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- Exact sequences of pairs in commutative rings
by

R. Kielpinski, D. Simson and A. Tye (Torun)

Abstract. Let R be a commutative ring with unit and let M be an R-module. We say that

- . u .
a pair (,v), u,v e R, is M-exact if the sequence M-,M—';-MLM is exact. A sequence of pairs
(2, v) = (1, %5, oov, (u,.,v,.)) is M-exact if the pair (u,v;) is M](uy, ..., ui—1)M-exact for
i=1,..,n .
In the paper we investigate the full subcategory En(, v) of R-Mod consisting of all R-mod-
ules M such that (u, v) is M-exact and rings R such that R ¢ Eg(x, v) and the Jacobson radical J(R)
of R is generated by elements uy, ..., Un,

Introduction. Section 1 contains definitions, examples and preliminary results.
A homological characterization of modules from Ex(u, v) is given provided
R e Ex(u, v).

In Section 2 we study conditions which ensure the projectivity or the injectivity
of a module from the category Ep(u, v) under the assumption that R € Ey(u, v) and

- JB) = (uy, ..., 1,). Our main result says that in this case Injp = Ep(u, v) = Projg

iff R is artinian, or equivalently, iff R is noetherian and Eg(u, v) = Flg where Fl,
Injg and Projy denote the classes of all flat, injective and projective R-modules,
respectively. '

Section 3 is devoted to the study of local rings R whose maximal ideals are
generated by elements uy, ..., u, such that (ug, 1), ..., (u,, w) is an R-exact se-
quence of pairs for some natural numbers Iy, -5 byo It is proved that such a ring
is R always artinian of the length (f; +1)(#,+1) ... (,+1) and that the associated
graded algebra gr(R) is of the same type.

Throughout this paper R denotes a commutative ring with identity element
and J(R) is the Jacobson radical of R. If X is a subset of R and M is an R-m8dule,
we set Anny X = {me M, Xm = 0},

§ 1. Exact sequences of pairs and the category Egp(u, v).

DerNviTION 1.1 Let M be a module over a commutative ring R. A pair (u, v
of elements of R is M-exact if uwM =0 and the left complex :

M, U)o M M MM M0

3*
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is acyclic (i.e. H;M(u,v) =0 for j = 1,2,..). A sequence of pairs
(":v) = ((ulsvl)7 "-:(umvn))’ u,,v,ER,

is M-exact (or equivalently the module M is (u, v)~exact) if (444, v144) IS Mexact
for i=0,1,..,n—1 where

and M, = M{M~+..+u,M) for izl.

My =M

(#,7) is said to be exact if it is R-exact.

ExameLes, 1. If ey, ..., ¢, are orthogonal idempotents of a ring R such that
¢ +..+e, =1, then (e, 1—¢5), ..., (&, 1 —¢,) is an exact sequence of pairs in R,

2. X ay, ..., a, is an h-regular sequence in the sense of [9] and if the height 4,
of g, is finite for each i = 1,2, ..., n, then the sequence (a4, aY, ., @, Y
is exact; i

3. Let R=k(X;, v, Xy, Yy, s BYX1 Yy, ., X, Y,) where & is a ring,
1t is not difficult to check that the sequence (X;, ¥y1), ..., (X;, ¥,) is exact where x,
and y; are the residue classes of X and ¥,, respectively.

4. Let T = @ {t,} be a direct sum of finite cyclic groups and let 4 be a com-

Jes

mutative ring such that md4 = A if misthe order of an element of 7. Moreover, let R
be the group ring 4[T] of T with coefficients in 4 and let us consider clements

1 - ;
g = — Uttt 1 Y, 8 =1-g
g

where m; is the order of #;, j&J. Thenthe sequence (Jj,, £y,), ..v, (85,5 &;,) I8 exact
for any ji, .., Jj, €J (see [1], p. 244). . .

For.a given sequence (#, v) of pairs in R we define Eq(n, v) as the full sub-
category of R-Mod consisting of all (w, v)-exact R-modules. Obviously, R & Ey(u, v)
iff (u, v) is R-exact. :

PROPOSITION 1.2. The category Egp(u,v) is closed under direct sums, direct
summands, products, direct limits and localizations with respect to multiplicative
subsets of R. If

0——»M’——>M~—»M”->O

is an exact sequence of R-modules and two of them belong to Ey(u, v), then the third
“also belongs to FEg(u,v) and the sequence

0> M=+ MM, =0
is exact for i =1,...,n.

