Some remarks on well-ordered models *
by

H, Kotlarski (Warszawa)

Abstract. We give some information on well-ordered models. More exactly, assume that the
language L contains a binary predicate <, T isa theory in L, and T} “< is a linear ordering”.
In § 1 we give a syntactical characterization of those theories 7' which have a model which is well-
ordered by the interpretation of <. In § 2 we give some conditions which imply that a given well-
ordered model % = < A4, <,... >has a proper well-ordered elementary extension. In § 3 we connect
our previous results with the notion of constructibility. .

Our main tool is that of atomic.models (cf, e, g Chang-Keisler [3]). Tn § 2 we develop the theory
of Skolem ultrapowers in the version we need and we use it to construct elementary extensions,

We use standard model-theoretic terminology and notation as in Chang-Keisler [3],

§ 1. Theories which have well-ordered model. Let L, be a first order language and
let < be a binary predicate of L. Let T be a theory in L. Assume that Tk < is
a linear ordering”.

To state our first characterization of those T which have a well-ordered model,
we need soime special notation. Let & denote the set of all sequences of formulas
of L of the form ¢ = {¢,(v;, ..., v,}i%; . For each sequence ¢ € & we define a se-
quence §§ = {@,} . of sentences of L as: @, is v, ¢,(v) and Buay 18

Vv.l LS ] vn((pn(vi LEAALE] vn)""avu-lnx(vn-i‘l <y A (Pn+1(U1 5 wes Uy vn+1)))'

Tugorem 1.1, Under the above notation, T has a well-ordered model iff there
exists a function h: ®-+o such that

k
Vie Vo', .., 0% ed non T+ wa Bheasy -

Note. This generalizes the main theorem of Kotlarski [5], where a version
which holds for complete theories T (cf. 1.2 below) was stated and proved.

* This paper contains parts of the author’s doctoral thesis [6), written under the direction of
professor C, Ryll-Nardzewski. )

The author would like to thank professors A. Mostowski and C. Ryll-Nardzewski and also
W. Marek, J., Onyszkiewicz, XK. Apt and M, Srebeny for valuable suggestions. .
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Proof of Theorem 1.1, = Let %A = {4, <, ...> be well ordered model of T,
We claim that
o) VoedAne oWk "1d,.
Indeed, otherwise Vn2 E ,, which allows us to construct a descending sequence

of elements of A in a trivial way, a contradiction,
Now let 4 (¢) be any n € o such that Ak ~1,. Obviously the function A con-

structed above satisfies our demand.
<« Let h: d—w be such that

Vikewn Vo', .., 0" e d non Tl—ﬁ‘ﬁiw!; .
Let Ty: = T'U {71y ¢ €@} By the deduction theorem and the assumption
about A,
(1) T, is consistent,
Now we claim that:
(2) the scheme of minimum (without parameters) is provable in T,
Indeed, let 4(v) be any formula of L. If ‘
‘ non Ty F Jvd ()~ (Fvd @) A (Yo, <v14())))
" then the sequence {¥,} defined by the conditions
| W1(’”1)‘ = A,

nti "
lpn'i-l(ulv ey Un+1) = iMl A(Ui)/\ le+1<vl

has the property that T F ), for all n, which contradicts the definition of T.
So (2) is proved.
Next we claim that
® the scheme of minimum with parameters is provable in T
(this uses only (2), and not the assumption of the theorem). This is proved by in-

duction on the number of parameters. Let A4 (v, .«, v,) be any formula of L. Let B
be the following sentence:

Yoy, i 0300400, s vy)
‘ ""(a'UOA(an Vs aeny l?n)Avvn+],<vojA(Ull'l‘15 Uiy vy ”H))) *

