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Axiomatic foundations for Nonstandard Analysis
by

Karel Hrbacek (New York, N. Y.)

Abstract. We propose an axiomatic system for nonstandard set theory, which can be used
to formalize nonstandard mathematics in much the same way axiomatic set theory has been used
to formalize standard mathematics. It turns out that the axioms of Power.Set and Replacement
cannot hold simultaneously in the universe of external sets. This leads to several variants of the
system; some of them are conservative extensions of ZFC, and others are essentially stronger.

The usual mathematical foundations for Nonstandard Analysis consist in the
use of higher-order structures and their enlargements. There are two main disadvan-
tages of this approach: different enlargements are needed for different problems,
and the work with higher-order structures involves the type-theoretic language
repugnant to most mathematicians. We attempt to remedy both of these faults
by setting down a simple axiomatic system which is a conservative extension of
Zermelo—Fraenkel set theory ZFC, whose intuitive interpretation is easy to grasp,
and in which all results of, say, Robinson’s [8] can be naturally formulated and
proved.

Consideration of axiomatic systems for Nonstandard Analysis was initiated
by Kreisel in [6] for philosophical réasons (see also Parikh [7]). Kreisel asks:

(1) Is there a simple formal system (...) in which existing practice of nonstandard
analysis can be codified? And if the answer is positive: :

(2) Is this formal system a conservative extension of the current system of
analysis (in which the existing practice of standard analysis has been codified)?

As the methods of nonstandard “analysis” found fruitful applications in
general topology, abstract measure theory and functional analysis, we will consider
questions (1) and (2) for set theory rather than analysis proper. Two conservative
extensions of ZFC, S, and NS,, will be formulated; the extensions differ in
properties of “external sets”, but both of them provide practically satisfactory
positive -answer to (1). We will also consider a strengthening of &, which is
a nonconservative extension of ZFC.

The theories NS,, NS, and NS; and the conservation results are formulated
in § 1. Examples 1 and 2 and Lemma 2 show how simple nonstandard results can
be proved from the axioms. The proofs of the main theorems are in § 3. The proof
of Theorem 1 uses saturated models and methods similar to those of Chang [1],
1 — Fundamenta Mathematicae XCVIII
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[21, [3]. The necessary definitions and technical lemmas can be found in § 2; we
hope that these methods can find other applications.

The following intuitive interpretation underlies the whole work:

The sets from the usual set-theoretic universe ¥ are called standard sets. Stan-
dard sets may have additional, ideal, nonstandard elements. The universe of internal
(both standard and nonstandard) sets is an elementary, “ON-saturated” extension
of V. One may picture internal sets as elements of a limit ultraproduct of V. Finally,
we extend the universe by collections of internal sets which are not themseclves
internal (such as the collection of all nonstandard natural numbers). The only
technically nontrivial problem is to show that this can be done so that enough of
the axioms of set theory will be satisfied.

§ 1. Axioms for nonstandard set theory. Let T be an axiomatic set theory, i.e.,
a theory formalized in a language having a single binary predicate € and such that
the Zermelo—~Fraenkel axioms, including the axioms of Regularity (AR) and Choice
(AC) are provable in ¥. The language of the nonstandard extension of T, NS(T),
contains € and unary predicates G(.) and J(.). Boldface types x, 4, ... will denote
variables of MES(T); intuitively, they range over the “universe of discourse” of
NS(T) consisting of external sets. x € A reads: x belongs to 4; S(x) reads: x is
a standard set; intuitively, standard sets should be identified with the members
of the “universe of discourse” of . Lightface letters a, 4, ... will denote variables
ranging over standard sets, J(x) reads: x is an internal set. Variables ranging over
internal sets will be denoted by Greek letters &, 7, ... It is assumed throughout that
different letters denote different variables.

If &(vy, ..., ,) is a formula of T, & is a formula of NES(I) obtained by re-
placing all variables of @ by variables of NS () (in a one-to-one way). &% (@2, resp.)
is obtained from & by replacing all bound variables by variables ranging over
standard sets (internal sets, resp.). .

We will consider three groups of axioms for NS (I):

(A) ¢%is an axiom of NS (I) whenever the sentence @ is an axiom of .
BD  (Vx) I).

All standard sets are internal.
(B2) (Vo)(VO(x eé-»3(x))

The universe of internal sets is transitive.
(The Axiom Schema of Embedding)
Let & be a formula of the language of T.

(Vxl: s Xy) (@g(xly ey Xp) = (Du(xl, Gy x,,)) .

(B3)

The universe of internal sets is an elementary extension of the universe of
standard  sets.

icm°
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(B4) (The Axiom Schema of Saturation)

Let @ be a formula of the language of T.
(Vx1s e, X)(VA[(Va) (ac 4 & a is finite—
@AL(Vx e )®%(x, b, 4, %y, ..., %)) > AR (Yx € AP (x, B; A, X(, oors X)]
An explanation of the notation is in order. There are three possible definitions
of inclusion between standard sets:
acAd = (Vx)(xea—-xe 4),
ac®4d = (VO (leaste d),
ac®4 = (Vx)(xca-xe 4).
However, a=®4 = a<°4 by (B3) and a=”4 = ac 4 by (B1) and (B2). Similarly,
a is S-finite = q is 3-finite = q is finite (see Lemma 1 for general discussion and
Lemma 2 for the proof of the last equivalence.).
A stronger version of (B4) is often useful in practice. An external set A has
standard size, ©S(A), if there is a standard set 4 and a function f such that xe 4
iff x = f(x) for some xe 4.

Let @ be a formula of the language of X.
(V15 oo 1) (YASS (A)) [(Va) (a4 & a is finite—
AP (VEea) 83, B, 1s s 1)) > @A VE€ ) P&, By 1115 wves 1] -
(The Axiom of Transfer)
VAEADHVx)(xecd =xe d).

For every external set A there is a standard set 4* = {x € 4| S(x)}, the standard
kernel of A, having the same standard elements as 4. The Axiom of Transfer permits
unlimited use of external sets in constructions of standard sets.

(9]

(&V)

(The Axiom of Extensionality)
VX, DX =YY= Va)ueX=uecY)].

