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by
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Abstract. Fox (Fund. Math. 74 (1972), pp. 47-71) obtains a classification of d-fold covering
spaces equipped with overlay structures over an arbitrary metric space X. We consider the question:
when does a covering space admit a unique overlay structure? We find that there is such a unique
ovetlay structure when d is finite or when X is locally connected. We give a covering space with no
overlay structure and one with inﬁn?te]y many. In both examples, X is compact and connected.

In [3] R. H. Fox obtains a generalization of the fundamental theorem of
covering spaces in which the hypothesis of local path connectedness is dropped. He
defines a shape theoretic generalization of the fundamental group called the funda-
mental trope and a class of covering spaces which admit a certain kind of covering
structure, called here an overlay structure. Assuming only that the base space is con-
nected and metrizable, it is found that isomorphism classes of d-fold covering spaces
equipiied with overiay structures are in bijective correspondence with representations
of the fundamental trope in the symmetric ‘group of degree d. The purpose of this
paper is to investigate the correspondence between isomorphism classes of covering
spaces and isomorphism classes of covering spaces equipped with overlay structures,
i.e., to discover to what extent Fox’s theorem allows us to classify covering spaces.
In § 2, we see that this correspondence is bijective when the base space is locally
connected (Proposition 2.1) or when fibers are finite (Proposition 2.2). In § 3, exam-

" ples are given showing that, in general, this correspondence need be neither injective

or surjective, In particular, 2 connected coveringspace of a compact base space may
have no overlay structures (Example 1) or more than one inequivalent overlay struc-
ture (Example 3). .

Throughout, all spaces are assumed metrizable. By abuse of notation, we identify
each covering space with its total space. We denote by pg the covering projection
corresponding to the covering space E. Unless otherwise stated, we assume the base
of all covering spaces to be B. By [1], we can assume that B is a subset of a normed
linear space and that it is closed in its convex hull B.
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- 1. General properties of overlays.
DerFNaTIoN 1.1. Let E be a covering space. An open cover {U.} of E is called
an overlay structure for E iff
"(0) py induces a homeomorphism from each UL to a well-defined open set U,
in B.
(i) pz (U = L;) U;.
(iii) i =j if Uj intersects both U and U,
We say overlay structures are equzvalent ifl they have a common refining overlay
structure.
We call a covering space together with an equivalence class of overlay structures
an overlay.
Fox in [3] defines an “overlay” to-be a covering space which admits an overlay
structure.
In view of Definition 1.1(iii), when U, n U, # @, the relation i = wp(j) it
Us n Uj # @ defines a bijection uf: { 7}—={i}. Clearly, {uf} satisfies the condition
Haih = 5 when U, n Uy 0.U, # @. By standard fiber bundle ar guments, {U,}

and {uj} determine the covering space (up to 1som01phxsm) togethey with its overlay
structure {U4}. " G

DEFINITION 1.2. By an extension of the cover ing space_ E we mean a covering
space E of some open nelghbcnhood of Bin B where E = pg (B) and py(x) = pg(x)
for x e E. We say E, and £, are equzvalent extensions iff the identity map ‘on E can
be ;xtended to an 1somorplusm from E, to E, over some open neighborhood of B
in :

If {U}} is an overlay structure for B and U, consists of those elements of B closer
to U, than to B—U,, then the the nerve of {U,} is naturally equivalent to the nerve

of {U,}, since U, n U, =.U, . N Ug. The open cover {U,} of B = U U, together

with {u5} determines (up to isomorphism) a covering space £ of B and an overlay
structure {U} for E.

. {\2\7’3 identify E naturally as a subset of £ 4nd call £ the extension of £ induced
y b

DerNITION 1.3. A metric d (possibly taking some infinite values) for a cover ing
space E is said to be an overlay metric iff, for each w e B and {w'} = pgt(w), there
is an £>0 such that p; induces ap isometry from the g-ball W' about w onto the
e-ball W about w and {W’} partitions pj z ' ().

If, for each we B one & and {WW"} suffices for two overlay metrics, we call them
equivalent.

Let the covering space E of B be an exiension of E. Since E is locally con-
vex, B has an overlay metric defined by letting d(}w ¥) be the infimum of the set
of lengths of paths in B which can be lifted to paths fromxtoyin E We call its
restriction to £ the overlay metric induced by E.

