Dendroids and their endpoints _
by

Jozef Krasinkiewicz and Piotr Minc (Warszawa)

Abstract. In this paper we introduce some non-negative real valued functions (which are of
the 1st class of Baire) defined on dendroids. These functions can be used to characterize several
properties of dendroids. We apply some of them to prove that in every dendroid X the minimal
arcwise connected set spanning the set of all endpoints of X at which X is semi-locally connected is
a dense subset of X. Moreover, the set of endpoints at which X is semi-locally connected is a Gs-set
in X and the remaining endpoints form a subset of the first category in X.

1. Introduction. All spaces under considerations are assumed to be metric. By
a continuum we mean a compact connected space. As usual by a dendroid is under-
stood an arcwise cennected hereditarily unicoherent continuum (see [2]). A con-
tinuum X is said to be semi-locally connected at a point x & X provided that for every
neighbourhood U of x there is a neighbourhood ¥ of x contained in U whose com-
plement consists of a finite number of components (see [8, p. 19]). By a neighbourhood
we always mean an open set. We say that x is an endpoint of X if there is no-arcin X
containing x in its interior. We follow [7] in writing X for the set of endpoints of X.
Denote by X7 the set of points of X® at which X is semi-locally connected.

In this paper we study the class of dendroids, We introduce a collection of non-
negative real valued functions a,, and «, defined on dendroids. The functions «, are
of the 1st class of Baire (see [5]). In Section 3 these functions are used to charac-
terize the following topological properties of dendroids: smoothness, semi-local
connectedness, local connectedness and uniform arcwise connectedness. In the last
two scctions we apply these functions to prove some geometrical properties of den-
droids. From now on by X is denoted an arbitrary dendroid (not a one-point set).

B. J. Fugate raised the question if the set X7 is not empty. Theorem 4.1 provides
an affirmative answer to this questions. We show also that X7 is a Gy subset of X’
(see 3.5). The set X7 can be a second category subset of X. In fact one easily checks
that the dendroid X constructed in [7, p. 314] has this property, because the set X
is dense in X, However the set X*\X¢ is always a first category subset of X
(Theorem 5.1). Nevertheless, the example [7, p. 311] shows that X' “JX; can be dense
in X. The set X7 is always “large” in the sense that the minimal arcwise connected
set spanning it is dense in X (Theorem 4.1). But the complement of the spanning set
need not be of the first category in X (Example 4.7).
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2. On the functions ¢,. An arc with endpoints a and b will be denoted by ab.
The arc ab will be, in some cases, regarded as an ordered arc with a as the first and b as
the last point. An order will be denoted by the symbol “<”. Let ab be an arc in
a space Y and let Uy, U,, ... be a sequence of subsets of Y. We say that the ordered
arc abe Y has type (Uy, U,, ...), and write ab e (U, , U, ...), if there exists a sequence
of points aj, a,, ... satistying the conditions:

*) a,eab n U, for each n21,

(%) A<y <4y <..<h.

1t is not assumed in the definition above that Uy, U,, ... is an infinite sequence nor
that U, # U; for i#j.

In the case where U, U,, ... is a finite sequence consisting of 7 terms we some-
times write (U,, U,, ...), instead of (Uy, U,, ...). Similarly, if the sequence is infinite
we sometimes write (Uy, U,, ...), instead of (U, Uy, ...).

2.1. LemMA. Let Uy, U,, ..., U, be a finite sequence of open sets in a hereditarily
unicoherent continuum Y and let ab be an arc in Y of type (Uy, U,, ..., U,). Then
there are neighbourhoods U of a and V of b such that any arc in I" Joining U and V has
type (Uy, ..., U,).

Proof. It is easy to check that the lemma holds for each arc of type (U), where U
is open in Y. Assume we have proved the lemma for all arcs of type (Uy, ..., U, 1),
where n>2. From the definition it follows that there exists a point a,_, e ab n
N (U,-\{a, b}) such that the arc aa,_,<ab has type (Uy, ..., U,-;) and the arc
a,_,b has type (U,). From the assumption it follows that there exist open sets
U'sa, Goa,; and V' 3b such that each arc joining U’ and G has type
(Ui, ..., U,_y) and each arc joining G and V" is of type (U,). Let Us a and ¥'3b
be such open sets that each arc joining them has type (G). Clearly, we may assume
that Uc U’ and V= V"', Now it is easily seen that each arc joining Uand Vis of type
(Uy, ..., U,). This completes the proof.

2.2. LEMMA, Let Uy, U,, ... be an infinite sequence of open sets in a space Y.
Ifabe Yis an arc of type (Uy, Us, ...), then limd(U,, U,..,)= 0 (for two sets A, B Y

n
we define d(4, B) = inf{o(x,»): xe 4,y e B)).
Proof. Let a,e U, nab, n = 1,2, ..., satisfy the relations:

a<a;<a,<..<b.

Observe that {a,} is a convergent sequence. Hence the conclusion follows.

