

A note on the cardinal factorial

by

David Pincus * (Cambridge, Mass.)

Abstract. A model of set theory without choice is exhibited which satisfies "For all infinite x, $2^x = x!$ ".

Dawson and Howard [1] compare the cardinals 2^x (the cardinal of the power set) and x! (the cardinal of the symmetric group) in set theory without the axiom of choice. They show that x < x! for $x \ge 3$, $2^x \le x!$ for x such that $2 \cdot x = x$, and $2^x = x!$ for x such that $x^2 = x$. They also illustrate by examples in models of set theory that all 3 possibilities of inequality between 2^x and x! can occur. These possibilities are; $2^x < x!$, $x! < 2^x$, and 2^x is incomparable with x!.

A question which Dawson and Howard pose without answering concerns the strength of the statement "For all infinite x, $x! = 2^{xx}$ ". They ask whether this statement is an equivalent to the axiom of choice. In this note we answer the question in the negative by producing a model for ZF set theory in which the statement is true and the axiom of choice is false.

1. The model. The model is introduced in [3] § II as an example of a ZF model without choice in which there is a class of sets consisting of exactly one representative for each cardinal number. It is defined as M = U[I] where U is a model of ZF, class choice, and the generalized continuum hypothesis and where $I = \bigcup_{n \in \omega} I_n$, $I_{-1} = 2$, and I_{n+1} is a countable set of independent generic functions from ω onto I_n . Notice that $\langle I_n^n \colon n \in \omega \rangle \in M$, $I_0 = I \cap 2^{\omega}$, $I_{n+1} = I \cap I_n^{\omega}$.

M can be regarded as an intermediate model between U and V where V is the extension of U by a generic filter for a countable partially ordered set. It follows that V satisfies class choice and the generalized continuum hypothesis and that alephs and cofinalities are preserved between U, M and V. We adopt the convention that a set theoretical concept is assumed to be defined relative to M unless a relativization to U or V is indicated by the appropriate superscript. A concept, such as ω_{α} , whose meaning is independent of its relativization to U, M, or V is not superscripted.

^{*} Partially supported by NSF grant GP 44014.

a. Remark (ln M). If 2 sets of ordinals have the same cardinal then there is a 1:1 onto map between them defined from parameters in U.

Proof. Map the two sets 1:1 and onto the ordinals of their order types. The two ordinals have the same cardinal in M, hence in U, so there is a 1:1 onto map between them in U.

2. The support structure of M. If G is a finite subset of I we say that $x \in VG$ if x is definable in M with parameters in $G \cup \{I\} \cup U$. Since M = U[I] and the transitive closure of $I \subset U \cup I$ it follows that every $x \in M$ belongs to some VG. I has a canonical linear ordering in M (it is defined inductively using $I_{n+1} \subset I_n^{\omega}$) so there is a canonical function $T(G, \alpha)$ such that for fixed G, $T(G, \alpha)$ maps On (the class of ordinals) onto VG.

Every member of I_{n+1} is a map from ω onto I_n . It follows that if $G \subset I_{n+1}$ VG contains an enumeration of $\bigcup_{m \leq n} I_m$. Thus if $x \in M$ there is an $n \in \omega$ and $G \subset I_n$ such that $x \in VG$. The support lemma ([3] II 14) shows that if n is taken to be least and |G| is taken to be minimal then G is uniquely determined. This G is denoted G_x . A corollary of the density lemma ([3] II 13b) is that if $f \in I \cap VG$ and $G \subset I_n$ then $f \in G \cup \bigcup I_n$. From this:

- a. Theorem [3]. The axiom of choice fails in M. In fact $\langle I_n : n \in \omega \rangle$ is a countable sequence of countable sets which fails to have a choice function.
- b. THEOREM [3]. The ordering theorem is true in M. In fact if J_n is the set of finite subsets of I_n and $J = \bigcup_{n \in \omega} J_n$ then there is a 1:1 onto function $T^*: J \times On \rightarrow M$ definable from I in M.
- c. Theorem [3]. There is a function, $\overline{\Psi}$, definable from I in M such that for every infinite x, $\overline{\Psi}(x)$ is a countable (in M) subset. $\overline{\Psi}(x)$ is easily produced from the fact that for some least n, $x \cap \bigcup_{G \in J_n} \overline{VG}$ is infinite.
- 3. On 2^{ω_x} in M. Since each $G \in J$ is coded by a real. (An easy induction on n established this for $f \in I_n$ and a coding trick; together with Theorem 2b, extends this to G.) and since $(2^{\omega_x})^V = \omega_{\alpha+1}$ it follows that $|\{a \in 2^{\omega_\alpha}: G_a = G\}| = \omega_{\alpha+1}$. (|x| denotes the cardinal number of x.) Remark la now gives:
 - a. Lemma (ln M). $2^{\omega_{\alpha}} = |J \times \omega_{\alpha+1}|$.