-
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i ‘LEM‘MA T4 Let d be a metric for the' covering space E. e
i If d is'overlay metric, then E has an open cover {V’} such that = R

. (1) pg induces a homeomorphism from each V} o a well-defined open set V,, in B,
‘ (2) 2d1amVp<d‘(VJ, V,;) when j# k. .

Furthermore, such an open caver {V3} is an overlay structure (We call the maxzmal
such overlay structure the overlay structure mduced by d. )

Proof. For we B and {w'} ep *(w), let' s be as given by 1.3 w1th 0<g$<6 e.
Thus d(w wj)<e 1mphes i = j. Let ¥,, be the §-ball about w and. V%, be the §-ball
about w'. Thus diam ¥;,<28 and d(V], V%) +25> ¢ when ] # k. Therefore 2diam V7
<d(Vi; V)

Let {V,{} be as in Lemrna 14, Supposexe Vd N Vﬁ and ye Vie V,; with i ;é]
Let z be the unique element of pg (pE(y)) A VE z is contained in some Vp ‘with
k# 1 . ‘ . '

2d(x, 2)<d(z, y) and 2d(x, y)<d(x, z) imply 2d(x, y)+d(x, 2)<d(z,5), -

which is impossible.

THEOREM 1.5. For a given. covering space, equivalence classes of overlay structures,
of extensions and of overlay metrics are in natural bijective correspondence.

Proof. Let the overlay structure. {Vj} for E be induced by a metric which is
induced by an extension which is in turn induced by an overlay structure {UZ}.

Choose an open, convex cover {W,,} of the base space of the extension. Each W,
has a unique even covering by sets Wy, For W, n W # @, the contractibility of
W, L Wp implies 1.1(iii) and thus {W‘} is.an overlay structure for the extension.
We can assume that {W,} is fine enough so that each B n W, lies in some U, and also
in soms ¥,. Since the overlay structure {E-n W,} for E reﬁnes both {U}} and {V}},
they are equivalent, Equivalent overlay structures induce equivalent extensions, since
their common refining overlay structure induces an extension which can be naturally
identified with an open subset in either extension. The fact that equivalent extensioris
induce equivalent metrics follows from the local convexity of B. Equivalent metrics
induce overlay structures whose intersection is an overlay structure and which thus
are equivalent. If the metrics d; and d, induce overlay structures with the common
refinement { W}, then, for each w & B, the choice of ¢ small enough to satisfy 1.3 for
both ¢, and d, and also so that the g-ball about w lies in some W, suffices to show
that d, and d, ate equivalent. Let F be an extension of E. Let {W2} be an overlay
structure for F where each W, is convex. Then {Ui=En W7} is an overlay struc-
ture for E.

Let the covering space E of B be the extension of E induced by {UZ}.
{Vi=W!npri(0)}is an overlay structure for an open nelghborhood of Ein F
which is naturally isomorphic to an open neighborhood of E in E. .

Therefore, every extension F of E is equivalent to an extension E of E induced

by some overlay structure {UJ} for E.
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T view of Theor,cfiif 1.5, the distinction between an overlay specified by an
overlay structure, overlay imetric, or extension is purely formal. For convenience, we
define -overlay trqpsformition in terms of extensions.

'DBmeoN 1.6. If E and E’ are overlays, then ‘an overlay . transformation
T: E—E' i§ a covering transformation whic_:h can be extended to a covering transfor-
mation between extensions of E and E’. (By an extension of an overlay, we mean
an extension compatible with its overlay structure.)

An overlay isomorphism is an invertible overlay transformation.

Clearly, the problem of finding inequivalent overlay structures for a covering
space is equivalent to finding a covering space isomorphism of overlays which is not
an overlay isomorphism. The following is an immediate corollary of the fundamental
theorem of covering spaces, Theorem 1.5, and the ¢erminology and results of Fox [3]
and Hyman [5]. :

TeEOREM 1.7. If B is connected, then isomorphism classes of n-fold overlays
are in natural bijective correspondence with répresentations of the fundamental trope
of B in the symmetric group of degree n.

2. Uniqueness. of overlay structare-(1):

PROPOSITION 2.1. Let E be a covering space. If B is locally connected, then E ad-
mits (up to equivalencé) exactly one overlay structure.

Proof. Let {U,} be an open cover of B where each U, is evenly.covered by
sets Uy, Let {¥;} be arrefinement of {U,} where‘each Vy is connected and such
that ¥, n ¥V, # @ implies V; U ¥, for some «. (A barycentric refinement,
whose existence is well known [2], is sufficient.) Each V} is evenly covered by sets V3.
Since Vj n V§ # @ implies V§ U V5= U} for some o and i, {V}}is an overlay struc-
ture for E. Since {V},} determines {V}} and can be chosen arbitrarily fine, {3} is
the only overlay structure fof E (up to equivalence).