(C2) (The Axiom of Pairing)

VX, YYAZ)XecZ & Ye Z).
(C3) (The Axiom of Union)

VAAS)(Vu)(ue 4-ucsS).
(C4) (The Axiom Schema of Comprehension)

Lét @ be a formula of the language of NS(T).

VAAB)(Vx)(xeB=xed & B(x, X1, ..., X)) -

1*
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The nonstandard extension of T, NS(T), has axioms (A), (B1)-(B3), (B4,
(C0)-(C4). Before considering further strengthening of MS(T), we prove several
easy results.

ExAMPLE 1, Every standard infinite set A has nonstandard elements. (A set is
nonstandard if it is internal, but not standard.)

Proof. For every finite aS A there is b such that, for all xea, x # b& be A,
By (B4) there exists § such that, for all xe 4, x # § & fe 4. § is a nonstandard
element of 4. W

EXAMPLE 2. For every standard set A there is an internally finite set B such that
(Vx)(xe A—xef), ie., all standard elements of 4 belong to' .

Proof. For every finite a4 there exists b such that, for all xea, xeb &b
if S-finite. (Let b = a.) By (B4) there exists B such that, for all xe 4, xe f &
is J-finite. B

Lemma 1. Let & be a bounded formula of X. Then

mg(z) k ¢s(£19 vy ‘En) = 5(61’ s fn) .

In pardcular, NES(T)F 8%ay, ..., a,) = %(ay, ..., a,) = B(ay, ..., a,).
Proof. Immediate from (B2) and (B3). The details of the proof of absoluteness
of bound formulas in transitive classes can be found e.g. in [5], p. 22. &

Notice also that the universe of internal sets is closed under pairing, ie.,
NS (VEOYNAD(E el &y el) (The Axiom, of Pairing is provable in T and
we have (A) and (B3)). Therefore, if @ is one of the formulas (1)-(22) on pp. 22-23
in [5], #° = @® = & is provable in NS(I). ‘

Although @%(x) = &(x) does not always hold (examples: ®(vy) = v, is an
ordinal, #(v,, v,) = v, is the power set of v;), we have

LemMA 2. Let &,(v) = v is a natural number; ®,(v) = v is finite. The following
is provable in MS(T):

2) &,(n) = S(n) & P3(m),

b) v@‘f(x) & S(x) = P,(x) & (Yy e x) S(y).

In words, the standard natural numbers coincide with the external natural
numbers (but not with the internal natural numbers). The external finite collections
of standard sets coincide with standard finite collections of standatd sets. In part.,
all elements of a standard finite set are standard.

Proot. a) We first prove &,(n)—(S(n) & di‘f(n)). Let n, be the first » (in the

wellordering of external natural numbers by €) for which it fails. Surely n, % ©;
thus ny = m, U {mg} for some myen, s.t. &,(m,). We have S(mg) & d5(m,)
by assumption. Let ng = my U% {my}®; then &5(m) holds and (Vx)(xen,
=X emy VX = my) is (equivalent to) a bounded formula; by Lemma 1, (Vx)(x e n,
=Exemyvx =mg); Le., ny = my U {my} = n,. So S(ng) & 93(n,), a contra-
diction,

icm
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To prove that, conversely, (S(n)& ®5(n))—®(n), we first notice that
{n| S(n) & 33(n)} c0f is wellordered (as an external set) by e. Indeed, if & # X
c{n] ) & 5w}, B +#X*'cwf, so @AneX)(VkeXD)@mekvn =k). But
then n e X is the first element of X. Let now n, be the first n for which the above
fails. Surely ng # @, so ng = my U® {my}® where &(mo) & 85(mo) & B(mo).
As before, my = mg U {my}, so &,(n,), a contradiction.

b) The proof is similar; use the definition v is finite = there is a one-to-one
mapping of v onto a natural number. B

Let us now consider three additional axioms for external sets:

(APE) (The Axiom of Power Set for External Sets)

(VA)@P)(Va)(acAd—acP).

(ARE) (The Axiom Schema of Replacement fér External Sets)
Let & be a formula of the language of NES(T).

(Vxg, ..., x,) (VA@B)Y(Vx e A [@N)P(x, ¥, 4, X1, .05 X,)
- @@yeB)d(x,y, 4, %, ..., %)}

(ACE) (The Axiom of Choice for External Sets)

(VAY@AW) (W wellorders A) .

TeEOREM 1. RS, () = NS(X) +(ARE) is a conservative extensipn of T.
(e, TF @ iff RS(T)+ &% holds for any sentence @ of T.)

THEOREM 2. NG,(T) = NSI)+ (APE)+(ACE) is a conservative extension of <.

THEOREM 3. 2) S (T)+ (2, -ARE)+(APE) is inconsistent.

b) NS(T)+(Z,-ARE)+(ACE) is inconsistent.

(2,-ARE) is obtained by restricting (ARE) to z,-formulas of NS(T).

A weak vestige of (ARE) is compatible with (APE). Let (S&-ARE) be obtained
by restricting all instances of (ARE) to external sets of standard size, i.e., by re-
placing (V4)... with (VA)(SS(4)~...

THEOREM 4. a) NS (T) + (6S-ARE) + (APE) is a nonconservative extension of T.

b) If ZFC+ @4 (A is strongly inaccessible and V,F ) is consistent, then
NS,(T) = NS(I) + (SS-ARE) + (APE)+ (ACE) is consistent.

Summarily, we can postulatethat the external sets satisfy either the axioms of
Zermelo—Fraenkel set theory without Power set or the axioms of Zermelo set theory
with Choice, but further strengthenings are inconsistent. Both theories seem suf-
ficient for formalization of the usual proofs and constructions of nonstandard
rhathematics; when nonstandard sets are investigated for their own sake (e.g., one
considers external Dedekind cuts in the ordering of internal real numbers), one
theory is sometimes more convenient than the other.

‘We will prove Theorems 3 and 4a) now and the rest in § 3.
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For every A let 4° = {x € A] &(x)}. Notice that 4° = A for finite standard 4,
but otherwise 4° & 4; however, (4%* = 4 because A° and 4 have the same
standard elements.

