then a sct 4 is called an
e-bridge over s if A= S(1(s), e]N{f ()} is a (possibly degenerate) continuum which
is irreducible with respect to meeting both h(s) and-g(s). It follows that cither 4 is
a point of A()Ng(s) or 4 is an arc with one endpoint in h(s), the other
endpoint in g(s) and with no other points in Py The bridge 4 is said to have
ends x and y in [0, 1] if {f()} = {F()} = 4 or if 4 is an arc with endpoints
7 an)df (). (Note that the ends of 4 need not be unique since f need not be one
to one. .
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It x<y in [0, ] the family of bridges {A, ..., 4,} is said to be interlaced from x
to y if for each i =1, ..,k there exists ends x,, y, of 4, such that

e, Pl ) U (g, y2) U U (xka‘“yk).

The family of bridges {4, ..., A} is said to be irreducibly interlaced from x to y if
no proper subfamily is interlaced from x to y.

THEOREM 2. Let X be u finitely Suslinian continuum that is not regular. Let a, b e X'
such that no finite set separates a and b in X. Let P,y be a contimuum in' X which is
irreducible with respect 1o having P(a, b). Let f: [0, 1]-P,, be as in Theorem 1. Then
there exists a continuum Y in X such that :

(l) Y = 'Pub W 'Bl W -BZ Yoy

(2) Jor each positive integer 1 By is the union of a finite family of 1/i-bridges that
is irreducibly interluced between 1/i and 1-1/i,

() B, B, =B for i # ],

@ L(Ne(LX)NPy)uB uB,U..

Proof. Let Py, f, g, and h be as in Theorem 1, Let 0<r<1 and let 6>0 be
given. A bridge 4 over r is said to be avoiduble if for each ¢ such that 0<s<1 there
exists 60 such that each §-bridge B over s is disjoint from 4. We prove first that
there is an avoidable ¢-bridge over r.

Since f is continuous there- exist p, ¢e[0,1] such that p<r<g and
FUp, g =S(F (), ¢). By (xii) of Theorem 1 there is an s-bridge C over ». If C is
a point then C'is an avoidable bridge. We may suppose, therefore, that S( £ (1), &) A
ng() nh(H{f ()} and C is an arc. For each n>0 let C, be the component of
(S(Pyy, m) U CINP,, Which meets C. It follows easily from the fact that X is finitely
Suslinian that lir% CI(Cy) = C. Let p>0 such that CHCY=S(F @), eN{F (M}

.

Let D = C,. Let M = CI(D) n i(r) and let N = CI(D) ng(¥). If M (resp. N)
has an isolated point let ¢ (resp. d) be in [0, 1] such that £(¢) (resp. £ (d)) is an isolated
point of M (resp. N). I M (resp. N) has no isolated points let

¢ = inf{se[0, 1]] CL(D) N h(s) is uncountable}

(resp. d = sup{s &[0, 1]| CI(D) m g(s) is uncountable}). In this case A(c) N Cl(D)
(resp. g (d) ~ CI(D)) is at most countable, ‘

I8 £ () (resp. f(d)) is not an isolated point of M (resp. N) let @) (resp. b)) be
a sequence in [, 1] Cresp. in [0, d]) which is strictly decreasing to ¢ (resp. strictly
incrensing to d) such that for each & f (@) € MN{f ()} resp. £ (b) e NN{F(@)).
Since D is an open, conneeted subsct of the finitely Suslinian continuum CL(D),
Dis arcwise connected, By [10] Corollary 2.2 every subset of CI(D) which contains D
is arcwise connected. For each % = 1,2, .. let p, e D (resp. q; € D) such that there
s an arc T} in D w {f(a)} from p, to f(a,) (resp. an arc Sy in D U {f(5)}
from g, to £ (b)) such that T} (resp. S;) has diameter less than 1/k. .
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By [11], V, 2.7 D has property § (see [11], p. 20). F9r each j = 1,2, ... let
{¥j1s - Vye,} be a finite cover of D by connected sets of dl.ameter <1/j which are
open in D. We may suppose that for each j the sequence p,) is eventually in ¥, and
the sequence g,) is eventually in ¥;,. We may also suppose that for each
kyj=132, ... pyss€ Vi and Gy ;€ Vi, For each k let Py (resp. Q) be an arcin ¥,

