C. M. Cordes and J. R. Ramsey, Jr.

10

References

- [1] C. Cordes, The Witt group and the equivalence of fields with respect to quadratic forms, J. Algebra 26 (1973), pp. 400-421.
- [2] Kaplansky's radical and quadratic forms over non-real fields, Acta Arith. 28 (1975), pp. 253-261.
- [3] Quadratic forms over non-formally real fields with a finite number of quaternion algebras, Pacific J. Math. 63 (1976), pp. 357-365.
- [4] R. Elman and T. Y. Lam, Quadratic forms and the u-invariant I, Math. Z. 131 (1973), pp. 283-304.
- [5] I. Kaplansky, Fröhlich's local quadratic forms, J. Reine Angew. Math. 239 (1969), pp. 74-77.
- [6] A. Pfister, Zur Darstellung von -1 als Summe von Quadraten in einem Körper, J. London Math. Soc. 40 (1965), pp. 159-165.
- [7] Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), pp. 116-132.
- [8] R. Ware, A note on quadratic forms and the u-invariant. Canad. J. Math. 26 (1974), pp. 1242-1244.

LOUISIANA STATE UNIVERSITY Baton Rouge, Louisiana

Accepté par la Rédaction le 6. 10. 1975

Undefinable ordinals and the rank hierarchy

by

John Lake (London)

Abstract. This paper shows that certain definability properties concerning the ordinals α and β are equivalent to the property of $\langle R\alpha, \varepsilon \rangle$ being a proper elementary substructure of $\langle R\beta, \varepsilon \rangle$.

1. Introduction. This note was motivated by [5]. Section 2 starts by answering a question from [5] and then it gives a number of conditions involving undefinable ordinals, each of which is equivalent to $R\alpha \prec R\beta$ (where $R\alpha \prec R\beta$ means $\langle R\alpha, \varepsilon \rangle$ is a proper elementary substructure of $\langle R\beta, \varepsilon \rangle$).

Most of our notation is standard but Df(x, y) is the set of those elements of x which are definable in $\langle x, \varepsilon \rangle$ using a first order ε formula with parameters from $y \cap x$. Also, $Df(x) = Df(x, \varphi)$ and \overline{x} is the cardinality of x.

It is well known that V = L implies the existence of certain definable well orderings and we shall make use of this fact in the following form (see Theorem 4.11 of [4], for instance).

THEOREM 1. Suppose that V = L holds and that $\beta \geqslant \omega$. Then there is an ε formula φ with two free variables such that $\{\langle x, y \rangle | \varphi^{R\beta+1}(x, y)\}$ is a well ordering of $R\beta+1$.

2. Results. The following notions were introduced in [5]. An ordinal α (ϵx) is said to be inconceivable in x if $\alpha \notin \mathrm{Df}(x,\alpha)$, strongly inconceivable in x if $\beta \geqslant \alpha \rightarrow \beta \notin \mathrm{Df}(x,\alpha)$ and weakly inconceivable in x if it is inconceivable, but not strongly inconceivable in x. Then Theorem 2.4 (i) of [5] gives

 $R\beta \models ZF \rightarrow (\alpha \text{ is strongly inconceivable in } R\beta \rightarrow R\alpha \prec R\beta),$

and Rucker asks if this result can be proved without assuming $R\beta \models ZF$. More precisely, he asks "If x is a model of Z and there is an $\alpha \in x$ such that α is strongly inconceivable in x, then is x a model of ZF?"

Theorem 2 shows that the answer to Rucker's question is no, in general, as there is an α which is strongly inconceivable in $R\omega_1$ and $R\omega_1$ is not a model of ZF. However, Theorem 3 shows that if V = L holds, then we get a positive answer to Rucker's question when $x = R\beta$ and β is a singular ordinal.

Theorem 2. If β is a regular ordinal $> \omega$, then there is an $\alpha < \beta$ such that α is strongly inconceivable in $R\beta$.

Proof. Suppose that β is a regular ordinal $>\omega$ and consider the ordinals

$$\delta_0 = \sup (\mathrm{Df}(R\beta) \cap \beta),$$

$$\delta_{n+1} = \sup (\mathrm{Df}(R\beta, \delta_n) \cap \beta),$$

$$\alpha = \sup_{n \in \omega} \delta_n.$$

For every $n \in \omega$, $\bar{\delta}_n < \beta$ so that $\delta_{n+1} < \beta$ and then as $cf(\beta) > \omega$ we get $\alpha < \beta$. It is also clear that α is strongly inconceivable in $R\beta$ as

$$\xi \in \mathrm{Df}(R\beta, \alpha) \to \xi \in \mathrm{Df}(R\beta, \delta_n)$$
 for some n
 $\to \xi < \delta_{n+1} < \alpha$.

THEOREM 3. Suppose that V = L holds, β is a singular ordinal and α is strongly inconceivable in $R\beta$. Then $R\beta \models ZF$.

Proof. Suppose that V = L holds, $cf(\beta) < \beta$, α is strongly inconceivable in $R\beta$ and $R\beta$ not $\models ZF$. Then $\langle R\beta, \varepsilon \rangle$ is not a model of the Replacement axiom and it easily follows that there is a set $y \in R\beta$ and a formula $\theta(x, \gamma)$ such that $\{\langle x, \gamma \rangle | \theta^{R\beta}(x, \gamma)\}$ is an injection from y to β which is cofinal in β . (We have assumed that there are no parameters in θ , but it is straightforward to generalise our proof if this is not the case.)