To prove (3) we only need to show that Ty u {718} is inconsistent. Assume the
contrary, i.e. that T; w {™1B} is consistent. Then “the smallest v, such that for
SOME 0y, ..., U,, the scheme of minimum fails for 4” is definable in T, U {718} by
a formula, say C(vy).
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Now the formula Vv, C(v,)~4 (v, 2 Uty 8,) has fewer parameters than 4
and so, by the inductive assumption, the scheme of minimum for Vo C(u;
=4 (vy; ., ) I8 provable in T} and so it is provable in Ty v {71B} thus T, ul{—l BI}
is inconsistent. . '

By (3), Ty is skolemized in the natural way: namely, for any formula
A(vg, 05 e v,) let 24(vy, ., v,) be “the smallest vy such that 4(v,, v v,) if
there exists such a v, or the smallest v, such that vy = D, otherwi,se}’t R
Obviously, ¢4’ are definable in 7', and the usual Skolem axioms are provable
in Tl' .

Now, let T be any complete and consistent extension of Ty. T, is also skole-
mized, and so it has a pointwise definable model, whence it has an atomic model:
namely, the closure of the empty set under the Skolem functions is pointwise de-
finable, and hence atomic,

Let 91 be any atomic model of T,. Obviously, 9 k T indeed, T<T; €T}, and
so we only need to show that 2 is well ordered. Assume the contrary, i.e. let {a,}
be any descending sequence of elements of A. "

Let @,(vy, ..., 0,) be any atomic formula such that Ak ¢,lay, ..., a,). One
easily verifies that Wk @, for all new, so Tk ¢, for all new, and so
non Ty F ™1 @,, but this contradicts the definition of 7,. A

Some consequences of Theorem 1.1 should be mentioned:

COROLLARY 1.2 ([5]). If T Is complete, then T  has a well-ordered - model iff
Yoe®An nonT F @y

Proof. = obvious. )

<= by the completeness of T, any function A: d— ¢ such that non Tk Py SAL=
isfies the condition from Theorem 1,1. M

COROLLARY 1.3. If T is complete, then T has a well-ordered model iff every coun-
table To=T has a well-ordered model,

©
n=1

Proof. Obvious from Corollary 1.2. M

If we assume from the very beginning not only T'F “< is a linear ordering”,
but also T'+ “the scheme of minimum?”, then our theorem and its proof become
slightly simpler, Namely, if T+ “the scheme of minimum”, then T is skolemized
exactly as in the prool of 1.1, and we may assume that the symbols for these Skolem
functions are in L. Denote by Term = the set of all constant terms of L.

COROLLARY 1.4, Under the above assumptions, T has a well-ordered model iff
there exists a function h: Term®-+w such that Jforallk e w and all 1, ..., * e Term®

k
-non. TI-JV! [,J,(gJ).yl <t{(u) .

Proof. Slightly simpler than that of Theorem 11 m _
Other conditions for T to have & well-ordered model are also known. (cf. [6]);
they are based on other ideas, but they are even more complicated. It should be noted
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that such conditions must be complicated because of the following theorem, due to
K. R. Apt. .

TaroreM 1.5. Assume that L is arithmetized. Then the formula “T has a well-
ordered model” is I} but not 3.

Proof. Obviously our formula is 3%, since it is equivalent to “there exists
a consistent T; 2T such that for all p € @ there exists an # € w such that T F 71¢,”
(cf. 1.2) and this is a Z} formula.

The second part of the proof needs some knowledge of second order arithmetic,

as collected in Apt-Marek [2].

Let L be the language of the second order arithmetic and let T == Ay+V =L,
let < be the usual constructible well-ordering. Assume our formula, call it H(-)
is IT5: we derive a contradiction.

First remark that each IT3 formula is absolute downwards with respect to
B-models, i.e. if B is a f-model for A, and P(w) k H, then Bk H.

Let B, be the minimal f-model for A,. We have T e By, since T is recursively
enumerable. Now P(w) k H(T), hence By k H(T), and so By k “there exists a well-
ordered (i.e. f-) model for 4,”. But this contradicts the minimality of B, and the
absoluteness of the notion of f-model with respect to f-models. M

Similar negative results, concerning the f-rule rather than having a well-ordered
model, can be found in Apt [1] (*).

