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DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIE

Some structure theorems for inverse w-semigroups *
by

C. H. Applebaum (Bowling Green, Ohio)

Abstract. This paper gives various conditions for an inverse w-semigroup to be an w-semilattice
of w-groups, and characterizes the effectivity conditions and the structure that must be placed on
a collection of w-groups in order that they form an w-semilattice of w~groups. It is also shown
by means of counterexamples that the effectivity conditions mentioned above are the best possible
ones,

§ 1. Introduction. Let & stand for the set of hon-negative integers (numbers), V for
the class of all subcollections of & (sets), A for the set of isols, and Q for the class of
all recursive equivalence types (RET). By a function, we mean a mapping from
a subset of ¢ into a subset of . If fis a function, df and of stand for domain of f and
range of f respectively. The relation of inclusion is denoted by <, a recursively
equivalent to f by o, for sets « and B, and the RET of by Req(«). The concepts
of an @-semigroup and an inverse w-semigroup were introduced in [3] and that of
an o-group in [7]. The purpose of this paper is to see how to put w-groups together
to form inverse w-semigroups. Theorems T1, T2 and TS5 tell when an inverse w-semi- -
group is an w-semilattice of w-groups, and Theorem T6 tells us exactly how to put
w-groups together in order to form an inverse w-semigroup which is an w-semi-
lattice of these w-groups. Examples are given following T6 to show that the effec-
tivity conditions of T6 are the best possible. Finally T3 demonstrates that there are
continuum many non w-isomorphic regressive isolic semigroups that are inverse
semigroups but not inverse w-semigroups.

§ 2. Basic concepts and notations. The reader of this paperis assumed to be familiar
with the notation and basic results of [3], [4], [6], [7]. The meaning of the concept,
“an element y can be effectively found given x, ..., x, such that P(xy, ..., x,, ¥)”
can be found on p. 602 of [3].

NOTATION. For the rest of the paper an w-semigroup will be an ordered pair,
(@, p), where ace and p is a semigroup operation on «xa which can be extended
to a partial recursive function of two variables. We usually denote p(x, y), by x -y

or just xy, for x,yea.
—_— i

* This research was partially supported by a research grant from the Faculty Research Com-
mittee of Bowling Green State University.
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Remark, We recall from semigroup theory that a semilattice is a commutative
idempotent semigroup, i.e. a commutative semigroup in which every element is an
idempotent. Also, a semigroup S is a semilattice of groups if S is a disjoint union of
group {G,| ee ¥} where Y is a semilattice and such that if x € G,and y € G, then
Xy€Gqap. .

DEFINITION, A semigroup S is a semilattice of w-groups if S is a semilattice of
groups and the groups in question are each w-groups.

" DEFINITION. A o-semigroup S is an w-semilattice of w-groups if S is a semi-
lattice of w-groups {G,| ee Y} indexed by an w-semilattice ¥ and there are func-
tions f and g (each with a partial recursive extension) such that for each x & S, f ()
is the unique ¢ € ¥ such that x € G, and g(x) is the group inverse, x~%, of x in G,.

Remark. (i) Let S be an w-semigroup and a € S, We recall from [3] that ie §
is an w-regular left (right) unit of a, if given a, we can effectively find { and xe §
such that i'a = g and a'x =i (a*i = g and x-a = i). Also we recall that 7 is an
w-regular two sided unit of a if it is both an w-regular left unit of a and an w-regular
right unit of @; and that each @ € S may have at most one w-regular two sided unit.

(ii) We recall from [3] that an w-semigroup S is an inverse w-semigroup if for
each a e S there exists a unique b € S (denoted g~ ) such that a-b-a = a, b-a‘b = b
and b is an w-inverse of 4. In other words, an inverse w-semigroup is an inverse
semigroup in which for each ¢e S we can uniformly effectively find o™,

(iii) If S is an inverse w-semigroup and e is an idempotent of S, from [3] we
remember that

G, = {xe S| e is an w-regular two sided unit of x}
is the largest w-group in S with e as its identity.

§ 3. Decomposing inverse o-semigroups.

