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Observe that a slight modification of the definition of %(X) leads to another
topological invariant 1(X), which however is not a shape-invariant.

Let X be a compactum lying in a space M e AR, A compactum Y <X i8 said

to be weakly contractible in X if it is contractible in every neighborhood of X in M.
1t is clear that the choice of the space M e AR containing X is here immaterial.

Let A(X) denote the number defined as follows:

1f there exists a natural number 7z such that X is the union of z weakly contract-
ible in X compacta, then 1(X) denotes the ,smallest of such numbers 7.

If 2 such natural number z does not exist, then A(X) = co.

It is clear that A(X) is a topological invariant of X and that

#(X)<AX)<%(X) .

It follows by (3.1) that if X' e ANR, then A(X) = %(X). However this last relation
does not hold true if one omits the hypothesis X' ANR. In fact, if 4 denotes the
well-known universal plane curve of Sierpifiski, then A(4) = o0, because for every
finite decomposition 4 = A, U4, U ..U 4, of 4 into compacta, at least one
of A4, contains a simple closed curve and consequently it is not weakly contractible
in 4. On the other hand, %(4) = 2, because of Theorem (6.1). Observe that this
example shows also that A(X) is not a shape invariant of X. In fact, there exist in
the plane E? two dendrits Dy, D, such that B = Dy U D, is a curve decomposing E>
into an infinite number of regions. Hence Sh(4) = Sh(B) and A(B) = 2 # A(4).
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Triangle contractive self maps of the plane
by

D. E. Daykin (Reading)

Abstract, Let E be the real Euclidean plane. A vmap f: E—E is triangle contractive TC if
0<a<1 and for each x,y, ze E cither

O |l fe—pli<allx—yll and [|fy—fzll<elly—2|| and || f—Fxll<al|lz—x] or

< (i) A(fx, fr, fA<ad (x, y, z) where 4(x, y, z) is the area of triangle x, ¥, z. We prove that
every TC map f: E~E has a fixed point p = fp or a fixed line L 2 fL.

1. Introduction. Let E be the real Buclidean plene and f: E—~E. We callpe E
a fixed point of fif fp = p. Also a line L of E is called a fixed line of f if fL=L. By
a fixture of f we mean either a fixed point or a fixed line.

We say that f is rriangle contractive TC if there is a coefficient o in O<a<1
such that for each x, y, z e E either )

@) I fx-pl<alx—y| and |fy—fel<aly—z| and | fa—fx|<alz—x| or

() A(fx, v, fH)<ad(x,y,z); where A(x,y,z) denotes the area of the
triangle x, ¥, z. Such maps were discussed in [1] where it was conjectured that every TC
self map of a Hilbert space has a fixture. The object of this note is to.present

TueoreM 1. Each triangle contractive self map of the real plane has a fixed point
or a fixed line. : ) '

The author would like to thank his friend J. K. Dugdale for the benefit of many
helpful discussions.

2. Proof of Theorem 1. Let f: E—E be TC with coefficient a. We will
assume f is continuous, because otherwise fE is contained in a fixed line ([1], The-
orem 3). Also we will assume that every circle C contains a point w with fw outside C,
otherwise f has a fixed point by the Brouwer theorem. So for.n = 1,2, .. let w, be
a point inside the circle C, of radius » centred at the origin with fw, outside C,.
If the sequence {w,} had an accumulation point g then f would be discontinuous
at g. Hence {w,} is unbounded and we can chioose a subsequence {x,} of {w,} such
that 0<|[x,[|— 0.

Let us write /x for the principal angle subtended at the origin by x. Then
{£x,} has an accumulation point. We take a subsequence {y,} of {x,} such that


Artur


44 ' ' D.E. Daykin

/o= Similarly { Z fv,} has an accumulation point @ and there is a subsequence
{z} of {y,} with /z,—@. Thus

(6] Iz, =00,
()] ' Lz,
3 Nzl <ll fzal
@ LIt

We shall let ¥, Q denote the lines of angle ¥, w respectively which pass through the
origin and go to infinity in both directions. Our first result is that lines parallel
to ¥ contract under f into lines parallel to Q.