Let η be the least ordinal for which there is a $y \in R\eta$ satisfying the above condition and then let y be the least such set in $R\eta$ (using the definable well ordering given by Theorem 1). Then $y \in Df(R\beta)$.

 θ induces a well ordering of y and then we can define its cofinality which is, of course, $cf(\beta)$. As $cf(\beta) < \beta$ we can suppose that the cofinality is actually an ordinal and then we get $cf(\beta) < \alpha$ as α is strongly inconceivable in $R\beta$ and $cf(\beta) \in Df(R\beta)$.

Using the definable well ordering given by Theorem 1 again, we can now let f be the least injection from $cf(\beta)$ to y which is cofinal in y with the induced ordering. Then combining f with the function given by θ we can get a formula $\psi(\delta, \gamma)$ such that $\{\langle \delta, \gamma \rangle | \psi^{R\beta}(\delta, \gamma) \}$ is an injection from $cf(\beta)$ to β which is cofinal in β . As $cf(\beta) < \alpha$, this contradicts α being strongly inconceivable in $R\beta$.

Next, we point out that it is not possible to prove Theorem 3 without using some assumption such as V = L. Following the notation of [1], let α_0 be the least ordinal α such that $\exists \gamma > \alpha$, $\alpha \notin \mathrm{Df}(R\gamma)$ and let γ_0 be the least γ such that $\exists \alpha < \gamma \alpha \notin \mathrm{Df}(R\gamma)$. Then Theorem 2.5 of [1] shows that α_0 is strongly inconceivable in $R\gamma_0$ and Theorem 4.4 of that paper shows that it is relatively consistent to have $\gamma_0 < \omega_1$. In this case, γ_0 is a singular ordinal and $R\gamma_0$ not $\models ZF$, as required.

Theorem 4 is an improved version of Theorem 3.1 of [5] for the rank hierarchy, and we shall use it later on.

THEOREM 4. Suppose that $V \subseteq L$ holds and that α is weakly inconceivable in $R\beta$. Let α^* be the least ordinal $> \alpha$ satisfying $\alpha^* \in Df(R\beta, \alpha)$. Then

- (i) α* is a regular, uncountable cardinal,
- (ii) if α is a cardinal, then α^* is an inaccessible cardinal, and

(iii) if α is an inaccessible cardinal, then α^* is a Mahlo cardinal.

Proof. The proof is exactly similar to Rucker's proof of Theorem 3.1 in [5], except that when "the least x satisfying..." is taken, use the definable well ordering with respect to an appropriate Ry, as given by Theorem 1.

We end by noting five conditions involving definability, each of which is equivalent to $R\alpha \prec R\beta$. However, the last three of these are probably best thought of as relative consistency results. The first two conditions, which are due to Grewe ([2]) and Rucker ([5]), respectively, are

- (i) $\beta \cap Df(R\beta, R\alpha) = \alpha$, and
- (ii) $R\beta \models ZF$ and α is strongly inconceivable in $R\beta$.

If we are willing to assume that V = L holds, then another equivalent of $R\alpha \prec R\beta$ is

(iii) β is a limit cardinal and α is strongly inconceivable in $R\beta$.

This can be seen as follows. It is clear that $R\alpha \prec R\beta$ implies that α and β satisfy (iii). Now, suppose that V = L holds and that α and β satisfy (iii). Then, if β is regular cardinal it is also inaccessible and we have $R\beta \models ZF$. If β is a singular cardinal, then Theorem 3 gives $R\beta \models ZF$ so that in either case α and β satisfy (ii) and we have $R\alpha \prec R\beta$.

If we suppose that V = L holds and there are no inaccessible cardinals between α and β , then two further equivalents are

- (iv) $\alpha \notin Df(R\beta, R\alpha)$, and
- (v) β is a limit cardinal, α is a cardinal and α is inconceivable in $R\beta$.

We proved the equivalence of (iv), under these conditions, in [3], and it is clear that $R\alpha \prec R\beta$ implies that α and β satisfy (v). Now suppose that V = L holds, there are no inaccessible cardinals between α and β and that α and β satisfy (v). Then Theorem 4 (ii) shows that α is strongly inconceivable in $R\beta$, so that $R\alpha \prec R\beta$ follows from (iii).

References

- J. W. Dawson Jr., Ordinal definability in the rank hierarchy, Ann. Math. Logic 6 (1973), pp. 1-39.
- [2] R. Grewe, Natural models of Ackermann's set theory, J. Symb. Logic 34 (1969), pp. 481-488.
- [3] J. Lake, Natural models and Ackermann-type set theories, J. Symb. Logic, to appear.
- [4] W. Reinhardt, Ackermann's set theory equals ZF, Ann. Math. Logic 2 (1970), pp. 189-249.
- [5] R. v. B. Rucker, Undefinable sets, Ann. Math. Logic 6 (1974), pp. 395-419.

POLYTECHNIC OF THE SOUTH BANK, London

Accepté par la Rédaction le 30. 10. 1975