Remark. The purpose of this section is to give various characterizations for
an inverse w-semigroup to be an w-semilattice of c-groups.
- Lemwa L1 [5, II, p. 41]. An inverse semigroup S is a union of groups iff the regular
left and right units of each element of S are equal.

Lemma L2 (5, 1, p. 129]. The condition that a semigroup S be a semilattice of groups
is equivalent to the conjunction of any two of the following conditions:

(1) S is a union of groups.

() S is an inverse semigroup.

(3) Every one-sided ideal of S is a two sided ideal of S.

THEOREM T1. Let S be an inverse w~semigroup. Then S is a semilattice of groups
Uf S is an w-semilattice of w-groups.
" Proof. The only if part is immediate. So, suppose § is an inverse co-semigroup
that is a semilattice of groups. Then S is a disjoint union of groups {H,| ee ¥},
for a semilattice ¥, and by L1, the regular left and right units of each element of § are
equal. However, by [8, p. 79], for each ae S, a-a~* is the only regular right unit
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of a and ¢™*-a is the only regular left unit of a. Thus a-a~*(= a~1-q) is the unique
regular two-sided unit of a. Since the only idempotents in S are the identities of
each H,, the set of idempotents of S is of the form {a-a~*| a € §}. But in an inverse
w-semigroup the idempotents commute, thus {a-a™| ae S} is an w-semilattice
and it easily follows we can assume Y = {a-a”'| ae S}. (Note: ¥ may not be
o-isomorphic to {g-a™*| ae S} but it is enough that it is isomorphic to it.) Also,
since § is an inverse c-semigroup, 2~! is the w-inverse of a; from which it follows
that Y is the set of w-regular two-sided units of elements of S. Thus for each
eeY, H,= G, = {xeS| eis an w-regular two sided unit of x}, is an w-group,
and since for each aeS we can effectively find a~! and a-a~! we see that
§= U{G. ec ¥} is an w-semilattice w-groups.

COROLLARY 1. Let S be an inverse w-semigroup. Then S is an o-semilattice of
w-groups iff for each ae S, the w-regular left and w-regular right units of a are
equal.

Proof. Use L1, 12, and then TI.

COROLLARY 2. If every element of an inverse w-semigroup S commutes with
its w-inverse then S is an w-semilattice of w-groups. ‘

COROLLARY 3. If S is a commutative inverse w-semigroup, then S is an w-semilat-
tice of w-groups.

COROLLARY 4. If S is an w-semigroup then S is an c-semilattice of w-groups
iff S is an inverse w-semigroup and either

(1) S is a union of groups or

(2) every one-sided ideal of S is a two-sided ideal of S.

Remark. If S is an w-semigroup which is a group but not an w=-group,
then §'is a union of groups and an inverse semigroup and every one-sided ideal of S'is
a two-sided ideal of S; but S is not an inverse w-semigroup nor an @-semilattice
of w-groups. However, if S is a periodic w-senrigroup then things are nicer.

THEOREM T2. If 8 is a periodic w-semigroup then S is an w-semilattice of ‘periodic
w-semigroups iff S is a semilattice of groups.

Proof. The if part is immediate. If S is a semilattice of groups {G,] ee Y}
and S is periodic then by T1 of [3] each of these groups G, is an @-group in which an
inverse of an element a e G, is just a power of a. It follows that § is an inverse
w-semigroup and by Ty, S is an w-semilattice of periodic @-groups.

COROLLARY 1. If S is an isolic semigroup then S is an o - semilattice of isolic groups
iff S is a semilattice of groups.
COROLLARY 2. If' S is an isolic (periodic w-) semigroup then S is an c-semilattice
of isolic (periodic «-) groups iff any two of the following three conditions hold:
() S is an inverse semigroup.
(i) S is a union of groups.
(ii) Every one-sided ideal of S is a two-sided ideal of S.
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COROLLARY 3. If S is @ commutative isolic (periodic w-) semigroup then S is an
w-semilattice of isolic (periodic w-) groups iff either (i) is an inverse semigroup
or (ii) S is a union of groups.

Proof. Condition (iii) of Corollary 2 holds since § is commutative.

COROLLARY 4. If S is a commutative isolic (periodic w-) semigroup then S is an
inverse w-semigroup iff S is an inverse semigroup.