2_._3. LEl/rMA' Let Uy, U,, ... be an infinite sequence of open sets in a space Y such
that U, N\ Uy = @ for each n>1. If ab is an arcin Y of type \U;, Uy, ..., U,)
Sfor each n=1, then ab is of type (Uy, Uy, ...)y- :
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Proof. Define a sequence a., a3, ... in the following way (recursively):
dy = int{xe abi xe U},
dyy = inf{xeab: xe U, }
(the infimum is taken with respect to the order on ab). Notice that the construction
is possible. Observe that a, € U, N a,b for each n>1. The points a, lie on the arc ab
in the order:
asai<ay<..<b »
and dd),. cab contains some point a,e U, in its interior for each n>1. The
points g, @,, ... satisfy conditions (¥) and (x+), which completes the proof.

Recall that by X we always denote an arbitrary dendroid. For any two points
x,y € X by the arc xy is meant the unique arc in X joining x and y provided x # y,
and the one-point set {x} = {y} in the case x = y.

Fix a point ¢ € X and a natural number n3>1. For an arbitrary point x eX
consider all the points y € ax such that for every neighbourhood U of x and every
neighbourhood ¥V of y there is an arc aze (V,U,V,U,..)p4z Observe that the
points y constitute a subarc 6f ax with one endpoint at x. Denote this arc by 4,(x, )
and define

’ e (%) = inf{e>0: A,(r, )K(x, &)},
where K(x, €) denotes the e-ball around x. Let us note that A4,(x, a):A,,.(.x, a)

@0
for n<m. It follows that the intersection A,(x,a) = [ 4,(x,d) is again an arc.
n=1

Let us define analogously
O () = inf{e>0: 4,(x, a)cK(x, &)} .
2.4. PROPOSITION. For each a,x€X and for natural numbers n<m we have
O0a() 2 0,(X), and diy (%) = ilnf {0,a(%)}-

In the definitions below let us agree to denote by n a natural number or .
The above formulas define a nonnegative real-valued functions

Upa: X—R.
Define also a function
oyt X—R
obtained from the preceding ones as follows
0,(%) = sup {,(x): aeX}. .
2.5, PROPOSITION. For each x€X and for natural numbers n<m we have
00, (%) = 0, %) and 0, (X) < ilnlf 00, (X).

We shall show later that the last inequality can be replaced by an equality.
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2.6. LEMMA. Let n be a natural number and let x,, X,, ... be a sequence in X
converging to a point x. If a,,a,, ... is another sequence such that

i mnnk(xk) n:::o r

for some re R, then there exists a point ae X such that o, (x)=r.

Proof. For each k>1 there is a point X, ed,(%, a,) such that o(%, x;)
= 0,,.(%,). We may assume that the sequence {%,} is convergent. Denote its limit by

a and note that g(a, x) = r. Take a neighbourhood U of x and a neighbourhood ¥

of a. To complete the proof it suffices to construct an arc ag such that
(¢)) age(V, U, V,. D2

‘We may assume that ¢ # x. Then for some index k there exist a neigh-
‘bourhood U, of x, and a neighbourhood ¥, of X, such that:

) UocU, VoV,
€)] Uy n Rovai)=20.

Since :%keA,,(oxk, @), there is an arc e pe (Vy, Uy, Vg )pra. Hence there exist
n+2 points 3, u), v3, ... such that

@ ‘

)  ge<l<ul<l<<p.

weVonap, ujelUynap,
There is a point b such that
(6) ab n (@, V qp) = {b}.

Denote by M the union of all components of the set a,p\U, which intersect V, and
do not contain @, and define

c=inf{yeap: ye M}.
One easily checks that
@) ce Uy N ea,,

®) v eVonaprueUy napaa,<v <u<v’<p = p'>c (with respect 1o
the order on ap).

(9 the component of X\U, containing @, does not intersect pe.
‘We may assume that
(10) ’ a<c<b<p.

In fact, 9therwise by (6) we have b e g%, U ayc. By (3), (6) and (9) the point ¢
cuts the continuum a,%, U a,p U ab between a and p. Hence ap = ac U ¢p. By (7)
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and (2) we have ac & (V, U). This fact together with (5) and (8) imply that ap satis-
fies (1), where ¢ is replaced by p. Hence in the sequel we assume that (10) is fulfilled.

Conditions (10), (9), (7), (6) and (3) imply that the set UgN\(ab U pc) separates X'
between ab L pc and ;. It follows that there exists a neighbourhood V; =¥, of %,
such that every continuum. joining ab U pc with ¥, meets Uy, Since %, € 4,(x;, ),
there is an arc a,q and a sequence vy, u;, v,, ... of #n-+2 points such that

{n neVinaq welUynaq,

(12) A<V <y <0y <...<q .

We shall show that ag satisfies condition (1). Denote by d the last point on ap
belonging to a,q. First assume a,<d<c. Then

ag =abubdudg.

By the assumption, (8), (11) and (12) we have d<v,<...<gq. Since abe (V) and
bd e (U), conditions (11), (12) and (2) imply (1). Next assume c<d<p. Let e be
the first point on ad belonging to dg. Then aq = ae U eq. We claim that e<v,<q.
Otherwise v, € ed U da,. But d, e € ad=ab U bd=ab U cp and the last set is disjoint
from V. Hence (11) implies v, € a,d = a,c U cd. It follows that v, € g,c because
ed=cp. However this is impossible by (8) and (12). Now, eeab U ¢p and v, € V3,
hence ev, & (Uy), by the construction of ¥y. Finally, since ge & (V) and ae n eg = {e},
condition (1) follows from (12). This completes the proof of 2.6. :

2.7, LEMMA. Let X;, X, ... be a sequence in X converging to a point x € X. Let
1y, My, .. be either a strictly increasing sequence of natural numbers or a constant
sequence m, = o. If ay, ay, ... i another sequence in X such that

“"hﬂk X

— 7
k—sc0
for some r e R, then there exists a point ae X such that Ooa(X) Z1.