Proof of Theorem 3. For every finite a=A there is a 1-1 mapping f s.t.
as dom(f), ran(f)<w. Using (B4) we conclude that there is a 1-1 (internal)
mapping f s.t. 4° =dom(f), ran(f) S . Then f | 4° is a 1-1 (external) mapping
of A° into w. We use this to show the existence of a set S containing arbitrarily
large standard ordinals. If then S = J S*, S is a standard ordinal, Se |J $* = S,
a contradiction with (AR)®.

a) (APE) implies existence of P s.t. Xcw—X e P. Let

o(X, Y) = Y is a standard ordinal & (3f) (f is a 1-1 mapping of Y° onto X).

(Z;-ARE) implies existence of S s.t. (VXeP)[AY)o(X, Y)-»AYeS) o X, V)]

Let 4 be any standard ordinal; let f [ 4° be as above. Then X = ran(f | 4% <o,

s0 XeP &(AY)o(X, Y), namely, Y = 4. Pick Be § s.t. ¢(X, B) (B is a standard

ordinal) and let g be a 1-1 mapping of B® onto X. Then g~ ! ofis a 1-1 mapping

-of A° onto B, so (g~1 o f)* is a standard 1-1' mapping of 4 onto B. The standard

ordinal B € S and the standard cardinality of B equals the standard cardinality of 4.
b) (ACE) implies the existence of a wellordering W of w. Let

¢(X, Y) = Yis a standard ordinal & (3f) (fis an isomorphism between ( ¥°, € | ¥°)
and the initial segment of W determined by X).

(%,-ARE) implies the existence of S s.t. (VX e 0)(AYV)¢(X, ¥)»@@ Ye ) o(X, V).
Let 4 be any standard ordinal; let f I A° be as before. Thus there is a 1-1 mapping
between 4° =dom(f 4% and ¥cw where X = ran(f ' 4%); but there is no
1-1 mapping between A° and w; also, (4°, € I 4% and (w, W) are wellordered sets.
A stzfndard set-theoretic argument, using only the axioms satisfied by external
sets (H.L part., X;-replacement, but not Power set), shows that (4°, e [ 4°) is iso-
morphic to an 'mitial segment of (w, W) determined by some X e W, i.e., ¢ (X, A)
hol(_is. If Be S is such that ¢ (X, B), the argument used in conclusion of part a) will
again show that the standa:d cardinality of B equals the standard cardinality of A '
(actually, B = 4 in this case). Wl

Proof of Theorem 4a). Let KM(T), the Kelley-Morse extension of I, be
’.che theory whose: language has variables for sets and classes and whose axioms
;mlude ¥ and axioms of Kelley-Morse set theory, particularly the Full Compre-
ension Schema (VXq, ..., X,)@X)(Vx)(x e X = o(x, X, ..., X)) wh i
P e . ( o(x, Xy, ..., X,)) where ¢ is any

. It is well known that RM(T) is a nonconservative extension of T (because

sz}txsfactlon for set-theoretic formulas can be defined in it). It will thus suffice to
give an interpretation of KM(T) in NS'(T) = NS(T)+(APE) +(SS-ARE

Working in RES'(T), let (EBH g

V(4, R) = Rcw?® & 3f) (f is an isomorphism between € | (TC%{4})° and R)

icm
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(TC®{A4} is the standard transitive closure of {4}). The argument at the beginning
of the proof of Theorem 3 shows (VA)@R)W (4, R). Set

R, =R, = @O, R) &Y(4, Ry))
and denote the equivalence class of R in & by R. Finally, put
V, = {Rl GOV, R}; W e P(P(P(@?)),
E, = {(ﬁl’ Ry)| @4y, Az)(A1 ed, &Y(dy, Ry) & Y4z, Ry))} .

If we let (4, R) = (4, R), the formula § describes an isomorphic correspon-
dence between e on standard sets and (V;, Eo).
Tt is now trivial to extend this interpretation, by adding classes, to a model
of KM(T): let
Cl = {X| XSV},
E={X, V)eCP| @ZeV)I(VUe V)(UeX =(U,Z)eE)&Ze Y},
" S={Xedl AZe Vo) (VU e V)(UeX = (U, Z) e Ep)}-

We interpret classes and sets as elements of CI, S resp., and the membership re-
lation as E. The verification of the validity of the axioms for KM() in (CL, S, E)
is routine. The Full Comprehension Schema follows from (C4). The Axiom of
Replacement for KM(T) follows from (SG-ARE) via the fact that {Ue VWl
(U, Z) e E,} is a standard size external set. MR . .

§ 2. »~constructible sets over structures. In this paragraph we will work in ZFC
and use standard set-theoretic and model-theoretic notation.

Let W = (W; E, V) be a structure where E is 2 binary relation, ¥ is a unary
relation and B is extensional: '

X, YeW&(VZeW)(Z,X)eE=(Z, Y)eE) then X = Y.

We will extend 28 to an interpretation for ZF® = ZF — Axiom of Regularity so
that E is the membership relation on . The construction slightly generalizes
Chang’s -%-constructible sets [3].

The infinitary language L, has a binary predicate symbol €, a unary predicate
symbol B and variables #,v,, w,, ... for all 1. Formulas are obtained from the

atomic ones by applications of negations, infinitary conjunctions /\, disjunctions
rel

\/ and quantifiers Ev),ey and (Vo). Equality o, =1, is considered an ab-
el
breviation for (Vi) (u e v, = uevy). If x<4 are regular cardinals, L, ,, consists of

formulas of Ly, having /\ and \/ for [|<4, @vdsers (Yo)ier for [I|<x and
el

el
fewer than x free variables. If @(p),oy is a formula of Loq with all of its free vari-

ables among v,, 1€, and (a,),; is a sequence of elements from W, WF ¢(@)er
will mean: the sequence (@), satisfies ¢ in ; similarly for other structures of
the same type as 9. 4=* is the set of all functions from ISx, |I|<x, into 4.
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Fiz a regular cardinal ». Define 3(x) = (Z(w); E(), V) inductively:
if e=0, Z(e) = W, E(x) = E;
if o is limit, Z(«) = U Z(B), E(d) = U E(B);