Remark. We know from [3] that if S is an isolic semigroup then:

@ S is a group iff S is an isolic group.

(i) § is a right group iff S is an isolic right group.

Now by Corollary 4 we see that if S is also commutative then S is an inverse
semigroup iff § is an inverse w-semigroup. The question arises as to how much more

general § can get and still allow us to effectively get inverses. The following theorem
is relevant to this question.

THEOREM T3. There exist contiruum many non @ -isomorphic regressive isolic
semigroups which are inverse semigroups but not inverse w-semigroups.

Proof. Recall from [3] that I(s), the symmetric inverse w-semigroup on &, i's
the coded set of one-to-one finite partial functions from ¢ into ¢ und'er th.e multi-
plication of composition of functions. The semigroup we want to consider is a s.ub-
semigroup of J(¢) using functions with one point domains and a nonstfmdard coding.
Partition ¢ into two element sets, & = {{2n, 2n+1}| ne ¢} and consider four func-
tiomS, fant 1> Sant2s Sant3s Sansa OD €ach two element set. Let fo,4 = {(271,.2")},
fanrz = {@n+1,204 1)} fanes = {20, 204D}, fayra = {@n+1,20)}. anall'y
let f; be the empty function. The collection {f}| 7& ¢} with the normal coding is
a subsemigroup of I(g), with the property that fy,4;°famsr = f(? if m.# n and
1<, k<4. In other words, to examine multiplication in this subsemigroup it suffices
to consider how { fant1»fans2sFanta> fanva) intermultiply. This is easy to see and
is left to the reader. It follows that {f;| ie e} forms an inverse semigroup. Th.e
idea of the proof is to choose a coding of {f}| i e} which gives an effective 1m-11t1-
plication but not effective inverses. To this end, let @, be a T-retraceable function,
that is a retraceable function with the property that for each partial recursive func-
tion p of one variable there is an me ¢ such that n>m implies p(a,) <@,y
(where p(a,) <a,. also holds if p(a,) is undefined). We recall that pa is a retraceable
immune set and Req(ga) is called a T-regressive isol. Let a; be the code of f;, for
allies; and let 4 = (pa, #), where a4, * a; = a, iff f; o f; = f,. Since a, is retracc.ablt‘t,
it is easy to check that multiplication in 4 is effective. Thus 4 is a regressive isolic

semigroup. Now, suppose there were a partial recursive function p such that

pla) = a;,forall q; € ga, thenthere is.an m e g such that, #>m implies p (#,) <dy4+1-
But, for all kee, anlrs = Gaprq. S0, for all kee, plasess) = Gaprq. But if
4k+32=m then p(duyss) <@a+q. Hence, we have a contradiction and we conclude
no such p exists. Thus 4 is not an inverse w-semigroup. The fact that there are
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continuum many non w-isomorphic such semigroups A follows from the fact that
there are continuum many T-regressive isols [9].

COROLLARY. There exists a cosimple regressive semigroup which is an inverse
Semigroup but not an inverse - Semigroup.

Proof. There exists a cosimple T-retraceable set.

Lemma L3 [5, I1, p. 41]. Let S be an inverse semigroup with a finite set E of idem-
potents. If E forms a chain (under its natural ordering), then S is a union of groups.

Remarks. (i) The natural ordering on E is given by
es<f iff ef=fe=e forale,fcE.

Also, recall that since S is an inverse semigroup, E is commutative, i.e. E is
a semilattice.

(i) We would like to extend L3 to the case where E is isolic. This is of interest,
since it is known that L3 is not true in general if E is infinite. A

(ii) Let e, a, b be distinct numbers, and let C be the semigroup generated
by @ and b, {a,b>, such that e:a=a-e=a, eb=be=b, a-bh = e, ba#e.
Then by [5, I, p. 44], every element of C is uniquely expressible in the form b™-a”,
for m,nee, (@° = b° = ¢) and C is called the bicyclic semigroup (generated by a
and b), Thus C = {b™ a"| m,ne e}. We call e the identity of C.