0
(tesp. Vi) with endpoints p; and Prs (resp. g; and g4 q). Lot P = kL~)1P,, and. let

0= t} Q. Then P U {f(c)} and Qu {f(d)} are continua in D u {f(c)} and
k=1

D U {f(d)} respectively. e

Let E be an arc in D v {f(¢),f(d)} with endpoints f(c) and f(d) such that
if £ () (resp. f(d)) is not an isolated point of M (resp. N) then some neighborhood in E
of f(c) (tesp. f(d)) is contained in P (resp. Q). Then E is clearly an e-bridge over r,
It remains to prove that E is avoidable.

Let s € [0, 1] such that f(s) € £. Without loss of generality we may suppose
S8 = f(c). Since

S(f®, &) ng) nh(D={f ()},
‘We may suppose without loss of generality that there exists #>0 such that
h(s) 0 g() N S(F ), mMe{f )}

For each natural number 7 such that i>1/n let F, be a 1/i-bridge over s with ends y,
and v;. By Theorem 1 (ix), we may suppose [v;~u,|<1/i. We may suppose the F;)
are pairwise disjoint. By Theorem 1 (ix) limu; = s so im /' (u) = f(s). ¥ F, N E % @
then f'(u;) € M. Since f is continuous lim f'(u;) = f(s) = f(¢). I f(c) is an isolated
point of M then it follows that for all sufficiently large j F; N E = @. Let us suppose,
therefore, that M has no isolated points. Just suppose that for some subsequence F),)
of F;) F;, 0 E # @ for each m. For each m f (u;,) e M. By the choice of ¢ and by the
assumption that M is perfect, each neighborhood of f(u;,) contains uncountably
many points of g(c). Since g(c) is compact f(u;,) e g(c). X s<c then g(c)=g ()
and so

S<r.

f,)e () 0 gs) 0 S(fE), NN}

which is a contradiction. If ¢<s then there exists a sequence of pairwise disjoint
ares K)in P u U Fy, v U T such that for each i K, has endpoints f(ay,) and f(v;)
for some integers k; and J;. It follows by V of the proof of Theorem 1 that for cach i
h(a) v g(s) has P(a,b). Since lima, = ¢ h(c)u g(s) has P(a,b) contrary to
Theorem 1 (x). This completes the proof that ¥ is an avoidable e-bridge over r.

Let By = By be an avoidable 1-bridge over %. Let 1 be o natural number.
Suppose By, ..., B,_; have been defined and satisty conditions (2) and (3) of the
theorem.

Foreach xe[l/n,1-1/n]let E, be a | [n-bridge over x-which is avoidable and
disjoint from By U ... U B,-,. This is possible since By u..UB,_ is a compact

e ©
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set which meets P, in a finite set and each of the bridges in B, ..., B, 1 is avoidable.
For each x let a, and b, be ends of E, such that a,<x<b, and such that by~a,
is as large as possible. By Theorem 1 (ix) we may suppose b,—a,<1/n. The set of
open intervals {(a, by)| x €[1/n, 1~1/n]} is an open cover for the closed interval
[1/n, L—1/n] hence it has a finite subcover. A family of 1/n-bridges associated
with this finite open cover is interlaced from 1/n to 1—1/n. It contains a sub-
family By, oor By, Which is irreducibly interlaced from 1/m to 1—1 /n. Let
B, = B,y v .. W B, By induction Y is defined.

