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Finally, we have .

(3.1) LemMmA. Let X be a locally compact separable metric space and let A be
a first category subset of F'(X). Then there exists a dense countable subset B of X such
that F"(B)n A = @.

Proof. Let {U} be a countable basis for X. We will define B inductively. The
first n—1 points of B will be chosen by induction as follows. By (4.3) choose b, e U,
such that D(b,, 4) is a first category subset of F"~1(X). If s<i—1, assume that
by, ..., b have been chosen so that b; e U; and D(b;, 4) is a first category subset
of F""(X), D(b;, by, A)is a first category subset of F*~2(X ) for k<j and in general
if kg, ks, ..., Ky, I<j is @ decreasing sequence of natural numbers with k, <j, then
D(bj, byys e by, A) is a first category subset of F""¢*V, For k =1, ..., p, let,

Be = U {D@yps s by D) p2j1>fne >z 1} < F7HX)

Note that by the above assumptions Ej is a first category subset of F"¥(X). Hence,
by (4.3) we can chose b,,, € U, such that D(b,,,, 4) and D(b,,y, E,) are first
category for k = 1, ..., p. It is easily verified that {b,, ..., b,.,} satisfy the inductive
hypothesis.
In order to define b, we let the E/s be as above, however, note that E,_ s
a first category subset of X. Therefore, using (4.3) again choose b, e U,—E, .,
such that D(b,, 4) is a first category subset of F*~!(X) and D(b,, E,) is a first
category subset of F"~**)(Y) for k<n~1. Now we proceed as before if we assume
).5, , 1, b, havi bee(111 ieﬁned and p>n, we let E; be defined as before but only for
t=1,..,n—1 and by (4.3) we choose b,,, €U, — [
and D(b,,,E) are ﬁrsi c:itegory for i =p;,1..., I;il2 et 20 1 DOy 4D
Let B = {b;};2;. It is clear from the construction ttat B is a dense countable

subset of X. All that remains to be shown is that F'(B) n 4 = &, Therefore assume -

that (eq, ...; ¢,) € F"(B) n 4. For the sake of simplicity, we will assume that
(615 s €)= (b,“, . by,) where ky<k,<...<k,. This implies that

b€ D(byys ves by, A)<E,_, .

But b, was chosen in U, ~E,_, and hence we have a contradiction.
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A counter-example concerning
quasi-homeomorphisms of compacta

by

H. Patkowska (Warszawa)

. Abstract. Two metric compacta X and ¥ are said to be quasi-homeomorphic if for every e>0
there are two e-mappings: f mapping X onto ¥ and g mapping ¥ onto X. A locally connected
continuum X belongs to the class a if there is a §>0 such that no simple closed curve C C X with
diam C <4 is a retract of X. We prove inthe paper that there are two quasi-homeomorphic, 2-di-
mensional Iocally connected continua X and Y such that Xea and Y éa.

1. Introduction. Let X be a (metric) compactum and let Y be a topological
space. A map f: X—Y is said to be an e-mapping if diam(f~*(y))<e for every
yef(X). Xis said to be Y-Iike if for every £>0 there is an ¢-mapping of X onto Y.
Two compacta X and ¥ are said to be quasi-homeomorphic if X is Y-like and ¥
is X-like.

In a sequence of papers (cf. [3], [4], [5]) concerned with these notions we con-
sidered the following class a: .

DerNITION 1. A locally connected compactum X belong to the class o if there
is an &>0 such that no simple closed curve C<X with diamC<e is a retract of X.

In [5] we proved the following theorem: Let Y be a compact semi-lc, space
in the homological sense, i.e. such that i,(H,(4)) = O for each compact subset 4
of Y with diameter less than a given 5>0, where H,(A) is the first Cech homology
group of A with integer coefficients and i: A—Y is the inclusion map. Then each locally
connected compactum X which is Y-like belongs 1o the class a.

In the same paper we raised the question whether the property o is-a quasi-
homeomorphism invariant. In the present paper we shall prove that this is not the
case, i.e. that there exist two quasi-homeomorphic locally connected continua X
and ¥ such that Xeo and Yéa.

Given a compactum 4, H,(A4) will denote the nth Cech homology group of A
with integer coefficients. It is well known (cf. [2], p..6) that, if 4 is a retract of X
and i1 A—X is the inclusion map, then the group i,(H,(4)) is a direct summand

"of the group H(X). If Cis a simple closed curve, then it follows from the Bru-
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schlinsky results (cf. [1]and [2], p. 526) that the algebraic conditions are also sufficient
in order that C be a retract of X, i.e.:

(1.1)  Let X be a compactum and let CcX be a simple closed curve. Then C is
a retract of X if and only if i,(H,(C)) is a direct summand of the group
H(X), where i: C—X is the inclusion map.