Proof. The proof is like the proof of the preceding lemma, but simpler. For
each k=1 there is a point %, € A, (x,, @) such that (%, x) = (). We may
assume that {%,} converges to some point € X Note that o0(a, x) = r. Take a neigh-
bourhood U of x, a neighbourhood ¥ of 4, and a natural number 7. To complete
the proof it suffices to show that there is an arc 4z € V, U, V,..)m Take k so
large that n,>2m, x,€ U and %e V. There is an arc abe (V, U, .., V, Uan-
It is eagy to see that for z = a, or z = b the arc az has the required properties. This
completes the proof.

2.8, COROLLARY. For each x € X and for eachne {1,2, ..., o} there exists a point
aeX such that

u"(x) = dnﬂ(x) .
Proof. Let a, 4,,... be a sequence such that

“nak(x‘)';’un(x ) "
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By 2.6 or 2.1 there is a point a € X such that e,,(x) >«,(x). Hence the conclusion fol-
lows from the definition of o,.

2.9. CoroLLARY. For each xe X we have

tal) = info,(x) .

Proof. By 2.5 we have «,(x)<infe,(x). Let r = infe,(x). Again by 2.5 the
n n

sequence o, (x), 05(x), ... converges to ». By 2.8 for each k=1 there is a point ¢, e X’
such that oy (x) = oy, (x). Hence

O‘kak("':) k~—:o r.
Using 2.7 we get a point g e X such that o, (x)=r. It follows that
‘xa)(x)>°‘wa(x)>r = infc‘n(x) >
n

which completes the proof.

2.10. THEOREM. For each me {1, 2, ..., w} the function «,: X—R is upper semi-
continuous, i.e. for each r € R the set o, *([r, c0)) is. closed in X,

Proof. Let x;,X,, .. be a convergent sequence of points from o, *([r, c0))
and let x denote its limit. We have to prove that «,(x)=r. For each k31 by 2.8 there
is a point 4 such. that a,(x;) = o,,,(x,). Without loss of generality we may assume
that the sequence {o,, (%)} converges. Denote its limit by s. Clearly, s>r. By 2.6
or 2.7 there is a point a € X such that «,,(x) >s. Hence the theorem is proved because
(%) 2 ot ().

Remark. Observe that if «,, vanishes on X for some a € X, then so does a,.

2.11. COROLLARY. I every closed subset of X the function o, attains its least upper
bound, for ne {1, ..., w}.

Recall that a function f: ¥—Z is of the 1st class of Baire if for every open sub-
subset U of Z the inverse image f~'(U) is an F,-set in ¥ (comp. [4, p. 373]).

In the next theorem we show that each function a,, n = 1,2, ..., , is of the
1st class of Baire. ‘

2.12. TeeOREM. For each ne {1,2, ..., o} and for evéry open subset U of R the
inverse image oy *(U) is an F,-set in X. Consequently, the set of points of X at which «,
is not continuous is an F,-set of the first category in X.

. o0
Proof. The set U can be represented as a union of open intervals, U = Uf(rk, i)y
k=

where r,<s,. Then

V) = 0 6o ) -
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To complete the proof of the first part of 2.12 it suffices to show that the inverse
image of an open interval (r,s), r<s, is an F,-set. But

o ((r, 9)) = X\ (o 1 (=0, 7]) L o (s, )} .
Now,

ty 1 ((~00,7]) = X\kt)loc,,"l([rH/k, 0))

and o (s, 0)) are Gy-sets by 2.10. Hence o, *((r, 5)) is an F,-set, as required.
Let M denote the set of points at which «, is not cogtinuous. Let Uy, Us, ...
be a base for open sets in R. It is easily seen that

M = o, (UNnte, (U, .
k=1

By the first part of 2.12 we obtain the conclusion.

3. Some properties of dendroids characterized by means of the functions c,. In this

* section we express some topological properties of dendroids using the functions a,,

and «,. Among them are: smoothness, local connectedness, semi-local connectedness
and uniform arcwise connectedness. )

Recall that a dendroid X is said to be smooth with respect to @ point a€ X if
for each x € X and for every sequence {x,}, x, X, coverging to x, the sequence
of ares {ax,} converges to ax in the Hausdorff metric dist (.,.) (see [6, p. 47] for
the definition of dist (.,.), and [3] for the definition of smoothness). The dendroid is
smooth if it is smooth with respect to some point.

The following theorem characterizes smooth dendroids.

