K. Borsuk

42

Observe that a slight modification of the definition of $\varkappa(X)$ leads to another topological invariant $\lambda(X)$, which however is not a shape-invariant.

Let X be a compactum lying in a space $M \in AR$. A compactum $Y \subset X$ is said to be weakly contractible in X if it is contractible in every neighborhood of X in M. It is clear that the choice of the space $M \in AR$ containing X is here immaterial.

Let $\lambda(X)$ denote the number defined as follows:

If there exists a natural number n such that X is the union of n weakly contractible in X compacta, then $\lambda(X)$ denotes the smallest of such numbers n.

If a such natural number n does not exist, then $\lambda(X) = \infty$.

It is clear that $\lambda(X)$ is a topological invariant of X and that

$$\varkappa(X) \leqslant \lambda(X) \leqslant \varkappa(X)$$
.

It follows by (3.1) that if $X \in ANR$, then $\lambda(X) = \varkappa(X)$. However this last relation does not hold true if one omits the hypothesis $X \in ANR$. In fact, if A denotes the well-known universal plane curve of Sierpiński, then $\lambda(A) = \infty$, because for every finite decomposition $A = A_1 \cup A_2 \cup ... \cup A_n$ of A into compacta, at least one of A_i contains a simple closed curve and consequently it is not weakly contractible in A. On the other hand, $\varkappa(A) = 2$, because of Theorem (6.1). Observe that this example shows also that $\lambda(X)$ is not a shape invariant of X. In fact, there exist in the plane E^2 two dendrits D_1 , D_2 such that $B = D_1 \cup D_2$ is a curve decomposing E^2 into an infinite number of regions. Hence Sh(A) = Sh(B) and $\lambda(B) = 2 \neq \lambda(A)$.

References

- K. Borsuk, Über den Lusternik-Schnirelmann Begriff der Kategorie, Fund. Math. 26 (1936), pp. 123-136.
- Sur la décomposition des polyèdres n-dimensionnels en polyèdres contractiles en soi, Comp. Math. 3 (1936), pp. 431-434.
- [3] Theory of Shape, Warszawa 1975, p. 379.
- [4] J. H. Case and E. R. Chamberlin, Characterization of tree-like continua, Pacific J. Math. 10 (1960), pp. 73-84.
- [5] L. Lusternik, Topologische Grundlagen der allgemeinen Eigenwerttheorie, Monatsh. Math. Phys. 37 (1930), pp. 125-130.
- [6] S. Mardešić and J. Segal, Movable compacta and ANR-systems, Bull. Acad. Polon. Sci. 18 (1970), pp. 649-654.
- [7] L. Schnirelmann, Über eine neue kombinatorische Invariante, Monatsh. Math. Phys. 37 (1930), pp. 131-134.

Accepté par la Rédaction le 20. 11. 1975

Triangle contractive self maps of the plane

by

D. E. Daykin (Reading)

Abstract. Let E be the real Euclidean plane. A map $f: E \rightarrow E$ is triangle contractive TC if $0 < \alpha < 1$ and for each $x, y, z \in E$ either

- (i) $||fx-fy|| \le \alpha ||x-y||$ and $||fy-fz|| \le \alpha ||y-z||$ and $||fz-fx|| \le \alpha ||z-x||$ or
- (ii) $\Delta(fx, fy, fz) \leqslant \alpha \Delta(x, y, z)$ where $\Delta(x, y, z)$ is the area of triangle x, y, z. We prove that every TC map $f: E \rightarrow E$ has a fixed point p = fp or a fixed line $L \supset fL$.
- **1.** Introduction. Let E be the real Euclidean plane and $f: E \rightarrow E$. We call $p \in E$ a fixed point of f if fp = p. Also a line L of E is called a fixed line of f if $fL \subset L$. By a fixture of f we mean either a fixed point or a fixed line.