In Section 2, we present an auxiliary construction of polyhedra P,, n = 1,2, ...
and we prove some of their properties. By means of these polyhedra, we construct
in Section 3 the compacta X and Y and prove their properties in question. Now,
we shall start with some intuitive remarks concerning these constructions.

The polyhedra P,, n = 1,2, ..., and also the spaces X and ¥ will be 2-dimen-
sional. It is easy to see by using the above-mentioned results of the paper [5] that
the example cannot be 1-dimensional. For a fixed », we shall construct P, such
that Hy(P,) will be a free cyclic group with a generator f whose carrier will be
a simple closed curve S, forming the boundary of the unit square on the
plane E2 As the “first approximation” of P,, we can imagine the polyhedron
P = §,x40,1)cE* As the “first approximation” of X we can imagine the closure

oo
of the set Xy = | J 4,(P), where /, is the linear homeomorphism mapping P onto
n=1

the set C,x<0,1>cE® where C, is the boundary (in E®) of the rectangle
{xe E%: 0<x,<1, 1J(m+1)<x,<1/n}. As the “first approximation” of ¥ we can

imagine the closure of the set ¥, = |_J g,(P), where g,’s are linear homeomorphisms
n=1

mapping P onto subsets of E* such that lim diamg,(P) = 0 and that 9.(P) O g,(P)

n-eo
-is a (PL) disk if |n—m| = 1 and it is the empty set if |n—m|>1. Then Y, ¢ua,
and no simple closed curve C=X, with diameter smaller than 1 is a retract of X 03
however, X, is not locally connected.

In order to improve it, we must adjoin arcs joining the points of X, whose
x3-coordinates are close to one another; and therefore, for a sufficiently large
number 7, the polyhedron P, must contain (homologically non-trivial) simple closed
curves with small diameters. Let C<P, be such a simple closed curve, let y be a gen-
erator of the group H,(C) and lef i,: H(C)—H\(P,) denote the homomorphism
induced by the inclusion i: C—sP,. Notice that the relation ix(y) = 0 cannot hold
for “too many” curves C, because — if such was the case — either the group H,(P,)
would be trivial or a generator of this group would have a carrier with a small diam-

eter. Consequently, since the simple closed curve C cannot be a retract of X (and

therefore of P, either), we shall construct P, in such a way that i,(y) (if not 0) will
- be a multiple of the generator f. :

For any integer m>1, we shall construct a simple closed curve being a carrier
of mf by nieans of the so called “pseudo-projective” m-band. To construct it, con-
sider the curve S, defined before and take a copy of the set P = §; x €0, 1>, which
We now assume to be disjoint from S;. Let us identify S, x (0)=P with S, by means
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of the map p: Sy x(0)—S,, which is the covering projection of order m. Thé identi—‘
fication space M = (P@®Sy)/p is called the pseudo-projective m-band and the simple
closed curve S, x (1) — which is assumed to be contained in M —is called the
boundary of M. Evidently, this simple closed curve is a carrier of mf. We can assume
that Sy = E2 < E® and that M is a polyhedron in E® containing S, in the way suggested
in Figure 1 for the case m = 2 (in this case, evidently, M is the Mobius band).

Fig. 1

The whole construction of the polyhedron P, will be given in the space E°.
We do it in several steps. If, in a certain step, a polyhedron Q, has been constructed,
in the next step we extend Q; by constructing a polyhedron Q, and identifying
a connected subpolyhedron Qj=Q, with a connected subpolyhedron Q5< Q.
We shall assume that the identification space also lies in E° and contains the images
of 0, and @, under the identification map as subpolyhedra. We shall iderlltify
these images with Q, and Q,, respectively, if the construction makes it possible.

In calculating of the first homology group Hy(Q, v Q5), where Qp = Q1 0 O,
is assumed to be a connected polyhedron (thus Hy(Q, N Q) = 0, H, being the
reduced homology functor), we shall use the following formula:

12 H(Qiv Q)= H1(Q1)@H1(Q2)/Im1/’; Wh}?l‘e v Hi(Q1 0 )~ H(0)®
@HI(QZ) iS deﬁned by lﬁ(’))) = (il*(yj'—iz‘('})))s iy: Ql [ Q2_>Qp,2 IJ = 1’ 2
being the inclusion maps.

This formula is an easy consequence of the Mayer—Vietoris exact sequence.

2. Construction of a polyhedron P,. Given 2 positive integer 7, we shall construct
a polyhedron P,, which will be crucial for the whole paper.