Let z € Py such that z ¢ L(X) and z¢ B, for any i. By Theorem 1 (vii) f~1(z)
is a singleton. 1f ¢, d e [0, 1] such that ¢<f~*(2)<d then f ([c, d])\{z} has at most
two components. 1T /' ([e, d])\{z} has two components they are f(lc,2)) and
7 (G d]). Tt is now easy to see that z ¢ L{Y) so ¥ satisfies condition (4),

Lemma 3. Let X, f, g, h and Py, be as in Theorem 1. If p<q in [0, 1] and
%,y e Pa\(B(p) W g (&) then for each neighborhood U of f([p, q)) and each finite
set F of X\{x, y} there is an arc in UN(h(p) U g(g) © F} with endpoints x and y.

Proof. Just suppose there exists a neighborhood U of 7 ([p, g]) and a finite set F
such that ‘

UN(h(p) v g(g) w F) = AU B

where A is separated from B and xed and yeB. Since 4 and B are open
sets we may suppose by Theorem 1 (i) that x,y e PyN\L(X). By Theorem - 1 (vii)
F<f (). Let

o = sup{te [f71(x),/" O] f(Hed}.

Then f~*(x)<w<f~'(). Let x,) be a sequence strictly increasing to o such that for
each i f(x) e AN{f(w)}. By Theorem 1(ix) (2(p) U g(@) v F)nf(p,q) is at
most countable so there is a sequence y,) which is strictly decreasing to w such that
for each i f(y) & B\{f (w)}, :

Let G; be an arc in XN\{f(w)} withendpoints f(x,) and f(y,). Since
lim f([x;, »)]) = {f(w)} there is an integer i, such that G, N f([x,,y.,]) = @.
By Theorem 1 (xif) there is an arc G, in X\(Gy W {f(®)}) with endpoints 7 (x,)
and £ (y,,). Inductively there is a sequence G)) of pairwise disjoint arcs such that G; has
endpoints f'(x;)) and £(y)). I infinitely many of the G; meet h(p) then h(p). u_’g(co)
has P(a, b) by V of the proof of "Theorem 1, This contradicts Theorem 1 (x). S}mtlarly,
if infinitely many of the () meet g(q) then 2(w) W g(¢) has P, b) whicl_l is a con-
tradietion. Since A(p) W g(g) W F separates £ (x;) from f(y;) and F is finite at least
one of these two cases must hold, The lemma is proved.

If Cis & subset of a topological space we let C = C, the derived set of C.
It a is an ordinal we let C**") = (C®)%1f 4 is a limit ordinal we let C% = ) C.

a<i
The set C® is called the ath derived set of C (see [4], p. 261).
LuMMa 4. Let X be « finitely Suslinian continuum and let a, be X such that no
finite subset of X separates a and b, Let P, and f be as in Theorem 1 and let Y be as in

’
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Theorem 2. Suppose CcY and x € [0, 1] such that f(x) is an isoluted point of C.
ij is planar or if f is.at most countable to ome then there exists a neighborhood U
‘of xin [0, 1] such that f (U\C is contained in one component of Y\C.

Proof. Suppose first that X is planar, Let y =inff™'(f(x)) and Iet
z=supf }(f(®). If y =z let U be any open interval in [0, 1] such that xe U/
and such that £ (U) n C = { f(x)}. By the construction of Y f(U\C is contained

in one component of ¥Y\C. Let us suppose, therefore, that y<z. By Theorem 1(x)

h(y) N g(7) is finite. We may assume X is embedded in the plane in such a way that
[0, 11x {0} =A(y) and [1, 2] x {0} =g (2). It follows that f () = f (x) = (L, 0) = f(z).
Let U be an open interval about x in [0, 1] such that f(U) n C = { £ (x)} and the
diameter of £ (U) is less than 4. Let Uy, Uy, ... be the components of U\f~*( S (x).
For each i let p; and g; be the endpoints of U,. Supposc for each i p,<q,, Let
‘r,8€ UNfTY(C) such that r<gs. Suppose re Uy. If se Uy then f(r) and f'(s) lie in
the same component of ¥N\C. Let us suppose, therefore, that se U,.