DEFINITION. Let ¢ and b be distinct numbers. Code C as follows. The code
of b"-a"e C is j(j(b, m), j(a,n)), where j(x,y) is-the standard recursive pairing
function from &* onto &. Then we call Ceapy = {7(j (B, m), j(a, W) m, ne e}, with
the appropriate associated multiplication, the bicyclic w-semigroup (generated by a
and b).

Remark. For any a,bee, it is easy to see that Ctapy is an r.e. semigroup.

Lemva 14 [5, 1, p. 451. If @ is a homomorphism of a bicyclic semigroup C into
a semigroup S, then either ¢ is an isomorphism of C into S, or else ¢(C) is a cyclic
group.

THEOREM T4, If ¢ is an w-homomorphism of a bicyclic »-semigroup Ca,py im0
an o-semigroup S, then either ¢ is an w-isomorphism of Clapyinto S, or else ¢ (Cy )
is a cyclic w-group.

Proof. The proof follows from T30(iii) of [3], L4 and the fact that Ceapy 18
an r.e. semigroup, and is left to the reader.

Remark. (i) By using [5, I, p. 80] we see that the set of idempotents of Cq,zy
is Eqpy = {j(i(b,n),j(a,m) nee), that E 3, is recursive and clearly that
E(apye2e. Furthermore, Eg,;, is inverse order w-isomorphic to {e, <}, i.e. if
&y = j(j(b,7), j(a,n)) for nee, then e,<e, (under the natural ordering of idem-
potents) iff m<n.

(i), Also if S'is an - semigroup and a4, b € § such that Cs the bicyclic semigroup
generated by @ and b then {b"-a"| ne e}, the set of idempotents of C, is an infinite
r.e. subset of S. :

“


Artur


84 C. H. Applebaum

LemmA LS. Copy is an inverse - semigroup.

Proof. The proof follows from the fact that an inverse of i@, n), i@, m)
is j(j(b, m), j(a,n)) and can hence be effectively found, and the fact that C is an
inverse semigroup by [5, I, p. 80].

Remark. We are now ready to generalize L3.

TuporeM T5. Let S be an inverse w-semigroup with an isolic .s"et E of idempotents.
If E forms a chain (under its natural ordering) then S is an w-semilartice of w-groups.

Proof. Let aeS e=aa"t, f=a*-a Then, as in the proof of L3,
ea=af=aand a”*-e=fa"* = a”*. By hypothesis, cither e<f or f<e, say
the latter. Then, ef=fe=f So, ae=(af) e-—a(fe)l—afma and
similarly e-a™* = a™!. Hence eca=ae=a and ea”l=ate=a 1Now
" if e = fthen by Corollary 1 to T1, we are done. Hence assume e # f.Thusaa™*=e,

a1 -a # e and by above e is the identity of C¢ga-1y. But E, q-1y is an infinite r.e.
set of idempotents in Cqgq—1y and also {a™"a"| ne ¢} is an infinite r.e. subset of E.
However, this contradicts the fact that E is isolic. Thus ¢ = f and we are done.

Remark. By L5, C,py is an inverse o- semigroup with its set of idempotents
forming a chain. However E, is not isolic and furthermore Cya,py i5 N0t 2 union
of groups. o

ExAaMPLE. (An S satisfying hypotheses of T5). Let © be a regres.SWe '1mmune
set, where T = gt. Then, let G = {f, ©) be an w-group with e the 1dent1t3( of G.
Put «={j(t,%)| nee,xeG}. Define = («, ) where j(.t,,,x)-j(t,,,,y)
= j(Zmax(nmy» XO¥). Thus we see that the set of 1dempotents of S, E = {j(t,, &)l nee}.
Furthermore, for m, n € &, j(ty, €)' j(tws €) = j(ty, €)*J(ts> €) = j(tm, €) iff m=n. Thus
the natural ordering on E is isomorphic to > on e. Hence E forms a chain undelr its
natural ordering. Since Req(E) = Req(7), E is isolic. Finally, since j(t, x™7) is
the unique inverse in S of j(z,, ), we sce that S is an inverse w-group.

§ 4. The strucfure of cw-semilattices of w-groups.
Remark. The purpose of this section is to find the best possible effective
analogue of the following theorem.