3.1. THEOREM. 4 dendroid X is smooth with respect to- ae X if and only if the
Sfunction oy, vanishes on X.

Proof. Assume X is smooth with respect to a € X, and suppose 0,4(2)>0 fo.r :
some z e X, Take a point x & 4,(z, @)\{z}. Hence z ¢ ax. By the definition of o, it
is easy to construct a sequence of arcs ax; , @x,, ... such that {x,} converges to x and
d({z}, ax,)<1/n for each nz>1. Hence if the sequence {ax,} converges to some con-
tinuum C, then z € €. By our assumption {ax,} converges to ax, hence z € ax, a con-
tradiction. ‘ )

Next, assume o, vanishes on X and suppose X is not smooth with respect to a.
Hence there is a point x € X and a sequence {x,} converging to x such that the se-
quence of arcs {ax,} does not converge to ax. Clearly, we may assume that {ax,}
converges to some continuum DX Since a, x € D, we have axcD. Hence there
is a point y € D\ax. Let z be a point such that yz N ax = {z}. Clearly, z # y and
ay = gz U zy. To complete the proof it suffices to show that

) ze Ay(y, ).
(in fact, since z % y this will imply w1, (y)>e(y,2)>0, contrary to our assump-
tion).


Artur


234 J. Krasinkiewicz and P. Minc

So, let Ube a ne{ghbotlrhood of y, and let ¥ be a neighbourhood of z. Since’

ay € (V), by 2.1 there is a neighbourhood U; U of y such that for each pe U,
the arc ap € (V). Observe that yx = yz U zx, hence yx € (V). By the same argument
as above, there is a neighbourhood U, U, of y, and a neighbourhood G of x, such
that every arc joining U, and G has type (V). Since y e D, ye U, and D is the topologi-
cal limit of ax,’s (see [6, § 43, II]), U, intersects all ax,’s but a finite number of them.,
Since {x,}—x and G is a neighbourhood of x, by the above remark there is an index m
such that x,, € G and ax,, n U, # @. Let p € ax,, n U,. By the above constructions
we have: )

ape (V), peU and px,e(V).

It follows that ax,, e (¥, U, V). Hence for an arbitrary neighbourhood U of y and
for an arbitrary neighbourhood ¥ of z, there is an arc age (¥, U, V). This proves
(1), and completes the proof. o '

3.2. COROLLARY. A dendroid X is smooth if and only if there exists a poini ae X
such that the function o, vanishes on X.

The following theorem characterizes the points at which X is semi-locally con-
nected.

3.3. THEOREM. A dendroid X is semi-locally connected at x e X if and only if
o (x) = 0. '

Proof. Assume X is semi-locally connected at x and suppose o;,(x)>0 for
some a e X. Take a point % e 4,(x, a\{x}. Let G be a neighbourhood of x such
that a% n G = @. There is a neighbourhood Uc G of x such that X\U has finitely
many components. Let Cpy denote the component of X\U which contains a. Put
V' = IntCy. Cleatly, £ € V. By our supposition there is an arc aze (V, U, V) with
ze V. This is impossible because az=Cy<X\U. Now, assume o,(x) = 0 and
suppose X is not semi-locally connected at x. Hence there is a neighbourhood G
of x such that for every neighbourhood UG of x the set X\U has infinitely many
components, It is easily seen that there exists a point @ ¢ G such that « ¢ IntCy,
where U is any neighbourhood of x contained in G and Cy is the component of
X\U containing . Let ¥ be a neighbourhood of & and let U be as above. Take
z€ P\Cy. Clearly, aze(V,U, V). It follows that ay(x) = x) = e(a, x)>0,
a contradiction.

By a dendrite we mean a locally connected dendroid. Theorem 3.3 implics the
following.

3.4. THEOREM. 4 dendroid X is a dendrite if and only if the function oy, vanishes
on X,

Proof. Assume X is 2 dendrite. Pick a point x e X. To prove that ay(x) =0
it suffices by 3.3 to show that X is semi-locally connected at x. But this follows
from [8, (13.21), p. 20].

Now, assume o, vanishes on X, Let x € X and let U be a neighbourhood of x.
To complete the proof it remains to show that there is a connected set D I/ such
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that x € Int.D. By 3.3 the dendroid X is semi-locally connected at each of its points.
Since X\U is compact, it follows that there is a finite number of open sets Vy, ..., ¥V,

m m
such that x ¢ UV}, XN\U< U ¥, and X\V; consists of a finite number of com-
i=1 j=1
ponents, for each j = 1, ..., m. Let D; denote the component of X\V; containing x.
N n .
Clearly, x e IntD; and D = () D;cU. It follows, that x € Int D. Since X is heredi-
J=1 .

tarily unicoherént, D is a continuum, which completes the proof.

'We say that continuum Y is colocally conmected at a point ye Y provided that
for every neighbourhood U of y in Y there is a neighbourhood V< U of y such that
YNV is connected.

3.5. THEOREM. The set X is the subset of X consisting of all points at which X is
colocally connecied. Moreover, it is a Gysubset of X. For each ae X we have

X5 o {a} = X o O v {a} .