Let p; =2, p, = 3,.. denote the sequence of the prime numbers. Let
q = py1*Pyt.Pan and let g; = g/p; for i =1,2,..,2" The numbers gy, ..., gan
are relatively prime, and so there exist integers my, ..., 7= such that

mygy+o.FMongam = 1.

We define a sequence of integers ry, ..., Fyn s & permutation of the‘ integers
M3qy, s Mangon. In Figure 2 we construct a (theoretically) infinite table, in whose
rows these permutations are successively indicated for n = 1,2, ... The ith row of
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n=1 ) gy Mmaga
n=2 g msgs s mad,
n=3 may M s My Meqs myqs Qs mads | Mgy
Fig. 2

the table contains 2! small rectangles. If the permutation appearing in the ith row is’

known, we construct the permutation in the (i+1)-th row in the following way:
Let Q be a small rectangle appearing in the ith row. There are two small rectangles

Q', Q" in the (i+1)-th row, each with one side lying on a side of Q. Let Q' be the

first of them. If Q contains m;q;, we put the same in Q'. Thus half of the rectangles
appearing in the (i--1)-th row are filled in. The remaining ones are filled in success-
ively bY Myii1Gaiqqs s MotrsGaist. .

The permutation ry, ..., Fyn is not essential in constructing the polyhedron P,
itself; however, it is essential in constructing X, which we now substantiate intuit-
ively. The exact construction of X from the sequence P,,P,, ... of polyhedra is
similar to, what we called the “first approximation” in the Introduction. Assuming
that the widths of the rows in Figure 2 converge to zero when i becomes infinite, the
boundaries of the rectangles appearing in this figure can be assumed to be subsets
of X. Moreover; for each small rectangle Q appearing in the ith row, Bd Q can
be assumed to be a simple closed curve contained in P; such that if m;q; appears
in Q then Bd @ is a carrier of m;q; B, where f is a fixed generator of the group H,(P;).
‘Evidently, for any sequence Qy, Q,, ..., Q) of small rectangles appearing in the ith
row, not containing all of those rectangles, there is a prime number p;,>2 which is
a common divisor of all integers m;q; appearing in Qy, @5, ..., O;.

Now, consider a simple closed curve C lying in the closure of the union of the
boundaries of all the rectangles in Figure 2, where we assume that the width of the
Tows converges to zero. As has been mentioned, we can assume that C< X, Let io de-
note the first index 7 such that C intersects the boundary of a rectangle Q appearing
in the ith row. Denote by 7, the (orthogonal) projection onto the lower side of
the ipth row. If the diameter of C is sufficiently small, then i,>1 and, moreover,
the sequence of all the small rectangles Qy, ..., @, appearing in the ijth row and
intersecting 7;,(C) does mot contain all of those rectangles. Consequently, there is
a prime number p;,>2 with the property mentioned before. It follows from the con-
struction of the table given in Figure 2 that, for each i/, and for each small rec-
tangle Q appearing in the ith row such that either BdQ n C # @& or Q lies in the
bounded component of E2\C, the prime number DPj, is a divisor of the integer m;g;
appearing in Q. Consequently, if y is a generator of the group H,(C) and i: C—X
is the inclusion map, then

: (0) =gy,
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“where y' € Hy(X). Thus we conclude from (1.1) that C cannot be a retract of X,

which is a necessary condition in order that X ea.

We shall define P, in the Euclidean space ES. First, let .S, denote the boundary
of the unit square in the plane E?<E?. Divide this square into 2" subrectangles
as in Figure 3 and denote their boundaries successively by Sy, S,, ..., Spn. Let us

©,1) (L.1)
« < <~ <
S1 Sy Son
A2 N I 2 N B T
- - - -
0,0 (1,0)
Fig. 37

orient coherently all S;’s, 0<#<2", such that if the oriented S; defines the cycle ;,
then fo= 51+62+...+£2n. )

Constructing P,, we shall first extend the polyhedron {J S; so as to obtain the
=0

relations
[£:] = riléo] s

where the brackets denote the homology class of the cycle in P,.

For this purpose consider the unit 3-cube Q in the 3-space E*cE® and let
Q' = [xeE%: (xy, %y, x3) € Q,0<x,, xs<2~ "], We shall construct P, as a subset
of Q'. By the phrase “a sufficiently sinall neighborhood of a set 4” we shall mean
the generalized ball on 4 (in Q') with radius 2~ "%, For each i, 1<i<2", construct
a pseudo-projective |ry|-band M; lying in a sufficiently small neighborhood (in Q")

of the union of the lateral faces of Q such that M; N M; = S, if i #j and
an .