§ 2. Well-ordered clementary extensions, Let N = {4, <, ...) bea well-ordered
model. We shall study the problem for 2 having a proper well-ordered elementary

extension.
An obvious necessary and sufficient condition is that the theory

T: =ThA, U {d % a| acd},

where d is a new constant, should have a well-ordered model.
Analogies. with the Omitting types theorem suggest the following:
“if T"is consistent under the rule

infer —1C from A\ Cf, for some Yyed and a sentence C
R

d
then T has a well-ordered model”.

But the statement in quotation marks is casily refuted. Indeed, let 2 be any
infinite ‘well-ordered model with no well-ordered clementary extension (e.g. the
standard model of Peano arithmetic, or the minimal model of ZF). Then T'is con-
sistent and closed under this rule, but has no well-ordered model,

To state some positive results, let us give the following definition.

A function f3 A**—~A4 is a %-RZM function for U iff

(i) Vxe A=* f(x) ¢ rangex,

() Added in proof: H () is “almost” IT 2F; see [6a) for the precise formulation.

Some remarks on well-ordered models

127

(ii) if x is a subsequence of p, then f(x) and f(») realize the same type in the
model yyngew, Where A =<4, ...) is any model (not necessarily well ordered)

d A% = ) A% is the set of all sequences of X
an a(é)” cquences of elements of 4 of length less than s,

(Remark that if we wanted to prove Theorem 2.3 below for linearly ordered
models only, we could consider a slightly simpler notion, namely that of functions
with domain {X'sA| card X'<x} which satisfy () /(X) ¢ X and (i) X< V= e
and £ (Y) realize the sumo type over X3 we have chosen a more complicated version
for generality,) } .

THEOREM 2.1, If U = (A, <, ..> Is a well-ordered model, which has an 0;-RZM
Simetion, then U has a proper well-ordered elementary extension..

Proof. Let T% = Th ¥, w {d 5t a| ae A}, where dis 2 new constant, Obviously,
we only need to construct a well-ordered model for 7, i.e; (by Theorem 1.1) we only
need to construct a function A: $-»w such that

k
) YeewVo', .., 0" e ®non T+ W &,
I=1
where we use the same notation as in 1.1 (with respect to T of course).

So fix any ¢ & & ¢.g. say that ¢ is {p,(d, vy, ..., v,)}. Let x, denote the sequence
of parameters @ & A which oceur in some ¢,, Obviously, the length of x,, is countable,

We claim that there exists an /e @ such that

) Wy F 1G[S Crg)]

(i.e. f(x,) is & “good” interpretation for d).

Indeed, otherwise we would have 4k @[/ (x,)] for all /e w, which allows us
to construct a descending scquence of elements of 4*exactly as in 1.1, a contradiction,
Now let h(p) be any /e o such that (2) holds. We claim that the function A con-
structed in this way satifies (1), . : '

Fix any kew and @', .., tp"e ¢. By construction,

QIA k '"l‘ﬁljp(:ﬂ)[f(xw)] j = 13 oy k 3
and so by (i) from the definition of an RZM function

for

k
”Lt ‘:JA!A j‘ﬁ’l(w)[f(an e n xqa")]

k

n N T

(" denotes concatenation), Tt follows that non T'+ W tﬁ;f(,,:). L
I=t

~ Before going further, let us develop the construction of Skolem ultrapowers.
in the way we need it,

Let 9 = <{4,..> be any model (not necessarily well ordered). We denote by
DefQ = the Boolean algebra of all subsets of 4 definable in 2 with parameters
from A. Let p & §,(2) = the set of all ultrafilters in Def. Let Tm denote the set
of all terms of the language of U, with at most one variable v free.