Prool. Let x & X?. Pick an arbitrary neighbourhood G of x. To prove that X is
colocally connected at x it suffices to show that there is a neighbourhood Ve @G
of x such that X\G is contained in some component of X\V. Suppose it is not true.
Pick a point @ ¢ G. There is a decreasing sequence V32 ¥;>... of neighbourhoods
of x with diameters converging to 0 such that V; =G and no component of ‘X\V,,v
contains X\G, for each 73> 1. Denote by C,,the component of X\, which contains a.
By the supposition there is a component D, of X\G disjoint from C,. Let ab, be an
arc irreducible between a and D,. Hence ab, N ¥, # @ and b, ¢ G. Let b,c,<ab,
be an arc irreducible between b, and ¥,. We can assume that {b,c,} converges to
a continuum 4. Thus 4 contains » and intersects X\G. We claim that 4 n ax = {x}.
Otherwise there is a point %€ 4 n ax\{x}. Consider arbitrary neighbourhoods U
of x and V of %. Since ax e (V, U), x% e (U, V) and ¢,—x, there is an in('iex n s'uch
that ab, & (V, U, V). It follows that o;(x)>0, contrary to 3.3. Now it. is obvious
that x is an interior point of some arc. This contradicts our assumption.

One can similarily prove the last assertion of the theorem. . )

Now, assume X is colocally connected at x. Clearly, xeX®and X is semi-
locally connected at x. By the definition x € X5. - .

Let %, be the collection of all open subsets of ;Y such. 1:.hat Ue4%,if agd only if
diam U<1/n and X\U is connected. Denote by 9 the union of the sets from %,.
‘Clearly,

Xi=0 U
n
which, follows from the first part of 3.5. This ends the proof.

We finish this section showing some relationship between the function o, and

the notion of uniform arcwise connectivity introduced in [2]. .Reca‘ll thata dendroid)g
is called uniformly arcwise comnected, briefly: v.a.c., provided that for each &>

¢ — Fundamenta Math, XCIX
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there is a natural number n such that for every arc abc X, a 5 b, there exist n+1
points @, dy, ..., d,+, (a; € ab) such that :

® 0= <U<..<yy =b,

(i) diama;a;,, <& for each j=1,..,n.

3.6. THEOREM. A dendroid X is uniformly arcwise conmected if and only if the

Junction o, vanishes on X,

Proof. The neccessity is obvious. Now we prove the sufficiency part of the
theorem, . ' ‘ :

Suppose, to the contrary, that X is not u.a.c. Hence there is an ¢>0 and a se-
quence of arcs Ly,L,,.. in X such that for each n there exist n41 points
x,(D), x,(2), ..., X,(n+1) on L, having the properties:

) L2x,D)x,0+1),
@ x()<x2)<..<x,(n+1) (with respect to an order on L,),
3 00, x(j+1D)=e for each j=1,..,n.

Let N denote the set of natural numbers (0 is not considered as a natural
Aumber). B T

Since X is a compact metric space there exist a sequence of points
x(), %(2), ... x(HeX, and a sequence of strictly increasing functions
P1,D35 -3 pyt N—N, such that

@ - - . Pir1i(N)ep () f(?r JjenN,
) limx, () = %) for jeN.

Clearly, limx, ,)(f) = x(i) for i<j. Observe that the sequence p.(1), pz(zj, W I8
strictly inc”reasing, and for j>i we have |
p) e

which follows' from, (4). Now. it is a consequence of (5) that
©) li;nx,, ;@ = x()
for each e N (it can happen that some of the symbols Xpn(E) are not deﬁned, but

this can only happen for a finite number of J’s). Without loss of generality we may

assume that L, 1y, L2y, ... is our original sequence L;, L,,".. Hence condition (6)
- changes to

Q) - limax() = x(@) . for each ie N.
Observe also that conditions (1)-(3) are still valid. Conditions (3) and (7) imply
® .. . e(x@+1),x())>e for each i.

icm

©
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It follows from the compactness of X that there exist 4 strictly increasing function
q: N—N and two points @, x € X such that

limx(¢()) ='a  and limx(g(m)+1) = x.

Condition (8) implies that
ela, x)>e.

Now we show that o, (x)>0.
Let U be a neighbourhood of x and let ¥ be a neighbourhood of a. Take an
arbitrary natural number k. There exists an index m such that

x(g)eV and x(gm)+1)eU

for each nzm. Using (7) one can find an index r such that the symbols below make
sense and satisfy the conditions:

x(gm+))eV for 1<j<k
and '
x(qgm+)+1)eU for 1<jgk.

Let us note that the following inequalities hold true (with respect to the order on
x(1)%,Ar)) :

x(D<x(gm+1))<x(g(m+1)+1) %x,(q(m+2))< <X (gm+R)+1)<xdr) .

Let ab be an arc irreducible between @ and x,(1)x(7). It is easily seen that either
ax,(1) or ax,(r) is an arc of type (V, U, V, U, ..);-

This proves that o,(x)>d,,(x)=0(a, x)>e¢, and the proof is completed.

In his paper [4] W. Kuperberg proved that a dendroid X can be represented
as a continuous image of the Cantor fan if and only if X is u.a.c. Combining this
result with 3.6 we get the following.

3.7. COROLLARY. 4 dendroid X is a continuous imag}é of the Cantor fan if and only
if the function o, vanishes on X,

4. Nonemptness of the set X°. The aim of this section is to prove the following.

4.1. 'THEOREM. The minimal arcwise comnected set spanning the set X3 of all
endpoints of a dendroid X at which X is semi-locally connected is a dense subset
of X. ‘

Clearly this implies that X7 % @, and answers the mentioned question of
B. J. Fugate.