Lemma 16 [5, I, p. 128]. Let Y be any semilattice, and to each element a of ¥
assign a group G, such that G, and G, are disjoint iff a # b in Y. To each pair of el-
ements a,be Y such thar a>b, assign a homomorphism @, of G, into G, such that
if a>b>c then Qy.o Pip = Qo0 Let @, be the identity automorphism of G,. Let
8 =\ {G,| ae Y} and define the product of x,,yy€S(x,€G,,yy€Gy) by Xu'9s
="Q0.o(X2) ©p,(¥p), Where c is the product of a and b in Y.

Then S is an inverse semigroup whichis a union of groups. Conversely, every such
semigroup can be constructed in this manner.

LemMa L7 [5, 1, p. 127]. Let S be an inverse semigroup which is a union of groups,
then every idempotent of S is in the center of S.

Remark. The analogue we want is the following theorem. °

icm
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THEOREM T6. Let Y be an w-semilattice and to each ae Y assign an w-group G,
such that G, and Gy are disjoint if a # b. Set S = |} {G,| ae Y} and suppose the
Sunction f from S onto Y such that x € G, <> f(X) = ahas a partial recursive extension.
Also suppose if ae Y we can effectively find the multiplication and inverse JSunctions
of G,. To each pair a,be Y, a>b, effectively assign a homomorphism ¢, of G,
into Gy (where @, has a partial recursive extension), such that if a>b>c then
Poc © Pap = Pac- Let @, be the identity automorphism of G,. Define the product
of elements. of S, x,€G,,y,€G, by: x,-y, = Pa,e(X) Oy, c(Vs), where ¢ = a-b,
in Y, and where the product is in. G,.

Then S is an w-semilattice of w-groups. Furthermore, every w-semilattice of
w-groups, indexed by its set of idempotents E, can be constructed in the above manner.

Proof. By L6, S is a semilattice of groups. Hence to show S is an co-semilattice
of w-groups, it suffices by T1 to show S is an inverse w-semigroup. By T28 of [3] this
can be accomplished by showing S has an effective multiplication, effective inverses,
and any two idempotents of § commute. Since S is a semilattice of groups we need
only show the first two conditions.

Given x, pe S, set a = f(x) and b = f(y), where f has a partial recursive
extension. Then x € G,, y € G, and we can effectively get ce ¥, where ¢. = a+b in Y.
But a>c and b>c (in the natural ordering on ¥) and we can effectively get, from a
and b, the homomorphisms with partial recursive extensions, Qa,c and @y .. Thus
XY = @p,x) @p(y) where the multiplication is in G.. Since given ¢, we can
effectively find the multiplication in G., it follows that given x, y € S, we can effec-
tively find the product of x and y in S.

To find the inverse of x €S we need only find its group inverse. But given
xe 8§, xe G, where a = f(x), and from a we can effectively find the group inverse
of x. Hence S has effective inverses. It follows that § is an w-semilattice of - groups.

Conversely, if S is an w-semilattice of w-groups indexed by E, then
S = {G,| ae E} where E is an w-semilattice and there are functions fand g
(with partial recursive extensions) such that for each x€ S, f(x) = a«>xe G, and
g (x) is the group inverse, x™*, of x in G,. (Note: £ (x) = x-x~1). If suffices to consider

the condition of effectively assigning a homomorphism ¢, of G, into G, for each
a,be E such that a>b. To this end, if a>5 (in E) then assign the mapping Pap
defined by ,,;(x) = x-e,, where x € G, ¢, is the identity of G, and the multipli-
cation is in §. Now ¢, is a homomorphism, since if x, y € G,, then using L7,
9uslX) Pas(¥) = (x-€) (7€) = () (5" e) = (x)-e = @oy(x-y). Furthermore,
the only idempotent in G, is e, so e, = b. Hence if follows that given @, b € E we can
effectively find a homomorphism ¢,, with a partial recursive extension. The remain-
ing three conditions concerning the homomorphisms are straightforward to check
providing we keep in mind that E is contained in the center of S.