M;n U S; = S, Denote by S{ the oriented boundary simple closed curve of M such
i=0

that if S; defines the cycle & then
[&1 = Ird (€],
where the brackets denote the homology class of the cycle in LiJM ;. Next, extend M;

in a sufficiently small neighborhood (in Q') of the upper face of Q to obtain a pseudo-
projective |r,|-band M containing M; whose boundary curve S} (in the preceding
sense) lies in a sufficiently small neighborhood of the orthogonal projection of S;
into the upper face of Q. We can assume that M{ n M = S, for i # j. Now, we
extend M} by a tube joining ST with S; and yielding the homology between the
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cycles defined by the oriented S} and S;, where we orient S} coherently with the
orientation of S if |r;| = r; or else in the opposite way.

‘We can assume that this tube lies in a sufficiently small neighborhood (in Q")
of the rectangular solid tube joining in Q the rectangle bounded by S; with its projec-
tion into the upper face of Q. Denote the union of M} and of that tube by M;™.
We can assume that the construction has been executed so that M;™ n M7
=Sy v (§;n Sy for i #j.

Now, to 1mprove the first homology group, we shall make some identifications

in the polyhedron U M . Notice that the group Hl(M ) has two generators.

The carrier of the one different from [£,] is a (PL) simple closed curve -C;™c M;™*
which is the union of two simple arcs, disjoint except at the end-points and lying
close to each other, one lying on M} and the other on the tube M; M. Let
us identify these arcs by using a (PL) homeomorphism between them. Denote
by M, the decomposition space of M;™ obtained in this way. We can assume that M;
differs from M;* only on a small neighborhood of C;*.

By construction, H;(M,) is a free cyclic group with [£,] as a generator. Since
[&] = Iri|[&] and 7y, .., ron is @ permutatlon of mlql,. .» Mangan, We conclude

from the definition of m;’s that H1(U M) is also a free cyclic group with [£] as

a generator. i

Next, as described in the Introduction, we shall complicate the construction
to make X locally connected. First, we shall join M;’s on larger sets. For this purpose
consider polyhedral disks DycM;, D;, DicM; for 1<i<2", Dync M, where
each D; (D}) contains a large arc J contained in S, (i.e. such that diam (Sy\J)
<27®*y D, D} = JcS, and both D; and Dj lie close to the set

[xe Q: (xy,x,)el, 0<x;5<1].
Fori=1,
between them mapping the arc J onto itself, Denote by JVI the polyhedron obtained
from | J;M,; by these identifications.

The aim of the further completion of the construction is to ensure that the
points of M whose x; coordinates are sufficiently close to one another could be
joined by “small arcs” without changing at the same time the first homology group
of M and without permitting small simple closed curves to yield cycles homological

_ with &;. In order not to change the first homology group we must take care not to
add new 1-cycles independent of &, and not to permit different multiples of &, to be
homological. In order mot to permit small simple closed curves to yield cycles
homological with &, one must take care that no set of small diameter contains
carriers of multiples of & whose greatest. common divisor is equal to one.

For this purpose fix an index i and conmsider the previously constructed
Ir;l-band M. One can construct polyhedral simple closed curves €, j = 1,2, ..., [,
(denoted by C; if i is fixed), lying on M; and defining cycles z j) homologlcal wuh &os

2"—1, identify disks D; and D;., using a (PL) homeommphism‘
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as in Figure 4. We can assume that C; lies sufficiently close to the union of the
boundary simple closed curve S; of M; and of the vertical, segment erected at the
point (0,0) € So=E?. Moreover, we assume that the ordering of the curves
Cy, s Cpy is such that the successive curves (with indices ordered modulo |r})

G
Cix
Cis
So
Fig. 4

have a “segment” in common (lying close to the vertical segment mentioned above)
and that

I

Z (2] = Il [&o] -

;> j<Ir;l, lying close to this vertical segment by 2"
., 2", by adding “segments™ parallel

Let us replace the part of C
smaller simple closed curves CJ k=1,2,.

_to the plane E2cES, ds suggested in Figure 4. We can assume that for a pair of

successive curves C;, C;. the added segments have one point in common and that
the diameters of the simple closed curves C, o K = 1,2, ...,2" are equal. Moreover,
we assume that the ordering of the curves Cy, k = 1, ..., 2 , is the following: C;; is’
the curve which lies closest to the plane EZCE Cy and Cjp.q have a common
segment and Cj,n is the curve which lies closest to the plane [x€E%: x5 =1 and
x; =0 for i>3].