This theorem. will follow from several lemmas which we are now going to state
and prove. In the lemmas we use the following fixed notations.

Fiid
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" Fix a point @ in the dendroid X. For any open subset U of X which does not
contain a denote by Cy the component of X\U containing a, and let

Dy =X\({Uu Cyp).
Denote

P(U) = {xe X: there is a neighbourhood V3 a of x such that Cy=IntCy}.

4.2. LemMa. Let U be an open set riot containing a and let x ¢ P(U) v U L Cy.
Then for every mneighbourhood V of x there exists an arc ay € (U, V, U).

Proof. Take a neighbourhood G of x such that GV and G n (TuCy) =0.
Since Cpis 2 component of the compact space X\U, hence U separales X between Cy
and G. There are disjoint closed subsets 4 and B in X such that

XU=AUB, Cycd and GcB.

Since x ¢ P(U), we have Dg n Cy # @. There is a point y & Dy (4 U U) because
AU Uis open in X. One easily checks that ay has the required properties.

4.3, LEMMA. Let U be an oper set in the dendroid X such that a ¢ U and x € P(U)
Sor some xeX. If xeay, then ye P(U).

Proof. Let ¥ be a neighbourhood of x such that Cy<IntCy. Clearly, y ¢ Cy.
Let W be a neighbourhood of y contained in X¥N\Cp. Then Cp<Cy and there-
fore Cyc<IntCy, which completes the proof.

4.4. LeMMA. Let U and V be disjoinit open subsets of X\{a} and let Gy, ..., G,,
be - arbitrary open subsets of X. Assume that :

)] PO N {xeX:axe(V, U, V)} =0,

(2)  there is a nonempty ope\n set ViV such that every arc joining a aﬁd V, is both
of the type (V,U, V) and (G, ..., G,).

Then there is an open nonempty set Vo= Vo<V, such that every arc joining a and V.,
is of the type (Gy, ..., G,, U, V).

Proof. Let x; € V;. It follows that x, ¢ P(U) because ax, e (V, U, V). Also
%y ¢ U U Cy. From 4.2 we infer that there is a point b & U such that ab e (U, V;, U).
Clearly, ab e (Gy, ..., G,, U) and b ¢ P(U). It follows that b¢ P(V,). Also il is
clear that b¢ V, U Cyp,. By 2.1 there is a neighbourhood WU of b such that
every arc joining a and W is of the type (G4, ..., G,, U). By 4.2 there is a point x, & V;
such that ax, e (Vy, W, V;). Again by 2.1 there is a neighbourhood V,=V,c¥,
of x, such that every arc joining @ and ¥, is of the type (V, W, V). Let ¢ be an
arbitrary point of ¥,. We shall show that ace(Gy, ..., G,, U, V).

There exist points peacnVy, geacn W and reacn Vy; such that
a<p<gq<r<c. Cleatly, ape(G,,..., G, pge(U) and gce (V). This completes
the proof.

icm

Dendroids and their endpoints . 239

4.5. LeMMA. Let x4, %y € X be such that %qe A,(xq, a) (comp. the definition
of uy,). Let U, V be neighbourhoods of respectively x, and %y, such that U n V. = @.
Then P(U) " {xeX: axe(V,U,V)} # .

Proof. Suppose P(U) n{xeX: axe(V,U,V)} = &. By the assumption
there is a point x & ¥V such. that ax e (V, U, ¥). From 2.1 we infer that there is 2 neigh-~
bourhood ¥V, =V, =V of x such that every arc joining a and ¥ is of the type
(V, U, V).'By 4.4 there is a nonempty open set V,=V, =V, such that every arc
joining @ and V, is of the type (V, U, ¥, U, V). In particular, any such arc'is of the
type (V, U, V). Again using 4.4 we can construct a nonempty open set Vyc VsV,
such that every arc joining a and ¥y is of the type (V, U, V, U, V, U, V).

Repeating the argument we can construct a sequence of nonempty open sets
Vi, Va, ... such that ¥, =¥, for each n>1 and every arc joining a and V,, is of
the type (¥, U, V, U, ..., ¥)znr1 - The intersection () ¥, is a nonempty set and every

n
arc joining a with that intersection is of the type (¥, U, V, ...), by Lemma 2.3.
Hence 2.2 implies U n V 5 @, contrary to our assumption. )

4.6. LEMMA. For every nonempty open set G in X there is a point x* € X such
that ax* e (G). '

Proof. Let By, = {x e X*\{a}: ax € (G)}. We may assume E, # @, for other-
wise X reduces to a one-point set according to a Borsuk’s lemma [1] that every arc
in a dendroid is a subarc of a maximal arc. By the last assertion of 3.5 we may assume
that a;,(x) >0 for each x & Ep. Choose X, € E, such that uy (o) >%sup {034(%): x € Eg}.
Since A,(x,, @) is compact (an arc), by the definition of uy4(xo) there is a point
Ry e A;(xg, AN\{xo} such that oy, (x0) = ¢ (%o, ¥o)-

There exist small enough neighbourhoods U,, ¥, of respectively x, and %o
with the properties

ag Uy, d(Uy, Vo) >%sup{o(x): x € Ey}

and _
() aze(Uy) = aze(G) for each ze X (see Lemma 2.1).