Remark. The restriction in the second part of T6 that the w-semilattice be
indexed by E (or equivalently any set w- 1somorph1c to E) is necessary as indicated
by the next example.
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ExampLe. Consider a special case of the w-semilattice of w-groups in the
example following T5. Let G = {0} be the trivial w-group. Thus o = {j(z,,0)| ne &}
and S = (2, -). Now S can be considered to be an o-semilattice of w-groups
“indexed by Y = & with dual ordering =, since given j(z,, 0) e S we can ecffectively
find 7. However, if m>n, i. e. n>'m, then we have @, defined by ¢,,,(j (%, 0))
= (25, 0) (s O) = j(ty, 0). 1t follows that if there is an effective procedure for
getting @, ,, from m and n then letting 7 = 0, we have an effective way of get-
ting #,, from m, for any m. This contradicts the fact that T' is a regressive immune
set. Thus this w-semilattice cannot be gotten by the construction in T6.

Remark. It might seem that some of the effectivity conditions in T6 might
be unnecessary. However, the following examples will show that all of the following
effectivity conditions of T6 are independent of one another, in the sense that if any
one is false, S is not even an inverse w-semigroup (except that if (ii) is false then (iv)
or (v) are vacuously false, and if (vi) is false (vii) is irrelevant).

(i) Y is an w-semilattice.

(i) {G,] ae Y} is a class of w-groups.

(iif) f has a partial recursive extension.

(iv) Given ae ¥, we can effectively find the multiplication in G,.

(v) Given ae ¥, we can effectively find the inverse function of G,.

(vi) For each a>b in Y, ¢,, has a partial recursive extension.

(vii) Given a,be ¥, a>b, we can effectively find ¢,p.

ExameLEs. (A) (Independence of (i). Let © be a regressive immune set and

7 = pt. Define t, ty, = tiop(mm, Where lem(m,n) = least common multiple of m

and 7. This multiplication cannot be effective. For, if it were, then given 5 we could

effectively generate all of 7, by using the regressiveness of © and the fact that

lem(n,n—1)>n for all n3. So letting ¥ = ¢ with the above multiplication, we

see Yis a semilattice but not an o-semilattice. Now, for eachn € 8, let G, = {j(t,, 0}),

the trivial group. Then {G,| t,& Y} is a class of w-groups and (i) is true. The

function f in this case is just f(j(%,, 0)) = ¢, and clearly has a partial recursive
extension. Thus (iii) is satisfied. Since all G, are trivial, (iv) and (v) are true. In ¥,

t,>t, iff mdivides n, (m|n). Soif £,,>t,, define @,, ,, to be the trivial homomorphism

from G, onto G,. Thus ¢, ,, satisfies the conditions of the theorem and given

Ly, t, € Y we can effectively get ¢y, ,,. So (vi) and (vii) are true. But (i) is false since

multiplication inY is not effective. Thus (i) is independent. Also we see that S is

not an c-semigroup, since if multiplication in S were effective, then since

J(tns 0)j(ts 0) = j(liomemm 0) in S, the multiplication in ¥ would be effective.

(B) (Independence of (ii)). We note first that given a regressive immune
set o there exists a retraceabls immune set § such that o ~ B and if § = ob then
i<j > b;|b;. For if o = ga define by, by = 2 and for all n>1, b, = 2%.3% L oty
where po = 2 and p, = nth odd prime. Also since we can always assume @p = 1
we can always get by = 2. ’
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Now to continue the example. Let «, 8 beretraceable immune sets such that
Req(e)<Req(f). Hence Req(d)<:Req(p). Also let « = ga, B = ob and « have
the property that i<j+>a;|a;. Since Req(x)<,Req(f), thereis a function %, with
a partial recursive extension such that 4 (a,) = b,, for n € &. Because Req () <Req (8),
a4 B, and so 2" does not have a partial recursive extension. Let G, be a copy of
the infinite cyclic group with generator z encoded by:

2" j(b,, 2m),

7 j(B,, 4),
7 (b, 2),

e j(b, 0),
27 e (B, 1),
272 & j(by, 3),

z " (—)j(b", Zm—l)s

Let Y=o and a;-a; = max(e;, ¢;). Thus in the natural ordering of ¥,
a;<a;<>a;a; = a;+ a;|a > j<i. Now for g;<a; in ¥, define ¢,,,, by,