4 — Fundamenta Mathematleae, T, XCIK
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Define

iff 1) = t,)ep for &, tH,eTm.
One easily verifies that ~ is an equivalence relation and the following definition of

relations in Tm/. makes sense:
R, e ty) T R(40), s fi0)) €D -

Functions and constants are treated similarly. We shall denote by 20/, the model
constructed above. The appropriate version of the lemma of £.of is

Levma 2.2 If Th¥ is skolemized, then for each formula ¢ (vy, ..., v,) we have
Wk QU s ty) U @10, s (W) €D

Proof. Almost like the original one. One uses skolemization in the quantifier
step of induction. M

This gives as usual the following facts:

The function r: A—Tm given by r(@) = ¢~ is an elementary embedding of %
into /,; r is proper iff, for all ae 4, v £ aep. '

Using this method of constructing elementary extensions, we shall give a slightly
modified proof of Theorem 2.1.

Let A = ¢4, <...,> be well ordered, Obviously we may assume that Thil is
skolemized by the scheme of minimum as in the proof Theorem 1.1, Let f be an
o,-RZM function for 2. Define

p= {(P(”! ay, “':an)l Ak (P[f«alﬁ ey au»s gy eery n]} .

One easily verifies that p is an ultrafilter in Def % ((ii) of the definition of an RZM
function for finite sequencés only is used to verify that @ ep, W ep= @AY &p).
Consider the model 2/,. This is a proper extension of by (i) from the definition of
an RZM function. Thus we need only to verify that 2/, is well-ordered.

Assume the contrary, i.e. let {r;} be a descending sequence, let #, be
t(v, a}, ..., a,). Consider the sequence x containing all the parameters which occur
in some #,, % =@}, e, Gy, 4, s Ahys oope Now we have U/, k g <ty 80
L ()<t ) ep for all n by 2.2; s0 Wy k £, [f )] <t [F(x)] for all n by the
definition. of p and (if) from the definition of on'RZM function, but this contradicts
the fact that 2 is well-ordered. M

The notion of a »-RZM: function is rather strong: namely, we prove

THEOREM 2.3. Let U be a skolemized model. Then W has a %-RZM function
iff W is » saturated relative to some of its proper elementary extensions.

(The notion of relative saturation is due to Simpson, see Chang-Keisler [3],
p. 429).

Proof. <= (this direction does not use the skolemization of 20). Let 2 be 3 satu-
rated relative to 8. Fix any b, € B~4. For any sequence x with domain(x) e x
the type of by in the model B yoqe, is realised in W,,gex (by relative saturativity)

ti~vty
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by an element, call any such element f(x). Obviously the function f constructed in
this way is a ®-RZM function.

= Exaclly like the second proof of 2.1. M

Let A = {4, <, ...> be a lincarly ordered model, An ultrafilter P in Def% ig
said to be realized arbitrarily high in W iff

Vae A3be AUE a<b and b realizes p A {¢(v, 4y, ...; 4,)| ay, ..., q,<a).

THEOREM 2.4, Assume that W = (A, <, ... is linearly ordered and has an ultra-
filter pwhich 1§ reallzed arbitrarily high. Then % has an end elementary extension.
Moreover, we may require U to be cf(A, <) saturated relative to that extension.

Proof. One easily verifies that B: = A/, has the required propertics. M

COoROLLARY 2.5, If W Is well ordered, not cofinal with w and has an ultraﬁlter‘ real-
ized arbitrarily high, then 2 has an end well-ordered elementary extension. W

In fact, we can weaken the assumption about skolemization in 2.3 and 2.4. Let
us call a complete theory T strongly atomic iff, for all Ak T and all X = 4, the theory
ThAy has an atomic model.

Tt is well known that every w-stable theory is strongly atomic (Chang Keisler [3],
Corollary 7.1.12). Obviously every skolemized theory is strongly atomic.

Now we can generalize 2,3 and 2.4 by requiring Th to be strongly atomic
rather than skolemized. One considers any atomic model of Th¥, U {@(d)] ¢ €p};
the rest of the proofs are the same.