Let # be a natural number such that f(x) ¢ B, and 1/n<min{g, —p,, g,~ D2}
Suppose B, = A; U ... U 4,, where cach 4; is a 1/n-bridge with ends a;<b,. By
the way B, was chosen in the proof of Theorem 2 b;—a;<1/n for j =1, .., k,
Letje{l,..,k,} be the largest integer such that ;e U, and let & be the smallest
integer in {1, ..., k,} such that b, e U,. By the proof of Theorem 2 j<k. We wish
to show that .

k
Ui v U{fWU) U,n{a,b} # & for some iefj, .., k}}
=

is connected. This is clear if k = J. We shall show that
4,0 4530 U{fWU) U, n{a,,b,} # @ for some re {j,j+1}}

- Is connected. The rest of the argument will be similar and we shall leave it to the
reader. ‘
Let U; be the component of UNf™Y(C) such that bye Uy Just suppose
J@+1) ¢1 (Us). We may suppose without loss of generality that a;.., € Uy, Then
94<ps. By Theorem 1 (%) f ([a;1.1, g4]) N f ([4;, g,]) is finite. Thus, there exist atcs C,
in f(la;, ¢,]) and Cy=f([a)4 1, qa]) such that C, A Cy = {f(x)}. Suppose Uy is
the component of UN\f~Y(C) such that bjiq € Us. We shall assume Uy # U, since
otherwise there is nothing to prove. As above (here exist arcs Csf (b, 5]
~and Cy=f ([a44, ¢5]) such that C, A C, = {f ()} for t,5e{1,3,4,5} and ¢ # s,
We may suppose since (1,0)ef(U), f(U)&[0,2]x {0} and the diameter

of f(U)<% that £ (U) meets the open upper half-plane. By Lemma 3 SU) is con-
tained in the closed upper half-plane. We wish to show that there is a homeomor-
phism of the plane onto itself which carries [0, 2]x {0} by the identity onto itself and
which carries Cy into, the ray with parametric equation @ = 4 and carcies C, into
the ray with parametric equation 0 = 4m, If the above is not true then there cxists
a homeomorphism of the plane onto itself which carries [0, 2] x {0} by the identity

& © '
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onto itself and which carries Cy (vesp. C,) into the ray with parametric equation
0 = 4m (resp. 0 = 37), ‘

By Lemma 3 g(g3) does not separate a from CN{/ ()} in any neighborhood
of Pyy. It follows that every neighborhood of A(g,) separates C\{/ ()} from b.
‘Thus h(ga) separates C3\{f(x)} from b. This contradicts Lemma 3. We may suppose
therefore that Cy (resp. Cy) is contained in the ray with parametric equation 0 = n
(resp. 0 = 4m). By a similar argument we may assume that Cy (resp. Cs) is contained
in the seclor dn<0<m (resp, 0<0<in).

Since Cy=f(Uy), Chaf(Us), Cocsf(U,) and Csaf (Us), 4; is an arc in
XN{F ()} from f(Uy) to f(Us) and A 41 18 an arc in IN{f @)} from £(U,) to
f(Us) we have

JUy) WUy w Uy Uf(Us)u AJ VA,
is connected.

Suppose now that f'is at most countable to one. Let U be a neighborhood of
S7Y(f (%)) such that f(U) n C = {f(x)}. Notice that by the construction of ¥ the
lemma holds at cach point y & f ™" (f (x)) such that y is an isolated point of f~ £ ).
Itfollows that if is an interval in U such that ¥ contains no points of (f~(f 69
then f(F)\NC Is contained in one component of Y\U. By induction on the countable
ordinal e it follows that the lemma holds for each ye (£~ (6)))“N\(f =2 (f ()))=* 2.
Since f~!(x) is compact and countable there exists a countable ordinal f# such that

£ = U (NS @)1 ash) o (£ N )).