For any $x \in M$ and $G \in J$ set $\omega(G, x) = |\{y \in x : G_y = G\}|$. Also set $\omega(x) = \sup_{G \in J} \omega(G, x)$ and $\omega^*(x) = \max(\omega, \omega(x))$.

b. Lemma (ln M). If $2^{\omega_{\alpha}} \le |x|$ and $\omega(x) \le \omega_{\alpha+1}$ then $2^{\omega_{\alpha}} = |x|$.

Proof. By the Cantor-Bernstein theorem one need only show $|x| \leqslant 2^{\omega_x}$. By Remark la and the fact that $\omega(x) \leqslant \omega_{\alpha+1}$ there is a 1:1 map from x into $J \times \omega_{\alpha+1}$. This suffices by Lemma 3a above.

4. THE MAIN THEOREM (ln M). If x is infinite $2^x = x! = 2^{\omega^*}(x)$.

Proof. We will apply Lemma 3b. Let $\omega^*(x) = \omega_{\alpha}$. To see that $\omega(2^x) \leq \omega_{\alpha+1}$ notice that $\omega^*(x) = |x|^V$ so that $(2^x)^V = \omega_{\alpha+1}$. $2^x = (2^x)^V$ so $|z| \leq \omega_{\alpha+1}$ for any well ordered z = x. This applies in particular to $\{y \in x : G_Y = G\}$. A similar argument shows that $\omega(X^1) \leq \omega_{\alpha+1}$.

It remains to prove $2^{\omega^*(x)} \leqslant 2^x$ and $2^{\omega^*(x)} \leqslant x!$. We consider first the case in which x has a subset y, with cardinal $\omega^*(x)$. This case includes $\omega^*(x) = \omega$ by Theorem 2c. In this case $2^y \subset 2^x$ so $2^{\omega^*(x)} \leqslant 2^x$. Also, since $y^2 = y$, $2^{\omega^*(x)} = 2^y = y! \leqslant x!$.

Unfortunately, owing to the lack of choice in M, one cannot dismiss the possibility that x has no subset of cardinal $\omega^*(x)$. In this case $\{\omega(G, x) \colon G \in J\}$ is a countable set of ordinals by Remark la and the fact that J is a countable union of countable sets. Let $\omega^{(0)} < \omega^{(1)} < \omega^{(2)} < ... < \omega^*(x)$ be a sequence of uncountable cardinals from among the $\omega(G, x)$ with limit $\omega^*(x)$. (Note that $\omega^*(x) = \omega(x)$ since $\omega^*(x) \neq \omega$.) Let $A_n = \{G \in J \colon \omega(G, x) = \omega^{(n)}\}$. Let $y = \bigcup_{n \in \omega} (A_n \times \omega^{(n)})$. Another use of Remark la permits the conclusion that $|y| \le |x|$, hence that $2^y \le 2^x$ and $y! \le x!$.

It now suffices to show $2^{\omega^*(x)} \leq 2^y$ and $2^{\omega^*(x)} \leq y!$. Actually $2^{\omega^*(x)} \leq 2^y$ will do because $y=2\cdot y$ so $2^y \leq y!$. To see that $y=2\cdot y$ one has only to notice that the canonically defined 1-1 onto maps between $\omega^{(n)}$ and $2\cdot \omega^{(n)}$ give canonically defined 1-1 onto maps between $A_n \times \omega^{(n)}$ and $2\times A_n \times \omega^{(n)}$. These patch together to give a 1-1 onto map between y and $2\times y$.

It is also not difficult to see that $2^{\omega^*(x)} \leq 2^y$. Map $a = \omega^*(x)$ to $\bigcup_{n \in \omega} (A_n \times (\omega^{(n)} \cap a))$. If $a \neq b$ then, as $\omega^*(x) = \sup_{n \in \omega} \omega^{(n)}$, some $a \cap \omega^{(n)} \neq b \cap \omega^{(n)}$. Thus a and b have different images.