Proof. The first part is an easy exercise, To prove the second assertion consider
the exact sequence of left complexes

0" (uy, 1) M (g, 0;)> M " (g, v,)—0.

, = Hi2N(ug, v)) for n>1 and HyN(u,,v;) = Ny,
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By the assumption two of them are acyclic. Since for any R-module N H,N(u,, v )
n 1, Y4,
: the long homology se
arguments imply that the third complex is also acyclic and that & seduence
0 M, M~ M -0

is exact. An easy induction gives the required result.

ProrosiTioN 1.3. If M is an R-module and (uy, vy),
sequence of puairs, then

(a) Anny(v, vy .o 0, R) = u M-+, +u,M,

(®) Anny(uy R+ 41, R) = v0, ... v,M
forany i=1,2,..,n

Proof. For ‘z' =1 the equality (a) immediately follows from the definition of
an M-exact pair. Assume that (a) holds for some i<n. I meM, then
00z . Uiy = 0if and onlyif v,y meu M+... +1,M. Hence by the M -exactness

of the pair (441, v;4.1) (8) holds also for i+1. Equality (b) may be proved in a similar
way.

Now we shall give a homological characterization of modules from the category
Eg(u, v) assuming that R e Ey(n, v). First we prove the following technical result.
_ LemMaA 1.4. Let (u, v) be an exact pair in. R and let M be an R-module. For
M = MfuM and R = RjuR the following conditions are equivalent:

(1) (u, v) is M-exact.

(@) TorX (R, M) = 0 for n>1.

(3) Torf(V, M) = Tor®(, M) for n>1 and any R-module N.

#) Extx(R, M) = 0 for nx1. .

(5) Bxtg(N, M) = ExtZ(N, M) for n>1 and any R-module N.

‘ ‘Pro of. (3)~(2) and (5)~(4) are obvious. By the assumption R(u, v) is a pro-
Jective resolution of the R-module R. Hence

vy (U, v,) i an M-exact

R

Tory(R, M) = H,(R(u, )@xM) = H,(M(u, 1)),

vtfhi.c]h shows that the statements (1) and (2) are equivalent. The proof of (1)) is
similar,

(4)—(5). By [4, XVI, § 5] the natural ring epimorphism R— R induces a spectral
sequence

B3t = Exty(N, Bxt(R, M)) = Ext(V, M),
which gives (5) because
Ex %(R, M) = Homy(R, M) = vM = }.

Implication (2)~(3) may be proved in a similar way. The lemma follows.
We are now able to prove
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TeeoreM 1.5. Let (u, v) be an exact sequence of pairs in a ring R and let M be
an R-module. Then the following conditions are equivalent: ,

(i) M e Ep(u,v).
(ii) Tor®(R;, M) =0 for all m>0 and i = 1,2, ..., n.
(i) Bxt%(R;, M) = 0 for all m>0 and i =1,2,..,n.
Proof. (i\—(iii). Since (u;, v))is R, ~exactand M. -exact for j =1.2,..,n,
by Lemma 1.4 we have

Ext2(R,, M) = Exij,(R,, M) = ... = Ex{y (R, M) = 0, m=], i<n,

as required. )

(fif)—(i). Since Bxta(R;, M) = 0, by Lemma 1.4 the pair (u;, v) is M-exact.
Suppose that the sequence (1, vy), ..., (4, v;) is M-exact for 1<j<n. Since it is
R-exact by the assumption, Lemma 1.4 yields

Eth,(Rj-Fl, M,’) = Eth,-;(Rj-ru Mj—1) == EXL’J'{(RJ-I-lb M)=0,

Then by Lemma 1.4 again the pair (4.1, v;4y) is M-exact and therefore the se-
quence (uy, ;) s (U415 Uy4y) i M-exact. This proves the inductive step and
hence (i) follows.

The equivalence (i)«+(ii) may be proved in a similar way.

As an immediate consequence we have

COROLLARY 1.6. If R & Ex(u, v), then any flat and any injective R-module belongs
to Ey(u, v).