We say that f is triangle contractive TC if there is a coefficient α in $0 < \alpha < 1$ such that for each $x, y, z \in E$ either

- (i) $||fx-fy|| \le \alpha ||x-y||$ and $||fy-fz|| \le \alpha ||y-z||$ and $||fz-fx|| \le \alpha ||z-x||$ or
- (ii) $\Delta(fx, fy, fz) \le \alpha \Delta(x, y, z)$, where $\Delta(x, y, z)$ denotes the area of the triangle x, y, z. Such maps were discussed in [1] where it was conjectured that every TC self map of a Hilbert space has a fixture. The object of this note is to present

THEOREM 1. Each triangle contractive self map of the real plane has a fixed point or a fixed line.

The author would like to thank his friend J. K. Dugdale for the benefit of many helpful discussions.

2. Proof of Theorem 1. Let $f: E \to E$ be TC with coefficient α . We will assume f is continuous, because otherwise fE is contained in a fixed line ([1], Theorem 3). Also we will assume that every circle C contains a point w with fw outside C, otherwise f has a fixed point by the Brouwer theorem. So for n = 1, 2, ... let w_n be a point inside the circle C_n of radius n centred at the origin with fw_n outside C_n . If the sequence $\{w_n\}$ had an accumulation point q then f would be discontinuous at q. Hence $\{w_n\}$ is unbounded and we can choose a subsequence $\{x_n\}$ of $\{w_n\}$ such that $0 < \|x_n\| \to \infty$.

Let us write $\angle x$ for the principal angle subtended at the origin by x. Then $\{\angle x_n\}$ has an accumulation point ψ . We take a subsequence $\{y_n\}$ of $\{x_n\}$ such that

 $\angle y_n \rightarrow \psi$. Similarly $\{\angle fy_n\}$ has an accumulation point ω and there is a subsequence $\{z_n\}$ of $\{y_n\}$ with $\angle z_n \rightarrow \omega$. Thus

$$||z_n|| \to \infty ,$$

$$\angle z_n \rightarrow \psi ,$$

$$||z_n|| < ||fz_n||,$$

$$\angle fz_n \rightarrow \omega.$$

We shall let Ψ , Ω denote the lines of angle ψ , ω respectively which pass through the origin and go to infinity in both directions. Our first result is that lines parallel to Ψ contract under f into lines parallel to Ω .

Lemma 1. Suppose $\{z_n\}$ is a sequence of points satisfying (1)-(4). Then if L is a line parallel to Ψ its image fL is contained in a line cfL parallel to Ω . Further if the distance between two lines L and M parallel to Ψ is d, and the distance between cfL and cfM is e, then $e \leq \alpha d$.

Proof. Let L and M be lines parallel to Ψ distance d>0 apart. If $x \in L$ and $y \in M$ for large n we have

$$||fx-fz_n|| \sim ||fz_n|| > ||z_n|| \sim ||x-z_n||$$
.

Since f is TC we must therefore have $\Delta(fz, fy, fz_n) \leq \alpha \Delta(x, y, z_n)$. Let L' and M' be the lines parallel to Ω through fx and fy respectively, and let e be the distance between them. If e = 0 then $e \leq \alpha d$, while if e > 0 for large n we have

$$\begin{aligned} & \frac{1}{2}e \|z_n\| < \frac{1}{2}e \|fz_n\| \sim \frac{1}{2}e \|fx - fz_n\| \sim \Delta(fx, fy, fz_n) \\ & \leq \alpha \Delta(x, y, z_n) \sim \frac{1}{2}\alpha d \|x - z_n\| \sim \frac{1}{2}\alpha d \|z_n\| \end{aligned}$$

so again $e \le \alpha d$. Since f is continuous $e \to 0$ as $d \to 0$ and the lemma follows.

Consider now the case when $\Psi=\Omega$ and let χ be a line perpendicular to Ψ . We define a map $g\colon \chi\to\chi$ by letting g(x) be the perpendicular projection of f(x) onto χ for each $x\in\chi$. This map is well defined and contractive because by Lemma 1 we know that f contracts lines parallel to Ψ . Hence by the Banach contraction mapping theorem g has a fixed point p, and the line parallel to Ψ through p is a fixed line of f. We state this formally as

LEMMA 2. If there is a sequence $\{z_n\}$ of points satisfying (1)-(4) with $\Psi=\Omega$ then f has a fixed line.