TeroreM 5. Let X be a finitely Suslinian contimum. Suppose a,be X such that
no finite subset of X separates a from b, Let Py, and f be as in Theorem 1 and lel Y be
as in Theorem 2. If X is planar or if f'is at most countable to orie then no finite subset
of ¥ separates « and b in Y. In particular, ¥ is not regular.

Proof. The theorem follows immediately from Lemma 4 and the compactness
of [0, 1].

Tt is well-known (see [1]) and easy to show that if X is a regular continuum then
every sequence of pairwise disjoint connected sets in X is a null sequence. Theorem 6
asserts that the converse is also true for plane continua, Theorem 7 gives another con-
dition under which the converse holds.

THEOREM 6. A plane contimum X 15 regular If and only if every sequence of pairwis
digjolrit connected sets in X forms a null sequence. :

Proofl. Let X be o plane continyum that is not regular. We shall prove that X’
contains a non-null sequence of pairwise disjoint connected sets. We suppose X is
finitely Suslinian for otherwise there is nothing to prove. Let 4, b € X such that no
finite subset of X separates ¢ and b, Let ¥ = Py, U By L By U ... be as in Theorem 2.

Decompose the family {B,, B,, ..} into infinitely many pairwise disjoint infinite
families Ry = {B,,, By,, ..} where i =1,2,.. Then B, 0 B, =@ (j,i) # (r, 5).
For cach i let R, = By, U By, u ... For each i P,, U R, is not regular by Theorem 5.
We prove first that no countable set in P,\R, separates P, U R;.’

L]
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Let 'C be a countable set in P,\R;. Since X is completely normal we may
assume C is closed. It suffices to prove since [0, 1]is connected and f~*(C) is nowhere
dense in [0, 1] that for each-x & [0, 1] there is a neighborhood U, of x in [0, 1] such
that £(UINC is contained in one component of (P, U R)NC. By Lemma 4, such
a neighborhood exists for each x € [0, 1] such that f(x) is an isolated point of C.

Let x &[0, 1] such that f(x) e CYN\C®. Let U be an open interval about x
such that £(U) o C™ = { f(%)}. Let Uy, U,, ... be the components of UNFY(f ().
For each i f(U)\C is contained in one component of YNC by Lemma 4. By the
argument of Lemma 4 f(U)\C is contained in one component of Y\C.

By induction on the countable ordinal & the theorem holds for each x &[0, 1]
such that £ (x) € CNC** ", Since C is countable and compact there is a countable
ordinal § with

C= U {CONCE D] agfy U (CNCW) .

This completes the proof that no countable subset of P,\R, separates P,, U R,.
By a slight extension of a theorem of F. Bernstein (see [3], p. 201).

PNUR = Q0 Q..

where the Q; are pairwise digjoint sets such that for each i Q, meets each Cantor
setin Py,. For each i Q; U R, is connected since no Cantor set of P,, U R, is con-
tained in P, \(Q; U R)) and no countable subset of P,,\R, separates P, L R,. Thus,
01 VR, 0, UR,, ... form a sequence of pairwise disjoint connected sets in X,
This sequence is not null since for each i a and b are limit points of Q.

TeeoREM 7. Let X be a finitely Suslinian continuum and let a and b be two points
of X such that X has P(a, b). Let P, be a continuum in X which is minimal with respect
to having P(a, b). Let f: [0, 1]-P,, be as in Theorem 1. If f is at most countable to
one then X contaiis a non-null sequerice of pairwise disjoint connected sets.

. Proof. The proof is exactly the same as that of Theorem 6.

§ 4. Rim compactness, It was proved in [6] Corollary 4.5 that a hereditarily
locally connected, rim compact, separable, metric space has a hereditarily locally
connected, metric compactification. The main purpose of this section is to show that
the converse of that result fails, In particular, we give an example of a finitely Susli-
nian plane continuum that contains a subset that is not rim compact, The following
proposition shows that the construction in Theorem 2 cannot yield such an example.

