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A note on the cardinal factorial
by

David Pincus * (Cambridge, Mass.)

Abstract. A model of set theory without choice is exhibited which satisfies “For all infi-
nite x, 2¥ = x!”,

Dawson and Howard [1] compare the cardinals 2% (the cardinal of the power
set) and x! (the cardinal of the symmetric group) in set theory without the axiom
of choice. They show that x<x! for x=3, 2*<x! for x such that 2-x = x, and
2% = x! for x such that x? = x. They also illustrate by examples in models of set
theory that all 3 possibilities of inequality between 2% and x! can occur. These possi-
bilities are; 2¥<x!, x!<2* and 2% is incomparable with x!.

A question which Dawson and Howard pose without answering concerns the
strength of the statement “For all infinite x, x! = 2*”. They ask whether this state-
ment is an equivalent to the axiom of choice. In this note we answer the question
in the negative by producing a model for ZF set theory in which the statement
is true and the axiom of choice is false.

1. The model. The model is introduced in [3] § IT as an example of a ZF model
without choice in which there is a class of sets consisting of exactly one representative
for each cardinal number. It is defined as M = U[I] where U is a model of ZF,
class choice, and the generalized continuum hypothesis and where I = UL,I_., =2,

B neo
and I, is a countable set of independent generic functions from e onto I,. Notice
that (I": newdeM, Iy =In2° Ly =Inl;

M can be regarded as an mtermedlate model between U and ¥ where ¥ is the
extension of U by a generic filter®for a countable partially ordered set. It follows
that V satisfies class choice and the generalized continuum hypothesis and that alephs
and cofinalities are preserved between U, M and V. We adopt the convention that
a set theoretical concept is assumed to be defined relative to M unless a relativization
to U or V is indicated by the appropriate superscript. A concept, such as ,, whose
meaning is independent of its relativization to U, M, or V is not superscripted.
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a. Remark (In M). If 2 sets of ordinals have the same cardinal then there is
a 1:1 onto map between them defined from parameters in U.

Proof. Map the two sets 1: 1 and onto the ordinals of their order types. The
two ordinals have the same cardinal in M, hence in U, so there is a 1:1 onto map
between them in U.

2. The snpport structure of M. If G is a finite subset of I we say that x e VG
if x is definable in M with parameters in G w {I} u U. Since M = U[I] and the
transitive closure of Ic U v I it follows that every x € M belongs to some VG. I has
a canonical linear ordering in M (it is defined inductively using I,.; =I?) so there
is a canonical function T(G, o) such that for fixed G, T'(G, o) maps On (the class
of ordinals) onto VG.

Every member of I, is a map from « onto I,. It follows that if Ge1,,,

VG contains an enumeration of {J I,. Thus if x € M there is an ne w and Gcl,
msn

such that x e V'G. The support lemma ([3] II 14) shows that if # is taken to be least
and |G is taken to be minimal then G is uniquely determined. This G'is denoted G,.
A corollary of the density lemma ([3] IT 13b) is that if fe I n VG and GcI, then
feGu U I,. From this: ‘

m<n
a. THEOREM [3]. The axiom of choice fails in M. In fact {I,: n € w) is a countable
sequence of countable sets which fails to have a choice function.
b. THEOREM [3). The ordering theorem. is true in M. In fact if J, is the set of
finite subsets of I, and J = ) J, then there is a 1:1 onto function T*: Jx On—M

new
definable from I in M.

, c. THEBREM [3]. There is a function, O, definable from I in M such that for every
infinite x, ¥ (x) is a countable (in M) subset. V(x) is easily produced from the fact
that for some least n, x n ) VG is infinite.

Geldpn
. 3. On 2™ in M. Since each GeJis coded by a real. (An easyinduction on n estab-
lished 'this for feI, and a coding trick; together with Theorem 2b, extends this
to G.)and since (29" = w,,, it follows that |[{a€2%: G, = G}| = wouq. (|
denotes the cardinal number of x.) Remark la now gives:
a. LEMMA (In M), 2%* = |Tx @,4q].

For any xeM and GeJ set w(G, %) = |{yex: Gy = G}|. Also set
ox) = gupm(G, %) and o*(x) = Max(w, o (x)).
ed
b. Lemva (In M). If 2°*<|x] and w(x)<w,.q then 2% = |x].
Proof. By the Cantor-Bernstein theorem one need only show |x|<29* By

Remark la and the fact that o (X)<w,, there is a 1: 1 map from x into J x Wyp1e
This suffices by Lemma 3a above.

4. THE MAWN THEOREM (In M). If x is infinite 2% = x! = 2°%(x).
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Proof. We will apply Lemma 3b. Let o*(x) = ,. To see that @ (29)<w,4q
notice that w*(x) = |x|” so that (2% = @,41. 222 50 2] W,y for any well
ordered zcx. This applies in particular to {y e x: Gy = G}. A similar argument
shows that o (XD <04y . .