PROPOSITION 2.2. If the covering spuce E has finite fibers, then it admits (up lo
equivalence) exactly one overlay structure.

Proof. Let d be a fixed metric for E. The finiteness of fibers allows us to find
an open cover {¥;} of E satisfying 1.4(1) and 1.4(2) and thus {V}} is an overlay
structure, Again, {Vy} determines {¥;} and can be chosen arbitrarily fine. There-
fore {¥}} is the only overlay structure for E (up to equivalence).

3. Examples.

Examprel.Letd = {0,1,%,4,%,..}, @ = {1,2;..}, Co = Ix0 U A x [0, 3],
C,=Ix1UAdx[3,1], and B=C,UC,. Let 'E be CoxQOx0L CyxQx1
with the identification given by (1/m, %, m, D~(l/m, %, m+1,1—1) for all me Q,
i€{0,1}, (»,3,1,0~(»,%,1, 1) for all y eA\{1}, and (¥, 3, m, 0)~(3, %, m, 1)

() It has been ﬁointed out to me that versions of Propositions 2.1 and 2.2 in which only® -

existence of overlay structure

is considered have been proven by Fox in [4]. Also in [4], Example 1 is
given. ' : '
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Fig. 1 ’ . .
for all y e AN{1/(m~1), 1/m}. Let pg: E—B be given by pglx,y, m, il = (x,).
E is the covering space pictured in Figure 1.

E and B are path connected and B is compact. Suppose pg: E—B has an overlay
structure, Let B = IxI. By Theorem 1.7, there is an open neighborhood B* of B
in B and a covering space pg.: E*—B* such that pg. extends pg. Since {0} xI is
compact in B, there is some 4, = [0, f) x I B*, Let pr:pae(4)—4, be the _rfstncuon
of py. Since 4, is contractible, p}: pz'(4y)—4, is trivial. Hence p,: pz (B n 4y

" —B n A,, defined to be the restriction of pg (or pr) is trivial, which is clearly not

the case. Therefore, p: E—B has no overlay structure.

ExaMpLE 2. If 4 is a subset of the metric space (X, d) with f: 4—X any map,
let (5) be the set of all pseudometrics [2] for X such that 8(x,y)<d(x,y) for all
x,yeX and &(x,f(x)) = 0 for all xe 4. dy(x,y) = supd(x, ) defines the 1arge§t )
such pseudometric. The identification of x and y when dy(x,y) =0 defines a metric
space 2 dy). ‘

g Cgfsfidef)X= {(x,y) e R*; 0<y<1 and x = 1/n for some n=1,2,... or
y=1and —1<x<0} and X = XxZcR®. Let f: {(1/n,0); n=1,2, ...}—»X be
the constant map given by f(1/n,0) = (=1,1). X; is as shown in Figure 2.


Artur


2107 vl LT Meore' T

Fig. 2

Let F: {(1/r,0,j); n=1,2, .. and je Z}—X be a’ map given by F(1/n, 0,})
= (=1, 1, B,;) where, for given n, j—$,; defines a permutation of the integers and,
for given j, B,; = j+1 holds for all but a finite number of n. X is a covering space
of X, with projection map induced by the natural projection of X onto X.

Up to covering space isomorphism, this covering space is independent of the
choice of §,;. However, the metric for Xy is in fact an overlay metric, which de-
pends on the B,;. Indeed, f,; =j+1 and B,; = j+1+6,;~8,, 1,7 yield non-iso-
morphic overlays. '

Exampre 3. The covering space ¢: R%—R/Z x R has a natural overlay structure
given by the Buclidean metric on R Let X = {(x,y) e R?; y = (2/m) Arctg(x+j)
for some jeZ} U Rx{~1,1,2} and X = o(X).

Let f: {(0,2)}X be given by £(0,2) = (0, 0). Let F: Zx {2}—¥ be injective
with image Zx {0}. Using the terminology of Example 2, & is a covering space
of X, which is (up to covering space isomorphism) independent of the choice of F,
Again however, the metric on Xy is an overlay metric with X rand X;. isomorphic
as overlays iff F and F” differ by a translation by some (j, 0) with je Z (cf. Fig. 3).
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Fig. 3
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