PrOPOSITION 8. Let X be a ﬁnitelﬁ) Suslinian contimuum that is not regular,
Let Y be as in Theorem 2. Theri every conmected subset of Y is rim compact.

Proof. Let C be a connected subset of ¥ and let c e C. If ¢ ¢ Py, then there is
a basis of neighborhoods of ¢ in ¥ with two point boundaries. Let us suppose, there-
fore, that ¢ € P,y. Let U be a neighborhood of ¢ in ¥, There exist disjoint intervals

[0, 1), o, Dy 2] in [0, 1] such that ¢ €Pu\ Uf(Ix;, y)=U and cef([y;, %))
i=
fori#je{l,..,n}. '
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Let z=inl/”'(c) and suppose y <z Then either a finite set separates
f(l®g, 1D 0 Clrom ¢ in C or there exists w & [0, 1] such that h<w<zandf(w)eC.
Suppose @ € [0, 1] such that y; <w<z and f(w)e C. Then by the comstruction
of ¥ and by Theorem 1 (ix)

Ky =g@)n (@) v U{dl 4 is g bridge in ¥ which meets h(co)'}’)v

is a set with at most one limit point namely f(w). If ¢¢ K, then K, separates
flxg, y:]) from ¢ in Y. If ¢ € Ky then ¢ Ties in a non-degenerate bridge of ¥ which
meets A(w). Let d be a point other than ¢ in that bridge. Then (K, U {@)\{c} sep-
atates f([xy, (D) from ¢ in Y.

Suppose ¢, d & [0, 17 such that £ (e) = fd) = ¢ if xe[0, 1] such that e<x<d
then £ (x) # ¢ and e<x, <y, <d, By an argument similar to the one above. there
isa compact subset of C which has at most two accumulation points and which sep-
arates £ ([x;, 1)) from ¢ in C.

A similar argument may be used if sup S (c)<x,. Thus, there is a compact
subset K of C which separates P,\U from ¢ in C. Since C\P,; consists of a null
sequence of free arcs it follows that a compact subset of C separates C\U from cin C.

ExAMpLE 3. Let S be the Sierpifiski triangular curve (see [5], p. 276). Tt is defined
as follows: Let 7" be the equilateral triangle in the plane with vertices (0, 0), (1, 1)
and (ﬁ", 0). Partition 7' into four congruent triangles Ty, T, T, and Ts. Let To, T,
and Ty bé the triangles which have a vertex in common with T. The triangles T, T,
and T, are numbered clockwise and T, is the leftmost triangle of the three. Let
vy, 01, and v, be the vertices of Ty where v, is the leftmost vertex of the three and the
mmbering is clockwise. In a similar way, partition each of the triangles T for
i=0,1,2 into four congruent triangles Ty, Ty, Tyy, Tis. Let 105 Uy, U; be the
vertices of T3, The triangles and vertices are ordered clockwise starting with the
leftmost one. Continue inductively in this manner, Let ‘ '

S = Cl ( U Bd(Tamn-ak))

where the subscripts o; tuke the values 0, 1 and 2 and & = 1, 2, ... The local cutpoints
of § are the vertices v,,,.,, Where the subscripts «; take the values 0, 1 and 2 and
k=1,2,..

Let X'= 80 K UK, U ... where

1) the sets K, are pairwise disjoint arcs in the plane whose diameters converge
to zero,

2) LX) m Ky WKy

3) for ench i Ky S S\L(S) and K n § consists of the two endpoints of K,

4) for each I there is a ke {1, 2, ...} and &, ..., 4, € {0, 1, 2} such that the end-
points of K, are contained on one side of Tosusna, OF o1 one side of 7.