LevMMA 1. Suppose {z,} is a sequence of points satisfying (1)-(4). Then if L is
a line parallel to ¥ its image fL is contained in a line ¢fL parallel 1o Q. Further if the
distance between two lines L and M parallel to ¥ is d, and the distance between ¢fL
and cfM is e, then e<od.

Proof. Let L and M be lines parallel to ¥ distance d>0 apart. If xe L and
ye M for large n we have

I fx—fzll~ L f2ll > [zl ~ I =2l -

Since fis TC we must therefore have 4(fz, v, fz,)<ad(x, ¥, z,). Let L' and M’ be
the lines parallel to Q through fx and f respectively, and let e be the distance between
them. If e =0 then e<od, while if e>0 for large n we have

3|z, <3el fzul ~dell fr—rfall~ ACS%, 19, fou)
S,O{A (xs Y, Zn)N%“d”x—zn"N%adnzn“

5o again e<ad. Since f is continuous e—0 as d—0 and the lemma follows.

Consider now the case when ¥ = Q and let y be a line perpendicular to ¥.
We define a map g: y— by letting g(x) be the perpendicular projection of f(x)
onto y for each x € y. This map is well defined and contractive because by Lemma 1
we know that f contracts lines parallel to ¥. Hence by the Banach contraction
mapping theorem g has a fixed point p, and the line parallel to ¥ through p is a fixed
line of f: We state this formally as

Levma 2. If there is a sequence {z,} of poimts satisfying (1)-(4) with ¥ = Q
then f has a fixed line.

Up to this point our argument would apply to any finite dimensional Hilbert
space, but we next consider the case ¥ % Q and will use the fact that non-parallel
lines of E intersect. We choose any line L parallel to ¥ and translate our axes till
the origin 0 is at the intersection of L and ¢fL. Thus ¥ becomes L and @ becomes ¢fL
and £(0) e Q. Then we rotate the axes until they bisect the angles between ¥ and Q.

LeMMA 3. Suppose {z,} is a sequence of points satisfying (1)-(4) withf(0)e Q # ¥,
and axes of coordinates bisecting the angles between ¥ and Q. Then there is a connected
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curve K passing through O such that x—fx is parallel to Q for each x € K. Moreover K
does not enter the two quadrants containing W and K goes to infinity in both directions.

Proof. Let L be any line parallel to ¥. By Lemma I we know that ¢f L is parallel
to © and so meets L at a point x with fx € ¢fL. We snnply let K be the locus of x
as L varies. To show that K is connected we show that x is a continuous function of
the distance of L from ¥. So let L and M be two lines parallel to ¥ with points x
and y respectively on K. If the distance between L and M is d; then by Lemma [ the
distance between ¢fL and ¢fM is <od, and hence the distance between x and 'y is
<(1+#)d. In other words x varies continuously with L. Suppose 2 point x of K lay
in a quadrant containing ¥. Let d, ¢ be the distances from x to W, Q respectively.
Then d<e contradicting Lemma 1 for ¥ and the line through x parallel to ¥. This
ends the proof of the lemma.

To complete the proof of Theorem 1 we will assume further that £ has no fixture
and obtain contradictions. We have at least one sequence {z,} satisfying (1)-(4),
and we choose a {z,} which makes the acute angle between ¥ and Q as small as
possible. In view of Lemma 2 this angle is not zero.

Consider the curve K of Lemma 3. Suppose x,, x, € K with the parallel non-zero
vectors x; —fx, and x, —fx, pointing in opposite directions. Then since f is con-
tinuous, as x moves along K from x, to x,, there must be an x with x—fx of zero
magnitude. In other words f would have a fixed point, which we have disallowed.
Thus the vectors (fx)—x with x € X all point the same way, and we will work in
the quadrant containing K where they point away from 0. Let P be a line perpen-
dicular to @ and meeting this quadrant. We proceed to define a point v on P.