Payari(bj> 2m)) = j(bi, (Z— Zm)) , m>0,
J

and
(Pa_y,az(j(bj: ZM'—I)) =J(bw (?27’1) '_'1)13 m>1.
7 J

It can be shown that ¢, is a homomorphism and that it satisfies the necessary
conditions in T6. Now given g, and a;, a;>a; we can effectively get a,/a; and using A,
we can effectively get b; and b, i.e. we can effectively get @, ,,. Thus (vi) and (vii)
are satisfied. Also (i), (ii), (iv) and (v) are clearly satisfied. It remains to see that (iii)
is false. But if (iii) is true then given b; we can get j(b;, 0) and hence 7 (j(b;, 0)) = a;,
i.e. we get a partial recursive extension for 2™, which is not possible. So (iii) is false.
Again we also get that multiplication in S is not effective. Since, if it were, given b, we

could form the product j(b,, 0)-j(by, 2). But using the fact that a, = 2, we get

j(bn: 0) ‘j(bO ) 2) = (pnn,a,.-au(j(bm 0)) *Pag,an- aa(j(bn: 2))
= (Pa",a"(j(bn > 0)) ° @au,a,.(j(bo B 2))
= j(bas 0)j(byy ) =5 (0> @) -
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Thus given b, we can get a, which is not possible. It follows that multiplication
in S is not effective and S is not an w-semigroup.

(C) (Independence of (iv)). Let ¢ be.a strictly increasing total recursive function
such that 0 ¢ gt. Recall that p, = nth odd prime, where p, = 2. Set

g = {2°-x| (x =1) or (x = py, " pi," o Py Where k, iy, s, ..., € 8~ {0},

and iy, 1y, ., i, are all distinct)} .

For 2°-x, 2°-y e ay, define m, by mo(2° x, 2 y) = 2"z, where z is the product
of all primes that appear as factors in exactly one of x and y. Let Gy = (xy, mo).
We see that G, is an o-group, where 2% is the identity and all elements of G, are
of order 2. Now order o, by: - '

219,20 p1, 20y, 20 papy, 2Py 200301, 20 D3 Da, 20 D3Py 20 P4y oee s

so that each time a new prime, p,, is introduced we repeat all the 2"~! terms that
preceed p, with p, added as a factor to these terms, Let r, be the recursive function
which enumerates &, in the preceeding order, where r, = 2°. Now let & be a non-
recursive total function such that 0, 1,2, 3, ¢ gh. For each n>1, define y, to be
the cyclic permutation (ry, rz, ..., 2 Dyeny). Also for each nzz1, let

o, = {2"x] 2 xeay}

and define ,, a one-to-one map from a, onto w, by 1,(2™ x) = 2°x. Then for
nzl and a,beuw,, 1_et

mn(a’ b) = ‘/’; 1Xn— 1m0(an//n(a): ann(b)) .

It can be shown that m, is a group multiplication, and since x, and ¥, have partial
recursive extensions, it follows that G, = («,, m,) is an - group of elements of
order 2, for all nee. For t,, t, € ot define t,t, = max(2,, t,). Thus (gt, -) is an
w-semilattice. Furthermore, if we define for #,>1,, @y, (2" x) = 2", then ¢, .,
satisfies the conditions of T6 and S = (J {G,| #,€ ¥} is a semilattice of w-groups
satisfying conditions (i), (if), (iii), (v), (vi), (vii). However we claim that given ¢,€ Y,
we cannot effectively find the multiplication m,. For if we could, we will show it
would follow that k is recursive. To this end, consider the following:

D) I 2<k<h(n),
M2 Py 272 p1) = Vo o 10l ¥a208), XaVn(2PiP )
=Y, 1Xn— lmo(xn(z"’pk), Xn(zm}’kpﬂ)
=Yyt o mo(2°ppy , 2°Pip2)
= Y e (20papy) = ¥ 1(2°p2) = 2, .
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@ I k = hn)

M2y, 20 p)) = U s 10 (127D, X Va2 1))

= Va2 o (12D 1a(27Pip1))
=V xn  mo(2y, 2°pupy)
= ‘//:’X;i(zmpk) = w:l(zm'Pk—l'Pk—z'...'Plpl)
=2"Py_1'Pez’..."P2D1 -

Thus we have, for all nes,

h(n) = k < 3m 2 p,, 2"pupy) -
Hence if (iv) were true, # would be a recursive function. Therefore, (iv) is false and

multiplication in S is not effective.
It is of interest to note that S is recursive as a set.