B ’ Bea

if o= pB+1, AeZ(x) iff 4eZ(B) or there is a formula ¢(u, v),; €L, , and
a sequence 5{(4) = (B),.;€ Z(B)~* such that ’

0] Ad={XezZP)l 3Bk oX, B)er} -

E(x) and I(x) are defined simultaneously as the smallest subsets of Z(a)? such that
2) E(f)=E(),
) b)(ll)f)XE Z(B), AeZ() and 3(f) k ¢ (X, B),.; then (X, 4) e E(x) (where 4 is
as in (1)),
Q) if 4,,4,eZ@@) and, for all XeZ(B), (X, 4,)eE@) = (X, 4
them (Ayy 43 2 1o 1) (@) = (X, 4,) € E()
d)if 4;,4,eZ(@) and for some XeZ(B) (4 (o) & 4
e (4 Ay R By (dy, X) el(o) & (X, 4,) € E(%)
Let Z(o0) =¢EL3NZ(OO, E(c0) = k())NE(M), 3 = (Z(x0); E(0), ¥). We will

write Z(u; %) etc. if we wish to stress the dependence on x. If W = (&; @, @)
Z(0) is t}‘w class of x-constructible sets L, as defined in, [3]. ’
. We will say that'a structure (Z,; E,, V,) is an initial segment of (Z,; E,, V)
it (Zy; By, Vi)S(Z,; Ey, V) and for all deZ,, XeZ,
(X, 4)eE, ff @BeZ)(B,A4)eE &(Zy; Ey, Vo) F X = B).
i embeds (Z;; Ey, V7) into (Z,; E,, V) as an initial segment if 7 is an isomorphism
between (Z;; E;, ¥y) and an initial segment of (Z,; E,, V). 4
LemMMA 1. a) For all Ae W there is A' e Z(1
W such that =A4';
54 = (A). @ e that SMEA =L
b) For oy <ap, 3(xy) is an initial segment of 3(y).
Proof. a) Let 4' = {Xe Z(0)] 3(0)k X e 4).
b) Straightforward induction. W T
LeMMA 2. (Z(co), E(w0)) is an interpretation for ZF°.
Notice that the axioms of Regularity and Choice need not hold.
- Pr(_)of. Entirely standa.rd. The Axiom of Extensionality is verified by induction.
The A?uom of Comprehension for bound formulas is gotten from (1). The remain-
ing axioms follow from “almost universality” of §: if Y<Z (o0) then Y= Z(x) for
some o; so (YXe V)[(X,Z()e E@+1)]. W
Lemma 3. 3 is closed under subsets of cardinali e, i
: ity <u; ie., if B€Z(w), |B|<x
then there is A € Z(a+1) such that X e B impli ’ , )
then : implies (X, 4) € E(a+1); 2
inplies @7 5 BGue X o 7y, ) e E(a+1); (X, 4) € E(@+1)

P‘roof:‘. Let 4 = {XeZ(®)| 3(@)F\/ X = B} where B, = 1.
‘ 6B -

icm
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LemMa 4. Let sup2é<x, and let iy be an embedding of I8, inio W, as an initial
§<x1
segment. For all a<x, there exists an embedding i, of Zi(a; x,) into Zy(a; %,) as

an initial segment such that o, <o, implies i, Si,,.
Proof. iy is given and i, = U iz for limit . Il o = f+1,we define i,(A) = i,(4)

B<a

for 4 € Z;(f). Next,
i(Z,(B) = {X e Zo(B)] 3208 F ¥ (X, ip(Z1())s<s}

where R
\/ (atl € Uﬁ)lEI(Vr) (r EU=TE Dﬁ & @ﬂa(u’ tl)lé[)

YU, V5)5<p =
8<B @®eLyp

and @ is the formula obtained from @ by restricting all quantifiers to v;; ie., by
replacing As,)yen With @s,)ycy (A (e & ...), ete.
. veN

Finally, if 4eZy@)\(Z.(8) v {Z:(B)}), say,

A ={XeZ,B) 3B F X, Bes}
we let

i(4) = {X e Z,(p)| LB F Y (X, i/(Z1(9))s<s & ,
& o"(X, i5(B), ifZy((B))eer, s<s}

where ¢” is the formula obtained from ¢ by replacing (3s,),ey With

(HSV)VEN(/\NW(Sv; va),§<p & ...) etc.

(i.e., by “restricting” all quantifiers to 7,(Z;(8)))-
The initial segment property is verified inductively. B

We could prove Lemma 4 for alla € ON and under weaker assumption %y <%,
but we will not need it. The proof could be based on the “absoluteness” of sets of
cardinality <%y, L,,,, and the entire construction of 3(a; %), int 3z- .

The main technical result, conta}ned in Lemmas 5 and 6, shows that Ly~
statements about 3(«) are equivalent to L,-statements about I8B.

We define an auxiliary language L%, having next to unranked variables u,, v,, ...
also variables of rank o, u%, o7, ... for all ae ON. Ranked terms and formulas are
defined .inductively:

Formulas of rank « are gotten from the atomic formulas of the form u* e v*,
w* et perts 1) uem €8 11()pen € 1200)vens B (), B(t(w,)yenmr)s Where 1,11,

are terms of rank <a, by closure under ~, N> \/ for all I and (Au),e; and
el el

(Vu,), e for [T <u. (i are unranked variables; notice that they can occur in a ranked
formula only as free variables of some ranked term.) Let LY, be the set of formulas

of tank « in which A\, \/ occur also only for |I|<, which have <x free vari-
1el el
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ables and »” as the only ranked variable. If ¢ (", v,),cr € Ly, {7 0@ 0),e1} is
a term of rank a-+1. o
In the intended interpretation the unranked variables and the variables of
rank 0 range over W; the variables of rank o>0 range over Z(e)\W and the terms
of rank a-denote elements of Z(«)\W (there are no terms of rank o if o is limit)
We now define values of ranked terms and, simultaneously, assign to eac};

ranked formula ¢(v) without free ranked variables a formula’—(/:@j of Ly,,. We
will write o

E* ¢(a),er in place of QBFT,D-Q:):E,

and show in Lemma 5 that k* interprets the ranked formulas in the intended way.
If.(p(u,) has rank 0, let ¢(v,) be the formula obtained from ¢ by replacing
all variables of rank 0 with unranked variables (in a one-to-one way which does
not conflict with v,); ¢ has no terms. )
If (4% t)er € Loy, define the value of the term {1°] ¢ (4, u),;} at (a),.; by
e 16

00 @, a)} = {Xe W] BWE (X, a)}.