COROLLARY 1.7. Let f: R~ S be aring homomorphism such that S is either flat or
injective as an R-module. If €uy, vy), ..., (u,, v,), is an R-exact sequence of pairs,
then the sequence (fuy,fvy), ..., (fu,, fv,) is S-exact.

Suppose R € Ep(u, v). It Tollows from Corollary 1.6 that a morphism f in the
category Eg(u, v) is 2 monomorphism (resp. epimorphism) if and only if it is injec~
tive (resp. surjective). Hence, by Proposition 1.2, Ep(u, v) is an additive category in
which. every monomorphism has a cokernel and every epimorphism has a kernel,
In the next section we give an example which shows that in general Eg(u, v) is not
closed under inverse limits and therefore is not abelian,

We end this section by a short discussion of the exactness of a sequence of pairs
(u,v) with the property wu;v; = 0 for i = 1,2,...,n Observe that any h-regular
sequence (Example 2) has this property.

TrEOREM 1.8. Suppose that (u, v) = ((uy,v,), ..., (uy, v,)) is a sequence of pairs
in R such that wv, = 0 for i = 1,2, ..., n. Then (u, v) is exact if and only if the left
complex

RY = R(uy, v)@x Rz, v2)®p . @Ry, v))

is a projective resolution of the R-module Ry = Rf(uy, ..., u)) for any js:ﬂ
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Proof(. Y\:e zltpply arguments from [1], p. 244. Fix 1'<j<n and suppose that the

complex RY™') is acyclic. By [4, XV, § 6] there is a spectral sequence such that

ES = RY™V@g Ry, v;),. Our assumption yields :

Ey, = {(I;J"‘I(X)RR(MJ’ ). forg=0,

for g=1

and it is clear that d},o is induced by the differential of R(u;, v;). Then EZ
g>1 and therefore "

HyRY = Epo = H,Ely = H,(R,_; ®:R(u, v;))

= Qfor

for any m>0. Consequently, if RY™" is acyclic, then the complex RY is acydlic if
and only if the pair (;, v)) is R;_;-exact. Using this fact we can prove the theorem
by an easy induction on », which we leave to the reader.

§ 2. Injectivity, projectivity and (u, v)-exactness. In this section we look for
conditions which ensure cither the injectivity or the projectivity of modules from
Ex(u, v) whenever R e Ep(u, v).

Our main result requires the following technical fact.

Lemma 2.1. Suppose that f: M—N is an R-homomorphism of (u,v)-exz;ct
R-modules M and N, and put K = K/uK for any R-module K. Then

() if f is an essential monomorphism (resp. minimal epimorphism), then so is
the induced map f: M—N. '

(b) f is an isomorphism whenever so is f and one of the conditions below is sat-
isfied: ) ‘

(i) the element u is nilpotent,

(i) weJ(R), M is finitely generated and N is finitely presented.

Proof. (2) Assume that fis an essential monomorphism. Then, by Prop-
osition 1.2, f is a monomorphism, and hence f and f may be regarded as inclusions.
Let X be a non-zero element of N. Then x ¢ uN = Annyv and hence vx # 0. Since
McN is essential, there exists an re R such that O # roxe M. But u(rvx) =0
i;ynp]ies rox = vm for a certain m e M, or equivalently v(rx—m) = 0. Consequently,
rk—meulN and therefore 0 s r¥ = i e M since vrx s 0. This shows that f is

~ essential,

Now if fis a minimal epimorphism, then, by Proposition 1.2, fis an epimorphism
and Ker J'= Ker ffu(Ker f), which implies f is minimal.

(b) Assume that (ii) is satisfied. Since fis an isomorphism, we have Im f+uN = N
and Ker f = u(Ker f). By [3, T, § 2, Lemmia 9] Ker f is finitely generated and there-
fore fis an isomorphism by the Nakayama Lemma. The proof in case (i) is similar.

ProPOSITION 2.2 Ler (u, v) = (Gug, vy), s Gty v,)) be an exact sequence of
pairs in R such that uy, ..., u, are nilpotent and let M be an R-module. Then

(8) M is injective if and only if M:is (u, v)-exact and M,'is an injective R,-module.
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(b) M is projective if and only if M is (u, v)-exact, M, is R,projective and M has
a projective cover. .