Set
E = PUy)n {xeX: axe(Vy, Uy, Vo)} n X*.

By the quoted Borsuk’s lemma each arc ay in X is a subarc of an arc ax with x e X,
hence Lemmas 4.3 and 4.5 imply E; # @. By 3.5 we may assume 4(x)>0 for
each x e E,. Choose x; € E; such that oy () >sup{og () xE B} )
As above there is a point % € 4;(x;, @)\{x;} such that a1,(xe) = (%1, x1).
There exist small enough neighbourhoods Uy, ¥y of respectively x; and X, such
that )
a¢ Uy, d(Uy, V)>sup{o(x): xe E},

Cy,cIntCy,
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and . .
aze(Uy) = aze (Vy, Uy, V) for each ze X (by 2.1 and the definition of E,).

Repeating the above arguments one can construct the sets E,, U,, ¥, and the
points x,, %, € Ay(x,, a) such that ay,(x,) = o(%,, x,) and

@  xeE =Pl {xeX: ave(Vyy, Upy, Voo))} 0 X7,

(3 a¢U,._y, U,y is a neighbourhood of x,_, and ¥,.,"is a neighbourho‘odv‘
of %,_4, ) '

@ ATy, V> bsup ens(): %€ By

® Cy,_,<IntCy,,

©) aze(U,) = aze (I{',,_l, U1, V,—y) for each ze X,
for each n>1. Let '
) . . ‘@
(7) ) C = U CU,-; .
n=0
By (5) we obtain
' (8) aeCand Cis an open and arcwise connected subset of X

By (3), (5) and (7) we infer that C # X. By the Borsuk lemma and (8) there isv a point
x* e X* such that ax*d:C. Hence condition (8) implies

()] . x*¢ C.
We claim that
(10 ax*e (U,) for each n>0.

In fact, otherwise x* e ax* = Cy,=C, which contradicts (9). From (6) and (10)‘
we get ..

11 ax*e (Vye1, Uyoy, V,_y)  for each n>1.
We claim that
(12) ) x*eP(U,.,) for each n>1.

‘ In fact, x* ¢ Cy, by (9), hence there is a neighbourhood W of x* disjoint with Cy,,.
Since Cy,<=Cy, hence (12) follows from (5). : ‘ -
By (2), (11) and (12) we obtain x* € E, for each nz1, and by (4)

a3 ‘ @1, (x¥)<2d(U,, V,)  for éach n>1.

For each n0 let aw, be the component of ax*\U, containing a. By (3) and (10)
we have w, # x*. Clearly, w,ew,x* A U, and aw,=Cy,. By (4) we have
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U,nV,= 0. Also U,4; 0 Cy, = @ by (5). These facts imply that there is.a point
u, € U, n ax* such that a<w,<u,<x* and

(14) a,NU, =9,
(15) W, NV, =3,
It is evident by (14) that

(16) A<y <uy<..<x%.

‘We shall show that
an Uptygy OV, £ S for each n>0.

Suppose w44 NV, = &. By (6) there are points p, ¢, re€au,,; such that
peV,, qeU, reV, and a<p<g<r. Since au, ., = au, U u,u,.,, by the sup-
position we have r € au,. Also r € aw, by (15), because au, = aw, U w,u,. However
this implies that g € U, n Cy,, a contradiction.

Conditions (16) and (17) imply that ax* e (Uy, Vo, Uy, V1, o). Lemma 2.2
implies that d(U,, ¥,)—0. Hence by (13) we get o;,(x*) = 0. Applying 3.5 this
gives x* & X¢ because x* ¢ X, Moreover, by (10) and (1) we have ax* € (G), which
completes the proof of the lemma,

Proof of Theorem 4.1, By the preceding lemma X3 3 @. Take a point
aeX?. The minimal arcwise connected set spanning X's in X is the union of all arcs
joining @ with the other points from X§. Again using the lemma one easily sees
that the theorem. holds.

Theorem 3.5 says that X is a Gy-set in X. One might suppose that the minimal
arcwise connected set spanning X is also a Gy-set. We give an example which shows
that this is not true. Moreover, we construct a planar dendroid X for which the
complement of the minimal arcwise connected set spanning X is a second (Baire)
category subset of X,

4.7. ExaMpLE (comp. [3]). Let C denote the ternary Cantor set on the
interval I = [0, 1]. Let (r,, &), 7a<8 7 =1,2,.., be the open intervals in7t
contiguous to C. In the plane Rx R consider the set

X=—" CXIUIX{I}U !‘.In:

where I, is the stright segment in Rx R joining (r,, 0) and (3(u+5,), 3)-

4_\{ ,\.
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Cleatly, X is a (contractible) dendroid and X5 = {(3(r,+s,), 2)in = 1,2, ..}
The set G = {(x, ) e X: }<y<1}is open in X and the intersection of G with the
minimal arcwise connected set spanning X (in X) isan F,-set in X with empty in-
terior. Observe also that X'*\X?¢ is not an F,-set in X.

5. On the set X~ X% In this section we prove the following

5.1. THEOREM. For a dendroid X the set X*\X73is of the first category in X.

First we have to prove two lemmas.