I ¢ =t,(4)et®,) where 1, = {1° @10%u)}, 1, = {1 @y 1))}, let

¢ = @@, v) & (V) (veu = ¢,(v,u)].

I o= ﬂ_}(tl(uﬂ)), let ¢ = @) [B) & Vo)veu = gv, u)]
If ¢(v) is of the form ~Y (o), /\Nll/v(vl)a (awv)szw(vn w,) ete., let @ be
V), \ Vs, @0y ), et
If o u)eLy, for a>0, let
{1 @@, a)} = {t(B)] t(v,) is a term Vof rank <o, (b,)e W
and Wk ;(-t_(_é:)_:zj} .

= {f
It () = (W] 0.", w)}, t(v,) = (¥ 0,w", 1)}, are terms of ranks
By, B, where max(fy, B,) = a+1 for a>0, define @ for ¢ =1t et, as follows:

if py<By =a+l, ¢ E-(p—z-(tl(u )7)
if <Py = a+1, .,

p= V

ds,)eTh,

@sdsesldis) e t(0) & A L (VR (f & () = £lrp) e d(s,)))

Sr)eTn,

* . =
where T, is the set of terms of rank <a.

Notice that t(a,) e Z(@)\W if ¢ has rank <
a, @ and < ]
but ¢ e L, does not imply ¢ eL,,. St @ Abo, fel

00X

-
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Finally, if ¢ = B(f, () where #; has rank a+1, define

=V (Es)ft@ = ds) & Bd()) -
dls;)eTae
LEMMA 5. For every AeZ()\W there is a term Auy) ey of rank <o and
a sequence §(A4) = (@)uem € W<* such that, for all Be Z(@)\W,

(+) (B: A) € E(O() lﬁ }:* E(év)veN € ‘Z(gy)aeM .

For every formula @(i),er 0f Loy there is a Sormula §*(),er of rank o such that,
for all (A),er€ (ZENW)™*

(Z(OC), E(a)) E @(_4_!)15[ l]f }=* (ﬁa(zl(glu)ueM‘)neI .

++)
Proof. By induction on o.

=1: AeZONW implies. 4 = {Xe W| BE B(X, Aoy for d(u,v)eL,

(4) e W=*. Set §(4) = (4), A) = {#° ®@°, v)}; this is a term of rank 0.

(+) follows immediately. @' is defined as in the next case.
o=p+1:1f AeZ(p), A was already defined. If 4 e Z()\Z(B), 4 as in (1),

we have already defined & (W, wh), B(W,)uem,» S(B) € W<*. Set
Z(ww)ueM,, el = {uﬂl @(uﬂ’ BI(WIH)MEM')IEI}

and §(4) = the concatenation of 3(B,),r- The inductive assumption shows im-

mediately that (+) holds for 4 and for all B e Z(B).
We next define ¢* for @ € L, by induction on logical complexity.

a) p = ujeu,, P = uj€us,
b) ¢ = B@), §* = B,
) ~o =~ /\1905‘ = /\Irﬁi‘,
d) @(ul) = (HU“)ﬂEMT(U“, u.):
au(uf) = \/ Gv‘w)szﬂ, "EMTa(t"(D‘W veN> uu:) .
GpeMeTan) "
(4) for all 4, BeZ()\W and (+ +) follow immediately.
« limit: We have only to define §*(); this is done exactly as in the
previous case. H
LEMMA 6. An L, -elementary embedding jo of W into W2 can be extended
to an L., -elementary embedding j, of 3a; %) into 32(x; %) so that a<o’ implies
jz =ja' F Z(a)
Proof. We will use superscripts 1 and 2 to distinguis
By induction on o define j, and prove
@ for AeZY W, A'(u,) = JulA)*(w,) and 2(juldD) = Jo(3*(A);
(i) e () = ~°() for all p €Ly,

1 concepts over 3! and 3%
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as follows:
a=1:If A ={XeW' Wk X, a)}, set

Jd) = {(Xe W] Bk 0 (X, ju@)}

It is obvious that i) and ii) hold; particularly, note that the formula & is indepen-
dent of I3 even in case d) in the proof of the previous lemma.
o =p+1: I 4eZ(f), jl4) = ji(4). Otherwise,

A= {XeZ'(B) 3Bk O(X, B}
Let

Jdd) = (X e Z*B) 3Bk (X, jp(B))} -

i) and ii) follow from the inductive assumptions.
o limit: Set j, = UJj, and check ii).
B<a

To prove that j, is an L,,~elementary embedding, we have
3'@Fo4) if F ¥ (di(g,)) ff W'E 5;1(23(5.;,:)) iff W pa,);
F@F () i F (A (ola,) iff

—

W2 E 7™, (A) (ola)) iff B2 2(o(a,) »
for certain ¥, % € L. ‘

=g, 1 =, X - . .
But %' = & % by i), 4! =j(4)* by i), so x* = ¥ Since Jj, is an el-
ementary embedding of W' into W%, we have ‘

WE e,y F BEEP(a)). B

§ 3. Proofs of the conservation theorems. Let T be an axiomatic set theory;
we can conservatively extend T by adding a global form of the Axiom of Choice
(see [4] for the proof and other references). The resulting theory T¥ has an additional
unary function symbol §; its axioms are those of T with the addition of

i) axioms of comprehension and replacement for formulas with &,

i) (Vx # 0)(§(x) € x).

The proof can be formulated entirely in terms of forcing, ie., finitistically.