Let us orient the curves Cj, coherently with the orientation of C;, and let them
define the cycles Zpo k = 1,2, ..., 2" Evidently, Cy, z;, depend on 7, so we should
tather use the notation C(?, z§’k) We shall assume that the construction is exacuted
so that C®  C¥paCP n C it (1)) # (@, 7).

Now, to complete the construction of P,, we shall extend the polyhedron

= Mo UICY: 1<i<2", 1<j<|ry], 1<k<2]

_ S0 as to obtain the relatlons

0] = &1,
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where the brackets denote the homology classes in P,. At the same time, we must
take care of the matters mentioned before the construction of C§s.
To do this, first construct a tube TV yielding the relations

[200] = 28] = .. 1(31:; 1,2¢] = [E2an]

and lying in a small neighborhood of the union of the upper face of Q and of the
rectangular tube erected at in Q on S,.. For this purpose notice that the curves
C$M, 1<j<|r,l, divide in the natural way the band M, into subsets My;, 1<j<|r,l,
where the ordering of Mj,’s agrees with the ordering of C{'”s (My),,) joins My j, -,
o Miy).

First, construct a part of the tube 75 yielding the relation

_ [202] = [€20]

and intersecting M on a subset of My, which is a (PL) disk constituting the union
of the following three disks: The first and the third join a segment which is a com-
ponent of My; n C{5 to a segment which is a component of Sy 0 My, \[x: x; = 1]
and lie close to the union of a part of the “boundary” arc of My, and of a vertical
segment erected at in a point of S». The second disk intersects the first and the third
n “vertical segments” and contains the remaining part of .Sya N My, ; it lies close
to the set [x € Q: x; = 1]. This part of the tube T3% lies close to the disk just de-

scribed, which is its intersection with Mj,.
Next, we extend successively the constructed tube to obtain the relations:

] = 9] = ... = [z{)-1,20] -

The first extension, yielding the first of these relations, is obtained by a (PL) tube
with two “segments” lying respectively on the boundary simple closed curves of it
identified by a (PL) homeomorphism, because C{th n C§3: is a “segment”. This
tube intersects M, on a disk constituting the union of two disks, one lying on M,
and containing C%s N M, the other lying on M;, and containing C$%» A My,.
The tube lies in a small neighborhood of the disk just described. Further extensions
of the constructed tube, yielding the subsequent homology relations, are built anal-
ogously. Finally, to obtain the whole tube T%Y), we extend the constructed tube in
a similar way joiningthe curve CM -1, 2nto acurve lying close to C{3. but such that this
final extension is disjoirt with C{3» and intersects My on a subset of M Jral=1 Y Mgy
which is the union of two disks intersecting Clnl*l anon two arcs. We assume that the
tube 75 does not intersect M’ except the sets described above, where we admit
MicM'. ,

Next, we extend the tube TS by (PL) tubes T8, ... Té?."’, where TS yields the
relations

[z(i— 1)

0
Frie1]~1,27] [zﬁ%..] = ,. =

The tube T4 lies in a small neighborhood of the boundary curve of M, and it is
constructed in the same way as the extensions of the first part of the tube 75, It is

i
[z -1, -

icm
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joined to the tube T ) by a small tube joining the boundary simple closed curve
of T¢ Y with C{)» and intersecting M’ only on these curves. We can assume here
that these simple closed curves intersect on a common arc obtained in the process
of the identification of the disks Dj._,cM,;_, and D,=M;, and so a “meridional”
d1sc on the joining tube is contracted to an arc.

Let us denote Tpn = U [T5: 1<1<2".
In a similar way we construct the tube T,n_, yielding the relations

[Z,zn-1] [€an-1] for

and lying in a small neighborhood of the tube T,». Weshall assume that Ton N Tyn_y
is a disk containing all arcs of the form C 2,. Ia) C,"z,._ ; and also the arc Syn N Syn_y,
and intersecting M; on the union of two arcs lying in the boundary of T,» 1 M.
Moreover, we assume that the boundary simple closed curves of the tubes T, and
Tyn.y different from S,» and Sys_4 intersect on a common arc.

In the same way we construct the tubes Tyn..y, ..., Tp, Ty, Where the first part
of the tube T, has one “meridional” arc contracted to a point, because the curves C{}
and 8, joined by it have the point (0, 0) € S;=E® in common.