It remains to prove 22" <2 and 2°*®<x!. We consider first the case in
which x.has a subset y, with cardinal w*(x). This case includes w*(x) = w by
Theorem 2¢. In this case 2°c2* so 2°'®g2"  Also, since y*> =3y,
204 = 29 = pigxl.

Unfortunately, OWiI;F to the lack of choice in M, one cannot dismiss the possi-
bility that x has no subset of cardinal *(x). In this case {w (G, x): GeJ} is a coun-
table set of ordinals by Remark la and the fact that J is a countable union of coun-
table sets. Let 0@ <o <o <...<w*(x) be a sequence of uncountable cardinals
from among the w(G,x) with limit o*(x). (Note that o*(x) = w(x) since
o*(x) # 0) Let A, = {GeJ: (G, x) =™} Let y= U (4, x ©™). Another

N RE®@
use of Remark la permits the conclusion that [y| <|x|, hence that 72" and yl<x!.
Tt now suffices to show 2°*®.<2” and 2°*® y!. Actually 2% <2” will do be-
cause y=2-y so 2?<y!. To see that y=2:y one has only to notice that the canoni-
cally defined 1-1 onto maps between »™ and 2-0™ give canonicaly defined 1-1
onto maps between 4, X o™ and 2x4,xo™. These patch together to give a 1-1
onto map between y and 2xy.
It is also not difficult to see that 2°°® <2, Map acw*(x) to L{)(A,, x (0™ n a)).

Tf a b then, as 0*(x) = Supo™, some a N ©™ # b N ©®. Thus a and b have
different images. :

5. Concluding remarks. .

a. 2 = x! can now be seen not to imply x* = x or even 2xx = X. As was
shown in [3] II 19, the set 7 fails to satisfy 2xJ = I in M.

b. M satisfies “For every infinite x there is a well ordered w*(x) such that
2% = 2°*®_ This is an interesting property but it does not imply 27 = x! because
a similar argument establishes this statement in the model Ull,] which is the
Halpern-Lévy model of [2]. U[ly] can be seen, by methods similar to those of [1],
to satisfy Ip!<?2'e.

¢. Our arguments have made little use of the particular definition of x!. Indeed
let & be any set valued operation which satisfies:

1) The predicate y € & (x) is absolute (at least from M to V).

2) ZF proves |yl<x = [FOI<|F()| and 12x] = x| = 2*<1F (%) Tor
infinite x. ‘

3) ZF with choice proves 27 = |# (x)| for infinite x.

The statement “For every infinite x, 2* = |% (x)|.”, holds in M (and therefore
is not an equivalent to the axiom of choice). Examples of &#, apart from x!, are x”
and x*—x!.
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Some results on uniform spaces N
with linearly ordered bases

by

Hans-Christian Reichel (Wien)

Abstract. The paper is concerned with uniform spaces having a base linearly ordered by in-
clusion of entourages (or by refinement of uniform coverings, respectively). By a well-known fact,
these spaces coincide with the socalled @p-metric spaces, for which several well-known metrization
theorems can be extended. — Amongst several applications, two characterizations of compact
metric spaces and of separable metric spaces are derived.

§ 1. Introduction. The uniform structure 1, of any metric space (X', 4) obviously
has a linearly ordered base B consisting of entourages

U, = {(x,») d&x, »)<1lfn}, n=1,2,..

More generally, it is interesting to study uniform spaces (X, 1) with linearly ordered
bases B (U;<Uj iff U;=U; for Uy, Uje B). Such spaces have been investigated by
many authors and under several aspects: R. Sikorski [37], F. Hausdorff [12, p. 285 ff],
L. W. Cohen and C. Goffman [5], F. W. Stevenson and W. J. Thron [39], Shu-Tang
Wang [42], P. Nyikos and H. C. Reichel [27], [28], A. Hayes [15], P. Nyikos [25],
R. Paintandre [29], E. M. Alfsen and O. Njastad [2], M. Fréchet [91.

If (X, 10) is a uniform space with a linearly ordered base B and 8, is the least
power of such a base, then there exists an equivalent well ordered base of power
8, ([39]). (Obviously, such a space is metrizable iff u = 0). Moreover, F. W. Ste-
venson and W. J. Thron [39] showed that any such space (X, ) is o,~metrizable
in the sense of R. Sikorski. That means: there is a linearly ordered abelian group G
which has a decreasing w,-sequence converging to 0 in the order topology, and
a “distance function” g: X x X—G satisfying the usual axioms for a metric on X,
which generates the topology of X. (Here w, denotes the pth infinite cardinal). —
Conversely, any w,-metric ¢ on X induces a uniformity 2, on X, a base of which
consists of all sets U, = {(x, )| e(x,))<a}, a€ G, >0. Many properties of metric
spaces have their analogues in the theory of o,~metric spaces, however the un-
countable case usually regards different proofs and methods (see for example: [27],
[28], [42].
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