. We will further extend the theory T¥ by adding a constant ¥ and the following
axioms:

0) (Yxe V) (xsV),

D (\{Ix eN(Px)eV),
. 2). ®" whenever @ is an axiom of I¥; @ is obtained by restricting all quantifiers
in @ into ¥,

3) axioms'of comprehension and replacement for formulas with' ¥ (and §).

The resulting theory 3% is a standard device for simulating transitive models
of set theory (see e.g. [9], pp. 279-281). It is well known that %Y is a conservative
extension of 3. Moreover, if @ is a formula of 3%, ¥+ & iff I¥YF ¢”. These

©
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facts are immediate consequences of the Reflection Principle and their proof is
finitistic. )

Theorems 1 and 2 will follow if we give an interpretation of R&;(%¥) and NG,(T)
in % such that &(x) is interpreted as x e V. Indeed; if, say, RS, (D)t @° for
some formula @ of T, the interpretation shows TV 1 @7; consequently, TP
and T+ 9.

All formulas and theories considered in this paragraph will be objects of the
metalanguage and will be treated finitistically. D, AUy, ors )y EQ, 0, Uy cony )
are formulas of I¥Y, (4, E)k ® will stand for the formula obtained from & by
replacing each occurrence of set by E(s, , Uy, - u,) (s, t are variables or terms)
and each occurrence of (Yw) or (3w) by

VW) (AW, Uy, s ) —>.) o @w) (A, uys s ) & -0)

resp. We find this more convenient than the' usual notation &“®; it should not
lead to confusion as we will never employ the concept of satisfaction for math-
ematical formulas. However, the statement “j is an elementary embedding of M,
into M,” has its usual model-theoretic meaning.

From now till the end of the proof of Theorem 2 all mathematical work will be
done in TFV. We will first construct a suitably saturated elementary extension
of ¥ and interpret internal sets as its elements. Subsequently, we will extend the
interpretation to external sets. This is easy in case of MS,(%), but will require
results of §2 in case of NES;().

Let V, = the set of all here‘ditarily finite sets, Vyuq = P(V), V., = U V; for

§6<a
limit o; notice that ¥ = ¥, for a limit ordinal A.
Let (Ugl Bex), xe ON, be a sequence of regular ultrafilters. The iterated
ultraproducts of ¥, and their canonical elementary embeddings are defined in-
ductively for f<x and a<A:

(W2, EQ) = (Ve t V), Ji° =identity,

(WE*t, EF*Y) = the ultraproduct of (Wi, Ej) over Up, j5#*1 is the canonica,
elementary embedding of (W?, Ef) into the ultraproduct, AR
(Wt, EPy for B limit is the direct limit of (WF, EF'Y with resp. to the embeddings
I8 88 are the canonical elementary embeddings from the definition of the
direct limit. ’ ‘

For o < o there is a natural embedding if, of (W?, Ef) into (Wi, Ef) as
an initial scgment so that the following diagram commutes:

o ji-#,

B8
(W, By ——> (WE,EL)
D) 0 1 e
. a,a’l 8.8 o

j¢ v 1.
(WE, Bl ——— (WY, E7)
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We will identify x and i .(x) when no confusion is possible. Let

Wﬁ = U Wf: Eﬁ = U E&f’ if = U if,a’ 3 jﬁ’ﬁ = ]im-jf’ﬁ
@< a<i

a<i <l
" in the obvious sense. Finally, let W = W*, E = E*, i, = i%, j* = j**. j® embeds W*
into W, but it is not immediately obvious that j# is an elementary embedding.
Lemva 1. Let D be a formula of . Then
IVE (VA (Vze WHIWE, ENE (%) = (W, E) k (%) .

In particular,
VL (Ve MV, et V)EO®) = (W, E) k 6(j°R)))]

(55 =(X1; ene» xn)’ ](55_) = (j(xl): -">j(xn)))'
The lemma follows from
i) j2% is an elementary embedding of (WP, EF) into (WP, EFy for f<p' <x.
ii) (Reflection Principle): If VX e V) [(Vy, e M VYR SE) = (V,e t ME D(X)]
then (Vie WH(WE, ED)E (%) = (W*, E®) & &()] for all B<x and all a<A.

Proof of ii) is by induction on complexity of ®. In the only nontrivial case
(%) = @Y)¥(X, y) proceed by induction on 8. If xe WF*! and (Wh*r g+l
F@»¥ X, ), pick o/ >« s.t. o satisfies ii) for ¥ and @Ay e WEXYy(wh+t, g+
FYE,p); le, (WL B Y E@DPE, ). £ U Uy~ W? is such that x is the
equivalence class of f; in the ultraproduct over Uy, we have

{te VUl (WE, ESE @) P (), )} € U,

The inductive assumptions imply that o satisfies i) for ¥ and « satisfies ii) for ¢
and B, so (WY, EZ)F @)% (fu(9), »). Thus

Le Ul (7 EDF @)Y (50,9} e U ;
using AC, pick g: U Uy W?¢ such that
(e U Ul (WL EDE 2 (00, g()} € U
and let y be the equivalence class of g 'in WEL, then
WL EF Y E Y (x,5). B
If one interprets &(x) as x ej°[V], I(x) as xe W, xey as (x, y) e E, the
axioms (A); (Bl) and (B3) immediately follow. We now proceed to the heart of

the matter and extend the interpretation to external sets so that the remaining
axioms hold. This is done differently for NS, and NG,

Axiomatic foundations for Ne dard Analysis 15

Proof of Theorem 1. Choose x = A and let U, be the regular ultrafilter
on by = [V, chosen with the help of the universal choice function %} We do t'his
in order to ensure that W, E and all other concepts related to the interpretation
are definable over (V,e I V, § I V). Let 4 = (Wt E£, V) etc. Define 35(6‘ + 65
for £<1 using methods of § 2. Let

(*) - B, = {B<A] ct(f)>b, & (VE<P) (b, <P} -
Well-known properties of ultraproducts over regular ultrafilters and of their limits .
then imply:.

a) (WP, E®) is B-saturated, in part., b; -saturated, for pe B, (see [0]). )
b) Consequently, if 8, €B,, f<f, jBF is an L 5+ -elementary embedding
of (WP, E?) into (W', EF') (see [2]).
c) V, is definable over (W’, Ef) by a formula of L+t
V.= {xeW!| WLEDEVV (x = a)}

aeVe
and j## 1 V, = identity. Therefore, for 8, §’ € B,, f< B, jeF is an Lop2-elementary

embedding of WP = (W7, Ef, V,) into WE = (W, EL, 7).
Lemma 6 §2 shows that j&¥ can be canonically extended to an Lm:-elementary

-embedding j&#(€) of 34(Z; b)) into 35(¢; B;).