5. Concluding remarks.

- a. $2^x = x!$ can now be seen not to imply $x^2 = x$ or even $2 \times x = x$. As was shown in [3] II 19, the set I fails to satisfy $2 \times I = I$ in M.
- b. M satisfies "For every infinite x there is a well ordered $\omega^*(x)$ such that $2^x = 2^{\omega^*(x)}$. This is an interesting property but it does not imply $2^x = x!$ because a similar argument establishes this statement in the model $U[I_0]$ which is the Halpern-Lévy model of [2]. $U[I_0]$ can be seen, by methods similar to those of [1], to satisfy $I_0! < 2^{I_0}$.
- c. Our arguments have made little use of the particular definition of x!. Indeed let \mathcal{F} be any set valued operation which satisfies:
 - 1) The predicate $y \in \mathcal{F}(x)$ is absolute (at least from M to V).
- 2) ZF proves $|y| \le x \Rightarrow |\mathscr{F}(y)| \le |\mathscr{F}(x)|$ and $|2x| = |x| \Rightarrow 2^x \le |\mathscr{F}(x)|$ for infinite x.
 - 3) ZF with choice proves $2^x = |\mathscr{F}(x)|$ for infinite x.

The statement "For every infinite x, $2^x = |\mathscr{F}(x)|$.", holds in M (and therefore is not an equivalent to the axiom of choice). Examples of \mathscr{F} , apart from x!, are x^x and $x^x - x!$.

24

D. Pincus

References

- [1] J. W. Dawson and P. E. Howard, Factorials of infinite cardinals (to appear).
- [2] J. D. Halpern and A. Lévy, The Boolean prime ideal theorem does not imply the axiom of choice, Proc. Symp. Pure. Math. 13, Part I, pp. 83-134.
- [3] D. Pincus, Cardinal representatives, Israel J. Math. 18 (1974), pp. 321-344.

UNIVERSITY OF WASHINGTON Seattle, Washington MASSACHUSETTS INSTITUTE OF TECHNOLOGY Cambridge, Mass.

Accepté par la Rédaction 26, 5, 1975

Some results on uniform spaces with linearly ordered bases

by

Hans-Christian Reichel (Wien)

Abstract. The paper is concerned with uniform spaces having a base linearly ordered by inclusion of entourages (or by refinement of uniform coverings, respectively). By a well-known fact, these spaces coincide with the socalled ω_{μ} -metric spaces, for which several well-known metrization theorems can be extended. — Amongst several applications, two characterizations of compact metric spaces and of separable metric spaces are derived.

§ 1. Introduction. The uniform structure \mathfrak{U}_d of any metric space (X, d) obviously has a linearly ordered base \mathfrak{B} consisting of entourages

$$U_n = \{(x, y) | d(x, y) < 1/n\}, \quad n = 1, 2, ...$$

More generally, it is interesting to study uniform spaces (X, \mathfrak{U}) with linearly ordered bases \mathfrak{B} ($U_i < U_j$ iff $U_i \supset U_j$ for U_i , $U_j \in \mathfrak{B}$). Such spaces have been investigated by many authors and under several aspects: R. Sikorski [37], F. Hausdorff [12, p. 285 ff], L. W. Cohen and C. Goffman [5], F. W. Stevenson and W. J. Thron [39], Shu-Tang Wang [42], P. Nyikos and H. C. Reichel [27], [28], A. Hayes [15], P. Nyikos [25], R. Paintandre [29], E. M. Alfsen and O. Njastad [2], M. Fréchet [9].

If (X, \mathfrak{U}) is a uniform space with a linearly ordered base \mathfrak{B} and \mathfrak{R}_{μ} is the least power of such a base, then there exists an equivalent well ordered base of power \mathfrak{R}_{μ} ([39]). (Obviously, such a space is metrizable iff $\mu=0$). Moreover, F. W. Stevenson and W. J. Thron [39] showed that any such space (X,\mathfrak{U}) is ω_{μ} -metrizable in the sense of R. Sikorski. That means: there is a linearly ordered abelian group G which has a decreasing ω_{μ} -sequence converging to 0 in the order topology, and a "distance function" $\varrho\colon X\times X\to G$ satisfying the usual axioms for a metric on X, which generates the topology of X. (Here ω_{μ} denotes the μ th infinite cardinal). — Conversely, any ω_{μ} -metric ϱ on X induces a uniformity \mathfrak{U}_{ϱ} on X, a base of which consists of all sets $U_a=\{(x,y)|\ \varrho(x,y)< a\},\ a\in G,\ a>0$. Many properties of metric spaces have their analogues in the theory of ω_{μ} -metric spaces, however the uncountable case usually regards different proofs and methods (see for example: [27], [28], [42]).