(D) (Independence of (v)). Let o be an r.e. set which is not recursive and a(x)
be a one-to-one recursive function ranging over «. Assume without loss of generality
that a(0) = 0 and a(l) = 1. For each number n>1 we define a cyclic group G, as
follows:

@) If nea, @Ak)[a(k) = n]. Let G, be a cyclic group of order k,

{x, 0, XL X = e}
and encoded by: '
e jn,0),

xj@,2),

x* «j(n, 4),

X lejmn, 2k—2).
(b) If n¢a, G, is an infinite cyclic group with generator z and encoded by:

7" < jln, 2m),

22 ej(n, 4),
zerj(n,2),
e« j(n,0),

77t j(n, 1),

272 j(n, 3),

z™" (_)j(na 2m—1):
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Let Y be the w-semilattice &—{0,1} under <, ie. m-'n=min(m,n) for
m,nee—{0,1}. Also if n>m, let (/),,,,,,(j(n,i)) = j(m, 0). It follows using T2
of [3] that § = {J {G,| ne Y} is a semilattice of w-groups satisfying conditions (i),
(i), (iif), (iv), (vi), (viii). However by construction, n € « <> the inverse of j(n, 2)
is not j(n, 1). Thus if (v) were true, « would be recursive. Thus (v) is independent
and S is not an inverse w-semigroup.

(E) (Independence of (vi)). Let  be an infinite set and let ¥ be the w-semilattice
on {1, 2} with 1<2. We recall from [1] that P(a) is the w-group of codes of the finjte
permutations of a. Let oy = {j(I,x)| xeP(x)} and oy = {j(2, x)| xeP(w)}.
For i = 1, 2, define multiplication, *, on o; by j{i, x) » j(i, y) = j(i, x-y) where x-y
is multiplication in P(e). Then Gy = (a;, %) and G, = (03, %) are w-groups,
By P6 of [3], let ¥ be an automorphism of P («x) which does not have a partial recur-
sive extension. Define ¢,; from G, onto Gy by @, (j(2, %)) = j(1, ¥ (x)), for
x e P(x). We see that § = G, U G, clearly satisfies conditions (i) through (v). Recall
that k and / are the recursive functions such that j(k(n), /(n)) = n. Since
Y(x) = Ilp,,(j(2,x)) and ¢ does not have a partial recursive extension we have 02,1
does not have a partial recursive extension. Thus condition (vi) is false. Also multi-
plication in S is not effective since for all x €.P(w),

I, 1)2j(2, %)) = ey, ({1, 1)) * 92,172, X)]
= I[(L, 1) *j(1, ()]
= (1, ¥(®) = ¥
Thus S is not an w-semigroup.

(F) (Independence of (vii)). Let = be as in Example (A). Let P(¢) be as in
Example (E). For each nee, let o, = {j(z, )| x e P(e)} and G, = (a,, m,), where
m,(j(tys %), j(tns ¥)) = j(ty, %), With x-y being multiplication in P(e). Also, let
Y = ¢ with multiplication m+n = lem(m,n). For m>n in ¥ (i.e. m|n), let
O (b X)) = j(t,, %), for all xeP(e). It is straightforward to show that
S = U{G, nee} satisfies conditions (i) through (vi). We observe that multipli-
cation in S takes the form:

J(t, x) 'j(tma y) = mp(q)n.p(j(tm x))’ (P"’-l’(j(t"" y)))
= mp(j(tp, .x),j(tp; y))

= j(ty, x'y) where p = lem(m, n).

As in Example (4), if given m, n € 8, m>n, we could effectively find.¢,,,; then from
J(ts, 1) we could effectively get j(4,, 1) = @3,(j(fs, 1)) for all # such that 3|n.
Thus, by the regressiveness of 1, from #; we could effectively get all of z. This con-
tradicts the fact that ¢ is immune. So condition (vii) is false. By the same argument
as in Example (A) we can show that multiplication in § is not effective and hence
that S'is not an w-semigroup. '
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