Finally, we define

1<ign 1<l ~1

an

P,=M v UT;.
j=1
Now, let us examine the group H,(P,). As we have seen, HI(U M ;) is a free
i

cyclic group with [€,] as a generator. It is evident that the construction of M from
U M, yields no change of the homology group, and so H. (M) is also a free cyclic
i . .

group with the same generator.
Moreover, observe that each (PL) simple closed curve

CcMn [)veEs. i %<x1\s(l+])+16]

where i is one of 0, 1, ..., 7) such that the cycle z given by an orientation of C'is not

homologous to zero in M must lie in the union of some tubes Mj*\M;. Thus
[Z] = Z &;r; [£6],

where g = F1 and the summation runs over some indices j such that

S;cx e B*cES: di—fe<x; <§(+ 1D+ -

The further comstruction of P, is performed by attaching the tubes T
j=1,..,2" Since the generator of the group Hy(T;) has been identified with ;[¢,]

and since T; intersects Mu U T; on a connected set, in the process of attaching
=1

the tubes we do not add new generators to the group H,(I).
The only incertainty whether we obtained a relation of the form

my[&o] = my[&o]

with my # m,
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arises by considering the curves CP, j =1, ..., |r|. For j<|r;} denote by C{ the

(large) simple closed eurve obtained during the construction of Cﬁ”s such that
. 2"

if 23 is the cycle given by a suitable orientation of C$} then k;gﬁ,? = z{. Thus

:}io[zgiz] =[&,] and, since él[zgf,z'] = [£,], we obtain [z{3] = 0. C{f)o is defined
similarly, but (considering C{i) we have
[zl = (=D o] = [l

and therefore [21(210] = |r|[&].

On the other hand, since }Yj [zg-i)] = |r,| [&], it follows from the definition of z§‘3
that =

36 = it

Since [z3] = 0 for j<|r, we obtain [z{)] = Ir;| [£,] again, and so our construction

yields no relation between different multiples of [&].
Thus we have proved that:

1) H(P)isa free cyclic group with generator [£o].
Using (1.1), we conclude that:
(2.2) The simple closed curve S, is a retract of P,.

Now, given integers i, 75 such that 0<iy, i3<7, consider a (PL) simple closed
curve CcP, 0 Qjy;,, where

Qi = [x € Bt 3= 5<%, <5+ 1) +15 for j =1 and 3]

and such that the cycle z determined by an orientation of C is not homologous to
zero in P,. Observe that the cycle z can be represented as zy +2z3, Where z; lies in
; p

M n Qfy, and z; liesin U T;n Oi1,+ By the preceding remarks concerning the
o .
cycles lying in M, we have
[z] ='§ Frlol
where the summation runs over some k, 1<k<2", such that
S,clxe E*cES: i) —fe<x, <3, +1) +75]

(it could happen that the same k appears in the sum more than once).
Considering the position of the tubes T’s in P,, one sees that

[za) = §¢r~l[¢ol+ Y Fraléol,
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where the first sum is of the same kind as the preceding onme, but the second sum-
mation runs over some m such that :

1 . .
Clclxe E®: §iy— <Xy <50+ D+5] .

Considering the ordering of the curves C$%) (or of the curves C§) for any fixed i,
with 1<i<2", 1<j<|r,)) and slightly modifying the construction if necessary, one
sees that the second summation runs over some m (possibly with repetitions) such
that 1<m<2" and 4

Spclxe B*cE’: Ly—fe<<x, <+ 1) +51 -

Thus we have proved. that

[Z] = Z $rp[60] 3
p

where the summation runs over some p (possibly with repetitions) such that
1<p<2" and )

S,clxe B*cE%: x; € iy~ 31+ D+ 7] U [ — e, 503+ D+76ll -

The sum of the lengths of these intervals is equal to %. It is easy to see from the
remarks concerning the sequence 7y, ..., Fo» that for n>3 there is a prime number
p;>1 such that

pjlrp

for all indices p appearing in the representation of [2] as the sum described above.

Moreover, one sees from the remarks concerning ry, ..., o= that the number p; can

be chosen so that it does not depend on n, but only on i; and is.
Consequently, we have proved that:

If Cisa (PL) simplé closed curve lying in P, n Qj,;, Where n>3, such that
the cycle z given by an orientation of C is not homologous to zero in P,,
then there is a prime number p;>1 (depending only on i and i; and not
on n) such that [7] = p;-m[&], where m is an integer and [£,] is the gen-
erator of H;(P,).