It is clear that X is a Peano continuum. We shall prove that X" is hereditarily
locally connected, We proceed by contradiction, Suppose Ay, 4,, ... is a sequence
of pairwise disjoint continua in X such that lim4 | = A -where 4 is a non-degenetate
§~ Fundementa Mathematlons XCVII
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continuum which is disjoint from 4, U 4, U ... Notice that 4= .$. We may suppose
that each 4, is an arc which meets both of the horizontal lines y = 4 and y=3.
‘We may also suppose that no proper subarc of 4; meets both of the horizontal lineg
¥ =%and y = }. Then 4 is contained in the closed horizontal strip bounded by the
lines y = % and y = } and 4 meets both the top and bottom components of the
boundary of that strip. Thus, either vy € 4 or vy €.4. We may suppose without loss
of generality that voe 4. Then 4Ty, and for each i

A¢CT01 UU{'K:il K]ﬂTOl #ﬂ}.

For each i 4, is disjoint from the line segment v, voy With endpoints v, and vo;

otherwise 4; would separate 4 between v, and 4 A v;;;;; By the minimality of the
arcs 4;) it follows that ATy, U Tyyy. Since A; does not separate 4 between vy,

and o000y A; O 0g1a0yyy = . Similarly 4, A YotoPo1z = & for each i Hence,
AeTo111 U To110 U To100 U Toso1 -

In this way one can prove inductively that for each'k =1,2,..

A<l T,

10200000

where oy, ..., o, € {0, 1}. Thqs, 4 = vyvye. This is a contradiction since each 4
meets v, v4:

We have proved that X contains no continuum of convergence, By [1 11, v, 2.1

X is hereditarily locally connected. By a theorem of Gehman (see [5], p. 519) Xis
finitely Suslinian. (

By a slight extension of a theorem of F. Bernstein (see [3], p. 201y

S=Q,u Ql U ..._where the Q, are pairwise disjoint sets and cach Q; meets each
Cantor set in S. Since L(S) is countable we may suppose L(S) Q.

The family {K,, X, ...} can be decomposed into infinitely many pairwise disjoint
ey b
families R = {Ki;s Ky, ..} such that LRy 8) = R, where Ry = ) K, for
=1

J=1,2,.. Since R, n§ is countable we may suppose that R; n S Q, for each

Ji=1,2,..

. ‘Now Q,is connected since any set in S\Qy < S\L(S) which separates S con-
t'funs a Cantor set by [11], TI1, 9.4. Similarly 0, U R, is connected for eachi= 1,2
since any set in

3 ree

(U RIN(Q: U R)=S\Q,=(S U R)NL(S U R))

which‘separates the continuum § U R; contains a Cantor set.

Finally we shall show that 0y U R; is not rim compact for each j= 1,2, ..
Let a and b be two points of ;. Just suppose K is a compact set in Q, U R; which
separates ¢ and b in Q; U R;. By a theorem of Mazurkiewicz (see [5], p. 244) we may
Suppose no proper subset of X separates g and bin S U R;. There exists an irreducible

icm®
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compact set K* in K'0 (S\Q)) such that K* separates & and in U R;. Now
K*\K is topologically complete. Since L(R;u S)=R; K* has no isolated p(;ints by
[11], 11T, 9.3. Since K is countable K*\K hasno isolated points. Thus, K*\K<S\Q,
contains a Cantor set. This is a contradiction since Q; meets each Cantor set in S,
We conclude that no compact subset of Ry v Q, separates ¢ and b in R;u Q;and
so R; U Q) is not rim compact,

We have proved that X is a finitely Suslinian continuum which can be decoms-
posed into the pairwise disjoint connected sets Q0, Q1 U Ry, Q3 UR,,... Each
of the sets Q; is dense in S, For each j = 1,2, ... the set 0, U R, is not rim compact.

Remark. T. Nishuira has pointed out that by modifying slightly the argument
in the above example X can be decomposed into countably many large disjoint con-
nected sets no one of which is rim compact,
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