Proof. (a) The general case follows from the case n = 1 by an easy induction.
Assume n = 1. If M is injective then by Corollary 1.6 it is (u(, vy)-exact and, by
Lemma 1.4, M, is R-injective. Conversely, assume that M is (uy, vy)-exact and
that M, is R;-injective. Now if f» M~ Q is-an injective envelope of the Ry-module M,
then by Lemmas 1.4 and 2.1 the induced map fy: M~ @y Is an injective envelope
of the R,~module M. Hence fy is an isomorphism and it follows from Lemma 2.1
that f is an isomorphism. Assertion (b) may be proved in a similar way.

We now prove the main result of this section.
© 4 TaporeM 2.3. Let R be a commutative ring with an exact sequence of pairs (u, v)
= (g, 01)s s (hyy 0,)) Such that J(R) = (ty, s ). The following conditions are
equivalent: .

. (@) R is artinian, :
. (b) Projg = Ex(n, v) = Injg
(¢) R is noetherian and Flg = Ep(u, v),
, () R is quasi-Frobenius,
ihere Projg, Injx and Flg denote the classes of all projective, injective and flat R-mod-
ules, respectively.

“Proof. The implication (a)—(b) follows from Proposition 2.2 and (b)~+(d)-(2)
is a consequence of Theorem 5.3 in [6]. Hence, in view of [2], (b) implies (c). Finally,
if (c) is satisfied, then by Corollary 1.6 every injective R-module is flat and it follows
from [8, Proposition 4.2] that R is self-injective. Consequently, R is a quasi-Frobenius
ring and the proof is complete. )

Suppose we are given an exact sequence of pairs (, v) in a ring R such that

Eg(u, v) = Flp. ¥ R is coherent, then by [7, Theorem 5] the category Eg(u,v) is .

closed under inverse limits if and only if w.gl.dimR<2.

Now let S = Z,[X7, s X,)/(XE, .., X3) and consider the following exact
sequence of pairs (u,v) = (X1, X0, ..., (X,, X)) in S where X, is the residue
class of X,.. Then w.gl.dimS is infinite and, by Theorem 2.3, Eg(u,v) = Flg. It
follows that Eg(u, v) is not closed under inverse limits.

We now give an example of a quasi-Frobenius local ring 4 without any exact
pair (u, v) with u, veJ(4).

ExameLe 5. Lot 4 = K[X, Y, Z)/(X?, Y2, Z%, X(Y=2), Y(Z~X), Z(X~ X))
where K is a field of characteristic # 2. It is clear that 4 is a local artinian ring and
the elements 1, %, ¥, z, xy form a basis of 4 over X where x, y, z denote the residue
classes of X, Y, Z, respectively. Consider a K-lincar function ¢: A—K defined by
Wlky+heyxtlsy+kyz+ksxy) = ky+ky+ky+kg+ks, ke K. 1t is casy to check
that the kernel of ¢ contains no non-zero ideals of A and therefore, by Theorem 61.3
ix} [5], A is a Frobenius K-algebra. We now verify that there is no exact pair (u, v)
in 4 with u, veJ(4). Suppose, on the conirary, that (4, v) is such an exact pair
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in 4. Then the sequence 0—>vA—A—~ud~0 is exact and consequently J A4+ 1(uAd)
=l(d) =75 wher‘e: {(M) denotes the length of an 4-module M. But thisis impossible
since, as can easily be shown, I(a4)<2 for any a e J(4).

§ 3. Exact local rings.

DerNITION 3.1. A commutative local ring R is called exact if there exists an
exact sequence of pairs (u, v) = ((uy,v,), wos (45 9,)) in R such that its unique
maximal ideal m is generated by clements uy, ..., u,. If v, = u'}é v =i fo
certain integers >0, then R is called an h-exact ring. T v

Throughout this section R denotes a commutative local ring and # is its unique
maximal ideal.