If a<o’ <A, if , embeds 0 into /" as an initial segment. By Lemma 4 of § 2,
there is an embedding if (&) of 35(¢; b)) into 35(&; b)) as an initial segment
(for all £<b}). The diagram (D) can now be extended to

e
38(&; B) ——> 35(&; ba)
(@+) Har®| A
3885 B) ——> 35(&; B
F (3]
for a<a’ <A (6<B]).

‘We let the interpretation for external sets to be the direct limit of this system
of structures. More precisely, let

3= 305560, e =0, Y =72PED,
3, = the limit of (3%, fe B,) with resp. to ji¥,
j# = the canonical embedding of 3} into 3.

. . . .8 il
There is no conflict with the previous notation because if, I WZ, ji% I Wl are

- the embeddings denoted i£,., & resp. in'(D). Notice also that R W = jb* as

defined in (D). o
For a<o we construct an embedding 7, of 3, into 3, as an initial segrt.len't
by taking the limit of (i, B € By); fpa | Wi = iz, as defined in (D). The limit
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of 3, with resp. to i,, will be denoted 3(c0) and the corresponding embeddings i,.
Then i, embeds 3, into S(co) as an initial segment. Finally, i = | i, I W embeds
a<ld

MW into 3. We will identify 98 with i(2B), 3, with #,(3,) and 34 with both j4(3f)
and '7,(j#(3%) if it cannot lead to misunderstanding.

Proof of the remaining axioms:

(B1) is obvious. B

(B4*): Let ¢ be a formula of I.

() If 7 WE, BeW; and for every finite b<B

@pe W)(Yx e b)BE o(x, B,7) ABe M(Vxe BBk o(x, B, 7).

Proof. Pick 6>« s.t. i) W{ is [B|"-saturated,
11) (V.X, ﬁ: ne Vb)[(V: E) E (p(x: ﬁ’ ;7') = (Vﬂa 6‘) }= QD(JC, B’I’)]:
iii) for every finite b= B Ff e W) (Yx e )Wk o(x, B, 7).

then

By Lemma 1 and ii) following it, (Vx € D)WL F @ (x, B, ?]) i) now implies. the
existence of fe Wi st. (VxeBYWik o(x, B, 7). Using Lemma 1 again, we get
(Vxe BYWE ¢(x, B, n) for this B.

(2) If 3F SS(4) then there is a<l, BSZ: s.t.

JFkxed=lyeB3r(x=y&ycd).

Proof. We need the fact that the construction of 3 is definable over (¥, &, §).

In part., there is a formula y such that
(V,e, &k xCx,f,7) iff 3kfis a function & f(x) e Z?.
Let A4, f be s.t. ‘

BECBUA & (Vx)[xed = Axe H(S(x) &) = x)].

Then (V,e, ®EVxed)@y)x(x,f, 7). The Axiom of Replacement holds in
(V,e, ® (see 2) in the formulation of TFY), so there is a<2 s.t.

Ve, B (Vxe HAy<aylx,f, 7).
Let B={xeZj 3Fxed}] |

. (3) (B4*) now follows from (1), (2) and the obvious “absoluteness” of
finiteness: 3 ke is finite iff there is a finite set a s.t.

JFxea = @yea)3F(x =y &yeca). B

(CO): if 4eZ, AeZ; for some a<ld;let A = {x& V.| 3 xed}. H

(C1), (C2), (C3) and (C4) for bound formulas hold in each 3’ by Lemma 1
of § 2, and they are existential formulas. Since 3¢ is embedded into 3 as an initial
segment and existential formulas are preserved by such embeddings, they hold in 3.

The full (C4) and (ARE)vwill follow immediately from the Reflection Principle
stated in Lemma 2 (notice Z5 € Z):

-
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Let t< A be limit, 3 will denote the limit of (3%] a<7) with resp. to the em-
beddings #£,.. Similarly, 3. will be the limit of (3,] <) with resp. to i, ,. In the
usual identification,

F=U3, 3.=U3..

a<t o<t

LEMMA 2. Let @ be a formula of WS(X). There is a closed unbounded set Ca <A
such that for all te Cy, o€ B, (see (x)), X €ZZ

(+) FEaX) = B Fo(X) = 3k O(X).

Proof. By induction on &. If & is bound, let Cp = {v<1| 7 limit}. If X eZs,
X eZC for some a<7. 3% is elementarily embedded into 3, and 37, 3, are initial
segments of 32, 3, resp., so
Fro@n) iff 3IFO(X) iff ko) iff B.Fo(X).
Also, B,F #(X) if 3F &(X) (3, is an initial segment of 3).
The remaining nontrivial case is &(X) = ANY X, Y).
The rest of the proof is done inside (¥, €, ¥); this is possible because the entire

construction of Z7, Z, Z and C, for subformulas y of @ is definable in (V, €, §).
Define: 1 € Cp iff 7€ Cy, (Ya<1)(b,<7) and

for all Xe 77, if 3k @Y)P(X, Y) then there are o, <7, n € Cy, f € B,,
and YeZf st. BEE P (X, 1.

il

(++)

It is clear that C, is a nonempty closed unbounded subset of A definable in
(V, e, §. Let t € Cy; the only nontrivial step in the proof of (+) is to show that,
for fixed c e B,, XeZ;, )

JEANYX, N-FEANYX, Y).

Assume 3F@AY)P(X, Y); pick y, 6>max(s, 1), 7€ Cy, 0 € Bys.t. 3 FPX,Y)
for some YeZ2; then also 32k ¥(X, Y).