The following theorem, due to Silver, easily follows from Corollary 1.3:

Treorem 2.6 (Silver [8]). If A = {4, <, ...y is a well-ordered model generated
by a set X of order indiscernibles with cf(X)>cw, then W has arbitrarily large well-
ordered elementary extensions.

Proof. Fix a cardinal ». Add to the language of Th9l constants ¢, for ae x.
Let

Ti= ThA U {p(Chys ony )| ¥ €0 €. 6, and
Xy, ey Xy € [X1" Wk @xy, ..

By the definition of indiscernibles, T' is complete and consistent.

We claim that every countable T, & T has a well-ordered model. Indeed, a coun-
table T, contains only countably many ¢,, their set is well-ordered by the relation
ey<epilf T'k ¢, < g and 50 it cun be order embedded into X this gives an interpret-
ation of T}, in 9L

Tt follows from Corollary 1.3 that 7" has a well-ordered model. Thus to prove
Theorem 2.6 we only need to show that 2 may be elementarily embedded into the
reduct of any model of 7"to the language of ThX. Fix any a € 4, a being of the form
a=(x;, .., x,) for some term ¢ of the language of Th¥ and some sequence
$Xg5 0y %, of elements of X, Embed X into %, and let j be this embedding. Define
7(@) = 1(Cjuy .., €p,): this is the required embedding. M o
4

» %}
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§ 3. Connections with set theoretic concepts. Let W ='{L,,, &, <), where < i
Godel’s ordering. Does U have an w;~-RZM function? We show that this is inde-
pendent of ZFC set theory. ‘ :

ProrosITioN 3.1 If V =L then U has no w;~-RZM function.

Proof. One can prove directly that if 9 has a proper well-ordered (i.e. well-
founded) elementary extension, then wf<w,; hence V % L; we shall give a more
elegant proof, using some ideas of Mostowski, cf. Marck [7].

Let us call a model B typewise definable it the function B o u-type(a)
= {p@)| B @[]} is 1-1 (i.c. different members of B realize different types in B),

It is obvious that no typewisc definable model has any RZM -tunction, and
so to prove 3.1 we only need to show that

(1) the model <Ly, € is typewise definable,

To. prove this, remark first that wé only need to show
o)
because of the definability of Godel’s function Fin CLops €. 8o assume that (2) does
not hold, and let ®, be the smallest ordinal such that pus e fl el and

Lok & o) = Loy & B

Vae e CU% <Lw1L: €, Dt) % <Lwl‘) €, /3>

We claim that
(3) o, is definable in Lofs € B

Indeed, since Lk, €)EV = HC (V = HC means “everything is coyntable”)

{Lo};€> kg (g is a function) and (domain(g) = w) and (range(g) = ), the first -

such g (in Godel’s ordering) is definable, but then a, is definable
So (3) is proved.

Let A(v) be the definition of o, in Loy & B). Thus <Lk, &, apy k1A (v).
Let o, be the element defined by A in {Lals € 0. It is routine to verily that
% € g and (La,;., €,y = Lok, & ag). But this contradicts the choice of 0. M
.Numerous beautiful results using V = HC can be found in Polsilver [9].
PROPOSITION 3.2. If there exists O, then W hay an w~RZM. function.
-Proof. This is an obvious consequence of

as g (n) for some n.

/.

PROPOSITION 3.3. Let U be @ model generated by a set X of order indiscernibles, -

with (X)) 2x. Then W has a x-RZM JSunction,

Proof. Fix any y e 4°*, each y,
Let f(3) be
for 2A. W

: being of the form y, = £,(¥}, ..., x%), x4 e X.
any x X which exceeds all x§. Obviously f is a %-RZM function

' I\.TOW we shal‘l assume 0%, but consider 6n1y constructible models, since this
situation can easily be described. Our remarks were suggested by

©

icm
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LeMMA 3.4 (Glode [4]). Assume 30W. Let % e L and let the simildrity type of N be
countable in L. If QU is uncountable (in V, not only in L), then % has an uncountable
set of order indiscernibles.
This can be used to produce an clementary tower {2L,} of well-ordered mo dels
elementary equivalent to 90 exactly as Silver [8] has done, but this does not give
s additional information that we may require cach 2, to be constructible,

However,
this is easily proved.