Up to this point our argument would apply to any finite dimensional Hilbert space, but we next consider the case $\Psi \neq \Omega$ and will use the fact that non-parallel lines of E intersect. We choose any line L parallel to Ψ and translate our axes till the origin 0 is at the intersection of L and cfL. Thus Ψ becomes L and Ω becomes cfL and $f(0) \in \Omega$. Then we rotate the axes until they bisect the angles between Ψ and Ω .

LEMMA 3. Suppose $\{z_n\}$ is a sequence of points satisfying (1)-(4) with $f(0) \in \Omega \neq \Psi$, and axes of coordinates bisecting the angles between Ψ and Ω . Then there is a connected

does not enter the two quadrants containing Ψ and K goes to infinity in both directions. Proof. Let L be any line parallel to Ψ . By Lemma 1 we know that cfL is parallel to Ω and so meets L at a point x with $fx \in cfL$. We simply let K be the locus of x

Froof. Let L be any fine parallel to Υ . By Lemma 1 we know that cfL is parallel to Ω and so meets L at a point x with $fx \in cfL$. We simply let K be the locus of X as L varies. To show that K is connected we show that x is a continuous function of the distance of L from Ψ . So let L and M be two lines parallel to Ψ with points X and Y respectively on K. If the distance between L and M is d, then by Lemma 1 the distance between cfL and cfM is d0, and hence the distance between d1 and d2 in a quadrant containing d3. In other words d4 waries continuously with d5. Suppose a point d6 of d6 in a quadrant containing d6. Let d6 be the distances from d7 to d8 contradicting Lemma 1 for d9 and the line through d9 parallel to d9. This ends the proof of the lemma.

To complete the proof of Theorem 1 we will assume further that f has no fixture and obtain contradictions. We have at least one sequence $\{z_n\}$ satisfying (1)-(4), and we choose a $\{z_n\}$ which makes the acute angle between Ψ and Ω as small as possible. In view of Lemma 2 this angle is not zero.

Consider the curve K of Lemma 3. Suppose $x_1, x_2 \in K$ with the parallel non-zero vectors $x_1 - fx_1$ and $x_2 - fx_2$ pointing in opposite directions. Then since f is continuous, as x moves along K from x_1 to x_2 , there must be an x with x - fx of zero magnitude. In other words f would have a fixed point, which we have disallowed. Thus the vectors (fx) - x with $x \in K$ all point the same way, and we will work in the quadrant containing K where they point away from 0. Let P be a line perpendicular to Ω and meeting this quadrant. We proceed to define a point v on P.

Let k, l, m be points at which P meets K, Ω , Ψ respectively. If k lies between l and m then k is our choice for v. So we now deal with the alternative case when l lies between k and m. Suppose we had a point $r \in P$ between m and k where the vector (fr)-r was parallel to Ω but pointing towards the origin side of P. Then we would obtain a contradiction of Lemma 1 for lines L, M parallel to Ψ passing through r, k respectively. The distance between cfL and cfM would be ||r-k||. Hence there is no such point r. We recall that $fm \in \Omega$. Because f is continuous it now follows that as x moves along P from k to m it must come to a point at which (fx)-x points directly away from 0. This point is our choice for v.

For n=1,2,... let P have distance n from 0 and v_n be the corresponding point v of P. If we chose v between l and m infinitely often then $\{v_n\}$ has an infinite subsequence lying in half the acute angle between Ψ and Ω . Clearly we could choose a subsequence $\{z'_n\}$ of this subsequence to satisfy (1)-(4) and giving Ψ' and Ω' with a sharper acute angle than Ψ and Ω , which is impossible. Hence we chose v between l and m only a finite number of times. All the other v_n have $(fv_n) - |v_n|$ pointing directly away from 0. Hence we get a subsequence $\{z'_n\}$ of $\{v_n\}$ satisfying (1)-(4) with $\Psi' = \Omega'$, a final contradiction.