Let k, I, m be points at which P meets K, Q, ¥ respectively. If k lies between [
and m then k is our choice for v. So we now deal with the alternative case when I lies
between k and m. Suppose we had a point r e P'between m and k where the vector .
(fY)—r was parallel to £ but pointing towards the origin side of P. Then we would
obtain a contradiction of Lemma 1 for lines L, M parallel to ¥ passing through r, k
respectively, The distance between ¢fL and ¢fM would be- ||r—k|. Hence there is
no such point r. We recall that fin e Q. Because f is continuous it now follows that
as x moves along P from k to m it must come to a point at which (fx)—x points
directly away from 0. This point is our choice for v.

For n=1,2,.. let P have distance n from O and v, be the corresponding
point v of P. If we chose v between / and m infinitely often then {v,} has an infinite
subsequénce lying in half the acute angle between ¥ and Q, Clearly we could choose
a subsequence {z,} of this subsequence to satisfy (1)-(4) and giving ¥’ and Q' with
a sharper acute angle than ¥ and Q, which is impossible. Hence we chose v between /
and m only a finite number of times. All the other v, have (fv,)—v, pointing directly
away from 0. Hence we get 2 subsequence {z,} of {v,} satisfying (1)-(4) with ¥’ = @',
a final contradiction.

Remark. It is natural to consider maps which contract either the area or the
perimeter of each triangle. That these do not always have a fixture is seen from the
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following example. In complex notation f(E) = 0 except that f =1 =i
and f(2i) = 1.

Note added in proof (19 May 1976). A map f: E—~E is-a collineation COL if fx, fv, fz are colinear
whenever x, y, z are colinear. Carter and Vogt jointly and Barnes independently have proved that
every COL map with fE containing 4 points no 3 colinear is affine. Earlier it was proved [2]
that every continuous COL map with fE not a subset of a line is affine, and this result was used
to characterize the maps f: E—E for which there is an a>0 such that 4(fx,fy, fA<ad(x,y, 2)
for all x,y,zekE.

Note added in proof (18 October 1977). The conjecture from [1], that any TC self-map
of a real or complex finite dimensional Hilbert space has a fixture, has just been proved by
Dang Dinh Ang and Le Hoan Hoa.
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Fixtures for triangle contractive self maps
by

B. E. Rhoades: (Bloomington)

Abstrslxct. Tl:m. Banach contraction principle is generalized in [2] to maps which contract thr
olr more poiats, giving rise to self mappings of a Hilbert space which have either a fixed point, a fi e;
Jdine, or both. In this paper the definitions of [2] are extended to a much wider class gf m - 'Xe
For this Jarger class it is shown that most of the results of [2] remain true, wprne

. Let H bc.: a l—IilberF space. For y, z € H, the line L(y, z) passing through y and z
is tl_le collec?lon of points x = ay+fz for all scalars a, f such that «+f = 1. For
argaxtra)ry points x,y,ze H, let ¢ = x~y, b = y—z. Then the distance IT of x from
L(y, 2) is

flal i i

. y = Z’
o(x, L(y, = [
( (y Z)) ”%TI \/ﬂzbZW(ﬂ, b)(b, a) i y#z.

T]}e area of triangle x, y, z written 4(x, y, z) will be half the base ||b] times the
height IT, and will be the same whichever side of the triangle is used as the base.
(Thf: above terminology appears in [2]. It has been reproduced here for the con-
venience of the reader.) '

Let f: H—H. f will be called generalized triangle expansion bounded, written
GTEB, if there exists a positive constant A such that for every three poinis
x,¥,z€ H, cither

W) ACf, fo, fy<hmax{d(x, y,2), ACf5, [y, 2, 314 Ce,fo, D+ A(fx, 3, 2

or

(2)d gyl shmax{|x =y, lx—=fel, 1y=l, $Ux =yl +ly=rxl}.
an

i 1Ay szl <hmax{]|y—zll, |y =fyl, lz=72l, 2y =rfel + 2=}
. & !
I fox=fz]| S hmax{|x—z| , [x—fx], |z—=fzl, Fllx—fz] +]z=fxI1} -
. If £ is GTEB with 0<h<1, then f is called generalized triaﬁgle contractive,
written f is GTC., . S o '
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