Taporem 3.5, Assume FOW, Let O = {4, <, ) be a constructible well-ordered
model for a constructibly countable lunguage. Then

(a) if the order type of W is wicountable (in V1), then there exists an elementary
tower {Wlaaon of proper well-ordered clementary extensions of U such that
VYoe On A, e l,

(b) if the order lype of WL is an uncountable cardinal, then we may require the order
type of each Wy 10 be a cardinal and each cardinal greater than the oider type of U to
be the order type of some R,

Proof. Since W e L, we have A = #(¢y, ..., ¢,) for some term ¢ of set theory and
erses & € [CT", where C denotes the class of ordinals generating I, and indis-
cernible in L. Now lix any function G On—[C]" such that G is increasing in the
following sense: a< fi = any coordinate of G(x) is less than any coordinate of G(B),
and let G(0) = ey ey €y, Put 9, = 1(G(®)). One casily verifies that all the
conditions are satisfied since they can be written us formulas of set theory and follow
from the indiscernibility of C. So (a) is proved., If the order type of ¥ is a cardinal x,
then U = £(¢y, vey Cpuais 5 Cpqs oy €)% MUSE OCCUT, Since otherwise it would be
definable from other elements of C as the order type of 7(cy, ..., ¢,), which contradicts
the indiscernibility of C.

Now (b) is proved exactly as (1) only need the additional assumption on G,
namely that the mth coordinate of G(a) is a cardinal and each cardinal exceeding
the order type of 2 is G(x) for some «; the rest is the same. M
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The axiom of choice for linearly ordered families
by

J. Truss (Oxford)

Abstract. We study the statement (1) Any linearly oxdered family of non-empty sets has a choice
function, (1) implies AC in ZF but not in ZF without foundation. We show that a weaker form of (1),
namely “every family of non-empty sets indexed by P(w) has a choice function”, does not imply AC
even in ZF; in fact it is consistent with the existence of a partition of P(w) without a choice function.
We study further properties of the model used to prove this, and also of Feferman’s model.

§ 1. The axiom of choice for linearly ordered families is the following statement,
(1) Any linearly ordered family of non-empty sets has a choice function,
We prove in this paper that in the presence of the axiom of foundation, (1) im-

-plies AC, the axiom of choice, However this is false in set theory without the axiom

of foundation. (1)-AC is therefore an example of what Pincus [8, pp. 740-741]
calls a “non-transferable” consistency, i.e. it holds in an appropriate Fraenkel-
Mostowski model (where the axiom of foundation may be violated) but not in any
model of Zermelo-Fraenkel (ZF) set theory.

Our interest in this proposition was prompted by a question of A. Zalc. She
asked whether (2) implies (3), where (2) and (3) are as follows. ‘

(2) Bvery family of non-empty sets indexed by P(w) has a choice function.

(3) Bvery partition of P(w) into non-emply subsets has a choice fu%ction.

That the answer is “no” follows from consideration of one of the models 9,
of [12], of “Feferman type”. We thought at first that it would be enough to consider
Feferman’s original model, : [2). However it turns out that both (2) and (3) are false
there, the reason being connected with the fact that (1)-AC in ZF! (2) follows
from (1), of course, but not conversely, as we shall show. ‘

We include further information about 9 (and similar results hold for the other
models discussed in [12]). We show that for each ordinal o, 2% = 8,4 4, 2%, and more-
over that for any set X of M which can be linearly ordered, there is an a such that
|X|<2%. This is a “Kinna~Wagner ordering principle” for orderable sets. In fact
the proof will show that this conclusion holds for any set such that

[XT = {xsX: |x| = 2}
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