LiMmA 3.1.. Let R be an exact local ring (not necessarily noetherian) with an exact
sequence of pairs (w,v) such that m = (uy..u,). Then Rv,v,..v, is a unique
minimal ideal of R. "

Proof. Let us denote by v the product v, v, ... v,. By Proposition 1.3 Rv = R/m
and therefore Rv is a minimal ideal. Now if I # 0 is a minimal ideal in R, then
An.n,J = m and hence Rv = Anngm =1, Then the minimality of Ro yields I = Ry
which completes the proof. ’

LemMA 3.2, Let R be an h-exacr local ring with an exact sequence of pairs

I I i
(ugs 15", oeey (s Uy™) such that m = (uy, ..., u,). Then R is artinian and its length

I(R) is equal to (hy+1)(ha+1) ... (h+1).

Proof.i Si?f,e R Ruy ::Ruf::...::Ru’;{:(O) and there are isomorphisms
R/I'Qui'_z_R‘ul/Rul Y for i=1,..,hy, we have I(R) = (hy-+1)I(R/Ru,). Hence
a simple induction gives the required result.

We now prove the following useful technical result.

Lemma 3.3, Suppose R is a local ring, m = (uy, ..., u,), iy =0 in the ring
Ry = Ry 5 ory t/qul) and put h = hy—1. Then the sequence of pairs
, ! o ! 1 r
(g, 1), oo, Qi 1) iy Recxact If and only if uul ... uls 0.
" 4 4 . 4 r
Proof. Assume u!* ... uln5 0.t is not difficult to show that any element x of m

can be expressed as a sum Za,l__,,“ui' o il with @y, & m and i <k for1<k<n,
and. thus ‘also in the form

1
x = a4 Y gy, g, Ul e Uy

with a;,,.y, & m, i, <hy and 7,<hy for k2. Suppose that xu; = 0 and let us denote
by I’ Fhe set of all tuples </, ..., #,» such that a,,;, # O in the above expression
of x. If I' is non-empty and {ij, .., I,y is its minimal element in the lexicographic
order, then '

)
in=in

14
i U, =

0 = xuy

h{ I
n
A g W e U


Artur


120 R. Kjetpifiski, D. Simson and A. Tyc

which is a contradiction. Hence I' is empty and therefore x = au’ii, which shows
that Anngu, = (). Furthermore, a simple computation shows that Ann,; ulh = (14,
which proves that the pair (u;, w']'{) is R-cxact. By our assumption &g ... 7" % 0
with if; = u;+(uq) € Ry. Then the sufficiency of the lemma follows by an. easy in-
duction. The converse implication is a consequence of Lemma 3.1.

We are now able to prove the main result of this section:

THEOREM 3.4. If R is an h-exact local ring, then the associated graded algebra
gr(R) is also an h-exact local ring.

Proof. Suppose that (uy, u'{,{), vns (Uys uf‘,“) is an exact sequence of pairs in R such
that m = (ug, ..., 4,). Then for § = Ay +..+h,

gt(R) = Rim+mfm?*+...4+m"

because m**t1 =0 by an easy computation. Let us denote by #, the element
u;+m* € gr(R). Then, applying Lemma 3.3, we conclude that

’ ’ ’ ’
@ =l L™t £ 0,

! ’ v
and therefore (i, , #%), ..., (@,, i) is a gr(R)-exact sequence of pairs. The theorem
is proved.
‘We now give an example of an exact local artinian ring which is not A-cxact.

ExaMPLE 6. Let K be a field such that (—1)% ¢ K and let
R = K[x, y)/(xp, x*~y?) .

It is easy to sée that the elements 1, X, §, d = X form a K-basis of R, R is local with
maximal ideal m = (%, ), m? = (d), m* = (0) and I(R) = 4. Moreover, it is easy
to.verify thatthe sequence of pairs (%, ¥), (7, J) is exact. We now prove that there
is no exact pair of the form (u,«") with uem. Assume, on the contrary, that
(u, u"), uem, is an exact pair, Since m® = (0), A’ is either 1 or 2. Suppose that
K =1 and let u=t;X+55+1t3d, 1,6 K. Then 0 =12 = (A4+135)d implies
ty = t; = 0 since (—1)? & K. Hence u = 154 and therefore Anngu = m, which
contradicts the exactniess of the pair (u, u). Now suppose that 4’ = 2, Since the
exactness of the pair (u,u?) implies R/RusRu/Ru*=Ru?, we have 4 = I(R)
= 3/(R/()) and we again obtain a contradiction. Consequently R is an exact but
not h-exact local artinian ring.
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