2.3)

3. Construction of two quasi-homeomorphic compacta Xand Y, Xeco, Yéo.
To construct X, considef first the cube Q = [xe E*cE>: 0<x,<lfori=1,2, 3]
and let Q, denote the subcube [xeE*cE®: 0<x,X3<1, 1+ 1)<z, </E],
k=1,2,.. Let Q,=I[xeE% (x,%,%3)€ Oy, 0¥s, x5<2” ") There is
a linear homeomorphism /, mapping the polyhedron Py constructed in Section 2 onto
a subset of Qj, where we assume that /4, changes only the x,-coordinate of a point
(without changing the orientation of ‘the x,-axis). Moreover, we assume that
Rd(PY) A By (Pysq) coincides with the disk Ry = Qx 0 Qy+1 and that i (Py) inter-
sects the sets 04 n Oppq and Oy N Oy only on Ry and Ry

Divide linearly in the standard way the square R, onto 4* squares and erect
a segment J,;= O from the centre of the I/th square, I=1,..,4 We assume that
2 — Fundamenta Math. XCIX
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0
the length of I,, is equal to 1/2**? and that Iy n J #dP,) = I, n Ry is one end-
k=1

point of I,;. Moreover, we assume that [, \R,= Op\(Qp-1 U Oprq).
* Define

© 4k
X=k91[hk(Pk) U1=U1Ikl] Ulxe Q: x, =0].

It is easy to see from the construction that X is a locally connected continuum.

We shall now prove that X e o. By (2.1), the group H,(P,) is a free cyclic group.

Let B, denote the image of a  generator of this group under the homomorphism in-

duced by the map i o %, P,—X, where i: i(P,)—X is the inclusion map. By thé con-
. 0

struction of X, the group H;(X) consists of elements of the form Y. B, where
K=1

each i, is an integer. :

Observe that there is an &,>0 so small that for each simple closed curve CcX
with diam C< g, and with y # 0, where y is the image of a generator of the group
H,(C) under its natural homomorphism into H,(X), there are two integers-ij, is,
0<iy, 73<7, such that Ce[x € X: 0<%, <3] N Oy, (Where Qj, = [x € E®: 3i,—%
<% <3(;+ D+ for j=1 and 3]). Thus y is of the form

@« B
Y= Z nkﬁk 3
k=3

where m.f, has a representative lying in the intersection of A(P,) with the subset
of X just described. It follows from (2.3) and from the definitions of /,’s that there
is a prime number p;, such that p;,|n, for all k.
Consequently, y = p;,y’, where 7' € H,(X) and therefore the subgroup of
H,(X) generated by y is not a direct summand of the group H,(X). We conclude
from (1.1) that C cannot be a retract of X and thus we have proved that

(ER)) Xea.

Now, let us construct Y. Denote by § the polyhedron in E3 <E® constituting
the convex hull of the set [xe E3cES: x, = 1, 0<x, x3<1] U (0), where 0 is
the point with all coordinates equal to 0. Let J, = [x& 0: 1/k+1<x,<1/k] and
let Q; = [xe E®: (%, x,, 3) € Oy, 0<xy, x5 <2~ ®+D]. There is a linear homeo-
morphism ¢, mapping the cube Q; onto {Jj, which maps the vertices accordingly
to the natural ordering of their coordinates. Then @R, = @ |R,. Let

© 4%
Y= k91 [ox © B(Py) U1=U1 o] v (0) .

It is evident that ¥ is a locally connécted continuum. Now, observe that

(3.2) Y does not belong to the class o.
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Indeed, since A (P,) O gy 1(Prsy) = R, and ¢, is a homeomorphism it is easy
to see from the comstruction that, for each k, the set ¢ o A,(P) is a retract of Y.
It follows from (2.2) that @ o 1 (S,) is a retract of ¢y o Iy(P;). Consequently, the
simple closed curve ¢y o A(S,) is a retract of Y. One sees from the construction
that diam (¢ o 7,(Sp)) < diam Q,Qkfmo, and therefore (3.2) is proved.

Finally, let us prove that:
(3.3) X and Y are quasi-homeomorphic.

Given an &>0, we must find two e-mappings f,: X = Y and gt Y—X.
onto

onto
To construct f,, choose a number k; >1 such that 3/k, +2~%*<¢ and denote

by =, the orthogonal projection of ) [Qilk =k,] onto the diskRy, = Qy, N Opys1-
Consider now the set

4%y 4k
Y, = lqujk_l(Ikﬂ) Ukyk [ox o I(Py) L lpl¢k(lkz)] v (0).