5.2. LeMMA. For each r>0 and for each ae X the set a{,,‘([r, oo)) is nowhere
dense in X.

Proof. Suppose, to the contrary, that the interior of oc;,,l([r, 00)) is not empty,
Then there are two open nonempty sets U and V" such that

o Ucag, ([, ©)),
@) 7 - - UnV=4g,
3) x€Una ([r, ) = Ay(x,0) " V£ D. ,

This follows from the fact that for some £>0 and for some z& Intoc;,,l([r, oo))
we have K(z, &)<oy, ([r, ) and for every ye K(z, &) n az, ([, ©)) we have
A(y, D\K(z, 2¢) # @. We construct a sequence of open sets U, , U,, ., such that
for each n>1 we have
(4)n g # Unc Un—l >
(5),  every arc joining a with U, is of the type (U,_, ¥, U,_y),
where U, = U. The set U; is constructed as follows. Let x e Uy n ocz",,l([r, 0))
(see (1)). By (3) there is a point y € U, such that aye(Uy, V, Up). From 2.1 we

get a neighbourhood U, of y satisfying (4); and (5),. Similarily we construct U, ,
having defined the set U,.

" By (4), for n =1, 2,... there is a point z& () U,. Again by (4),4, we have
B n
zeU,forn=1,2,.. By (5, ..., (5), we have
aZE<UOs V: Ui’ V: e Un-2> V: Un——l) ’

which implies that aze (U, V, ..., V, U),,_4. Using 2.2, 2.3 and (2) we get a con-
tradiction.

5.3. COROLLARY. For each a € X the set o5, ((0, o)) is of the first category in X.
5.4. LeMMA. For each r>0 and for each point a of a dendroid X we have

Xe n a3 (Ir, 0)) N IntX* A o ([r, 0))<az,}((0, ©)).

Proof. Let x be an arbitrary endpoint with ocla(x)>r belonging to the interior
of X° ag;([r, ©)). Let'G be a neighbourhood of x-contained in X* o ([r, o))
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such that diamG'<r. Assume there is a point y e ax\{x} such that for every neigh-
bourhood M’ of y and for every neighbourhood N'<=G of x there exists an arc
joining @ and N’ of the type (N', M’, N'). Then using 2.1 one easily checks that
#54(x)>0. Hence in such a case the point x belongs to the right hand side of the
inclusion. So suppose that for each yeax\{x} there exist neighbourhoods M,
of y and N,=G of x satisfying the condition

(1) o arc joining @ and N, is of the type (N,, M, N,).

L]

There is a sequence yy, ¥,, ... of points from ax\{x} such that ax\{x}= il_,JlMy‘.

m
We claim that for some index m the component F, of the set X \lU1 M, which con-
i=
tains x is a subset of G. Otherwise FNG # @& for each n>1. And since F, . =F,
@ | . .
the intersection () F, would be a continuum joining x and X\G having just the
n=1

point x in common with the arc ax. Hence x would be an interiorpoint of some arc,
contrary to the choice of x.
Let

M=UM, and N=(N,.
i=1 i=1

By the construction the component F,, of X\M containing x is a subset of G. Since N
is a neighbourhood of x there is a point y € ax~\{x} and a neighbourhood ¥ of y such
that ’

2) xyeG,

(&) VeNnM,.

We shall show that there is a neighbourhood U of x satisfying the conditions:
@ UcNAN,,

(5) for each ze ¥ and for each beazn U the arc bz is contained in G.

Suppose there is no such U. Then for each n>1 there are two points z,, b, and
a neighbourhood U, of x such that: U,=N n N, diam U,<1/n, z, € If, b,eaz,n U,
and b,z,d:G. For some index k the arc bz, intersects M, for otherwise there would
be a continuum joining x and X\G outside M. This continuum would be a subset
of F,, contrary to the construction of F,. There is an index j<m such that
byz, M, # @. Since z, € Ve Ne Ny, and b, € U, N=N,, the arc az, = abk.u bz,
is of the type (N, M,,, Ny). This contradicts (1). Hence there is an U with the
required properties. ‘

Since x € X ar (I, ), xp=G by (2, and diamG<r, there is an arc
ax' € (U, V) such that x' € V. Let V'cV be a neighbourhood of x' such that every
arc joining @ and V' is of type (U, V) (see 2.1). We have ¥'cNc<G, hence there
ig a point ze V' nX°n ar ([r, 00)). By the construction aze gU, V). Let

.beazn U. By (5) we have bzc=G. Since a,,(z)>r>diamG, by definition of w;.(2)

5
d
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there is a point ¢ e U such that ace (7', U). By the construction of ¥’ we have

ace (U, V, U). By (3) and (4) we see that ace (N, M,, N,) and ¢ € N,. This con-
tradicts (1), and proves the. lemma.

Proof of 5.1. Let an\X“’.-Let B, = X*noap([l/n, ) for n =1,2, ...

The unionnle,,'is equal to XAX: s by 3.5. Note that for each nz1 we have

B,=(BNIntB,) U (B, n IntB,).

The set B,\IntB, is nowhere dense. By the above lemma B, r IntB, < az, (0, o).

Hence by 5.3 and the above remark B, is of the first category in X, which proves
the theorem. ' .
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