Claim 1. There is an automorphism K* of 3 s.t. K"(X) e Z:.

Claim 1 implies 3%k ¥ ((*(X),k*(Y)), ie, 3F@NY( ' (X), ¥). From
(++) we get a,f<t, aeCy, BEB,, Y™ eZ! st Bir¥([E"(X), ™). As
a, 7€ Cy, we conclude 3F ¥ (EK*X), Y*), 32k ¥ (k*(X), Y**) and finally 32
EAY)¥ (XX, Y).

Claim 2. There is an automorphism I* of 32 s.t. THE* (X)) = X.

Claim 2 implies 3¢F @Y)¥P(X,Y) and completes the proof of Lem-
ma 2. H ’ ) X

Proof of Claim 1. Pick m<t st. XeZZ. Let §(X)e(W7)“* be the se-
quence assigned to X by Lemma 5 § 2 and let (W, &) be by -saturated elementary
submodel of (W7, E9) s.t. 5(X)SW, V,=W, |W| = b, ;. Notice that ¢ = by 11 <1,
(W2, E?) is a g-saturated model elementarily equivalent to (W, E). Thus there is
an elementary embedding & of (W, E’)'M, EY sit. kI V, = identity.

2 — Fundamenta Mathematicae XCVIII
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Let (g,, t<<ct(8)) be an increasing sequence of regular cardinals g, = @, 0,>b,,
014> by, lime, = 6. (W2, E®) is gq-saturated, o,>|Wy°|. We can thus find an
elementary embedding k, of (W2, E®) into (W7, E}) st ko IV, = identity,
k™ <k,. Notice that for a<y, Xe W iff (W°, EP) ExeV, iff (W), E,‘f‘) Fko(X)
e ko(V) Iff (W', B2 E ko(X) € V, iff ko(X) € W2

The usual zig-zag iteration of this construction by induction on ¢ will produce

a sequence of elementary embeddings &, s.t. k= (J & is an automorphism of
1<cf(8)
(W3, E%), B V, = identity, k™*<k and for all a<y, Xe weiff k(X)e W2.

Lemma 6 § 2 provides a canonical extension of k to an automorphism k*
of 32'st. for all <y, XeZ iff K" X)eZ:. Thus k* | Z; = U Z? is an auto-

morphism of 3,, The claim i) in the proof of Lemma 6 shows that §(k*(X?)
= k(X)) WS, so KX eZicZ;. W

Proof of Claim 2. We have §(k*(X)) = k(s(X)) let / be an elementary
embedding of ¢ into W s.t. [of = identity, /| V, = identity. The procedure
used in the proof of Claim 1 will again extend / to an automorphism I* of EZ‘ . We
have 5{I*(k*(X))) = [[k(3(X))) = 5(X), so l*(k*(X)) = .

Proof of Theorem 2. This is much easier. We choose % = A" (= b;") where
V = V,, and let Uy, be a regular ultrafilter on by, Let M, = MW and define 3,(£)
= (Z L&), ELS), V,) for £<A inductively:

it £=0,Z() =W, E) = E,, :

it ¢.ds limit, Z(&) = U Z(m), B = U Em),

n<g n<g
it ¢ =q+1,deZ8) = AdeZm)vASZm).
E(&) and I(&) are defined 1nduct1vc1y

a) E(msE(), -

b)if XeE(n), A<E[n) and X e 4 then (X, 4) € E(5),

c)if 4y, A, e E (&) and, for all Xe E,(n), (X, 4,) € E) = (X, 4,) € E(O)
then (4,, 4,) € 1(6),

d) if 4,, 4,eZ,&) and for some Xe
then (4,, 45) € E(&).

Let Z, = Z(1), Z= UZ, E= U B, W= UW., 3=(ZEW,V). We
have to show that 3 satlsﬁes (B2), (B4+) (C0O)- (C4) (APE) and (ACE).

(B2) and (CO) are as in the proof of Theorem 1.
(B4%): Let AeZ(8), 3F 8B(4); there is 4=Z(£) s.t. |4]< and

JEXed iff (AYed)JEX =Y& Yed).

As cf(6)>A>|A), thereis f<xst. 4 n WE = A n W. The result then follows from
14 0 WE|*-saturatedness of I and “absoluteness™ of the concept of finiteness.

The remaining axioms follow trivially from the fact that for every B=Z,(&)
‘there is 4 €Z({+1) st

\ 3kXed if

Zm) (A1, X) e L(§) & (X, 43) € E()

@YeB)3FX=Y. |

icm
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Proof of Theorem 4b). We will work in ZFC+ “1 is strongly inaccessible”
+V, kX, Set % = A, choose regular ultrafilters U, on b, and construct W, a<41,

B<x as before; let W, = W, Construct 3,(), 3,, 3 for £<A as in the proof of
Theorem 2.

The proof of validity of the axioms (B2), (C0)-(C4), (APE) and (ACE) in 3 is
the same as for Theorem 2. The only change needed in the proof of (B4*) is the
observation that |d|<A—|4|<cf(x) follows from the inaccessibility of » = A.

Finally, to prove (ES-ARE), let 3F €S(4) & (VX e A)@A V)¢ (X, Y). Again
there is ASZ(&), ld|<4, st. JEXed iff AYeAd)ZE(X =Y& Yed). As
|4]<2, A inaccessible, there is £<A st. (VX e DHEAYeZ(H))3F o(X, ¥). Let
B = Z,(£); then obviously 3F (VX eA)[AY)p(X, Y)>@YeB)o(X,Y)]. B

Note (added August 1, 1977). Some of the recent comstructions in Nonstandard Analy-
sis can be better formalized in NS, or NS, than in NS,. This is true e.g. for the Loeb—
Anderson approach to measure theory (which turns out to be closely connected with the ex-
ternal Dedekind cuts in the ordering of internal real numbers mentioned in the remark fol-
lowing Theorem 4). An expository paper dealing with some of these topics from the point
of view of M, (but not requiring any knowledge of logic) is in preparation. On the other
hand, we feel that NS, might show to be more suitable for applications of nonstandard
methods to the study of set theory.
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