One sees from the construction that ¥, can be divided into subsets Y7,
I1=1,..,4%, such that each Y, is a locally connected continuum, ¥; intersects
@, (Ry,) on a (rectangular) subdisk with the centre at the point @y, (L N R,), con-
tains y,(J;,;) and intersects none of the other intervals ¢y, (f,r). Moreover, we assume
that ¥, and Y, intersect if and only if the disks ¥, n ¢, (Ry,) and ¥y 0 ¢, (Ry))
intersect. _

Since Y; is a locally connected continuum, there is a mapping ¥; of the inter-
val I, onto Y;. Using the fact that ¥, is arcwise connected and modifying ¥, if
necessary, we can assume that the point Vy(Z,; 0 Ry,) is equal to ¢y, (T 0 Ry

Now, define f,: X—Y by the formula:

4k
[(pk(x) if k<ky and xeh(P) v U, or if k=k; and x € by, (Py,),
1=1

Silx) = . -
Gy oy () i x Ech [hl(Pr) © 1U1]kl]’
>ky =
W, (%) if xel,;, where 114",

Tt is easy to see from the definition that f, is a map of Xonto Y.Ifye Yt}'len
the set £, 1() is either a point or a subset of the set 7y Y(F), where F is the union
of all disks of the form (¥, N ¢r(Ri)) = Riy 0 0 (1) intersectin% one of
them. The disks ¥, @, (R,,) can be constructed so that diam F<2~ %1 and
therefore it follows from the choice of k; that f, is an e-mapping. N

To construct g,: Y—X, first find a number k,>1 such that diam( U Op)<e.

kZ2ka
Denote by 7, the linear projection of |J 8w (0) onto the disk Op, N Qi+1
. kzk2
= (sz(sz)‘
2%
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4%

Since U hk(ij u U UyuixeQ: xg = 0] is a locally connected con-
k>ko kzka =1 "

tinuum, there is a mapping  of the interval ¢y, (%) onto it such that the image by y

of the point p = ¢,(L,y N Ry, is equal to the point ¢r'(p) = Iy O Ry,.
Let us define g,: ¥—X by the formula:
4
,'(p,,"l(y) if k<k, and ye @, o B{P) v U @il or if
1=1

k =k, and ye @, h,P,),

o) =1 s - “ “
o 0y o ma(y) iy Ekyk [or o Bi(P L EUI(/)/c(Ikl)] Y lgz(/’lcz(lkzl) s

¥ (» if y€ or,(Tina) -

It follows from the definitions of 7, and y that g, is a map of ¥ onto X. Since
each @, is 2 homeomorphism, we infer that for every x e X either g, '(x) is a point

or g; (%) is a subset of y 0, U (0), whence diam [g; '(x)]<e. Thus g, is the desired
KSkz : :

g-mapping. This concludes the proof of (3.3), and therefore the following theorem
is proved: :

THEOREM. There exist two quasi-homeomorphic locally connected continua X
and Y such that Xeo and Y ¢o.
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A wildly embedded 1-dimensional compact set in S*
each of whose components is tame

by

H. G. Bothe (Berlin)

Abstract. A compact set X in the 3-Sbhere 8% is said to be dqﬁnable‘by cubes with handles,

o0
if X = ﬂ H; where each Hjis a compact polyhedral 3-manifold in §* whose components are cubes .
i=0

with handles (i.e. regular meighborhoods of connected finite polyhedral graphs in $%), and
Hiyy CIntH,. If Xis a curve (i.e.1-dimensional) and if these cubes with handles can be chosen thin
in the sense that for each e> 0 there is an index i, such that for i>1, the retraction of Hj to the cor-
responding graph is an e-retraction, X is called definable by thin cubes with handles. Bach of these
two properties of X is equivalent to some further geometrically reasonable tameness conditions of
the embedding X C §° In the following paper examples of curves in .S® are constructed with com=
ponents which are definable by thin cubes with handles such that these curves themselves are not
definable by cubes with handles or are definable by cubes with handles but not by thin cubes with
handles,

1. Introduction. For topological embeddings of compact sets in manifolds
several conditions were introduced in order to distinguish tame embeddings from
wild ones. Here we are concerned with topological embeddings of curves X (i.e. com-
pact sets each of whose components is a 1-dimensional continuum) in the euclidian
3-space or — what is almost the same — in the 3-sphere S3, In this case the follow-
ing conditions among others have proved to be useful (we prefer embeddings in .S 3 for
technical reasons).

(A) X is definable by cubes with handles if there is a sequence Hy, H,, ... of com~
pact polyhedral manifolds in S* each of whose components is a cube with handles

such that Hy,, SIntH; (( = 1,2,..)and X = ) H;. (A cube with handles is a con-~
i=1

nected 3-manifold which is the union of a finite number of closed 3-cells Z,, ..., Z,
such that Z; N Z; is empty or a disk on BdZ; n BdZ;, and no three of the cells have
a common point.)

(B) X is definable by thin cubes with handles if for each ¢>0 the cubes with
handles in (A) can be replaced by e-thin cubes with handles. (An e-thin cube with
handles is a cube with handles for which the cells Zy, ..., Z, in the definition above
can be chosen with diameters smaller than &)
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