Remark. It is natural to consider maps which contract either the area or the perimeter of each triangle. That these do not always have a fixture is seen from the

D. E. Daykin

46

following example. In complex notation f(E) = 0 except that f(0) = 1, f(2) = i and f(2i) = 1.

Note added in proof (19 May 1976). A map $f: E \to E$ is a collineation COL if fx, fy, fz are colinear whenever x, y, z are colinear. Carter and Vogt jointly and Barnes independently have proved that every COL map with fE containing 4 points no 3 colinear is affine. Earlier it was proved [2] that every continuous COL map with fE not a subset of a line is affine, and this result was used to characterize the maps $f: E \to E$ for which there is an $\alpha > 0$ such that $\Delta(fx, fy, fz) \leqslant \alpha \Delta(x, y, z)$ for all $x, y, z \in E$.

Note added in proof (18 October 1977). The conjecture from [1], that any TC self-map of a real or complex finite dimensional Hilbert space has a fixture, has just been proved by Dang Dinh Ang and Le Hoan Hoa.

References

- [1] D. E. Daykin and J. K. Dugdale, Triangle contractive self maps of a Hilbert space, Fund. Math. 83 (1974), pp. 187-195.
- [2] Triangle contractive self maps, Problem 5986, Amer. Math. Monthly 83 (1976), pp. 295-297.

UNIVERSITY OF READING

Accepté par la Rédaction le 24. 11. 1975

Fixtures for triangle contractive self maps

b

B. E. Rhoades (Bloomington)

Abstract. The Banach contraction principle is generalized in [2] to maps which contract three or more points, giving rise to self mappings of a Hilbert space which have either a fixed point, a fixed line, or both. In this paper the definitions of [2] are extended to a much wider class of mappings. For this larger class it is shown that most of the results of [2] remain true.

Let H be a Hilbert space. For $y, z \in H$, the line L(y, z) passing through y and z is the collection of points $x = \alpha y + \beta z$ for all scalars α , β such that $\alpha + \beta = 1$. For arbitrary points $x, y, z \in H$, let $\alpha = x - y$, $\beta = y - z$. Then the distance H of x from L(y, z) is

$$\Pi(x, L(y, z)) = \begin{cases} ||a|| & \text{if } y = z, \\ \frac{1}{\|b\|} \sqrt{a^2 b^2 - (a, b)(b, a)} & \text{if } y \neq z. \end{cases}$$

The area of triangle x, y, z written $\Delta(x, y, z)$ will be half the base ||b|| times the height Π , and will be the same whichever side of the triangle is used as the base. (The above terminology appears in [2]. It has been reproduced here for the convenience of the reader.)

Let $f: H \rightarrow H$. f will be called generalized triangle expansion bounded, written GTEB, if there exists a positive constant h such that for every three points $x, y, z \in H$, either

(1)
$$\Delta(fx, fy, fz) \leq h \max{\{\Delta(x, y, z), \Delta(fx, fy, z), \frac{1}{2}[\Delta(x, fy, z) + \Delta(fx, y, z)]\}}$$
 or

(2)
$$||fx-fy|| \le h\max\{||x-y||, ||x-fx||, ||y-fy||, \frac{1}{2}[||x-fy|| + ||y-fx||\}.$$

and

$$||fy-fz|| \le h\max\{||y-z||, ||y-fy||, ||z-fz||, \frac{1}{2}[||y-fz|| + ||z-fy||]\},$$

and

$$||fx-fz|| \le h \max\{||x-z||, ||x-fx||, ||z-fz||, \frac{1}{2}[||x-fz|| + ||z-fx||]\}.$$

If f is GTEB with 0 < h < 1, then f is called generalized triangle contractive, written f is GTC.