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Changing cofinality of cardinals
by

Menachem Magidox (Berkeley, Cal)

Abstract. A forcing notion is delined by which the cofinality of certain kinds of measurable
cardinals can be changed to any given value without collapsing any cardinals.

1. Introduction. Since the forcing method was invented in 1963, there was much
work done on the different phenomena that one can create in a given model of set
theory, by taking a Cohen extension of it.

One of the possible natural questions in this domain is whether one can find
a Cohen extension of u given model in which the cardinals are the same as in the
ground model but the cofinality of some cardinals differ, The interest in this question
stems from the fact (hat there are some forcing constructions which create a given
situation at regular cardinal but the corresponding problem for singular cardinals
is open. A. general approach to this kind of problem may be: Perform the required
construction for a cardinal » which is still regular and then make it singular. That
ideas like that can give information on the famous singular cardinals problem is
shown in [9] and [3].

The problem of finding a forcing notion for changing cofinality of a given
cardinal without collapsing any cardinals was successfully attacked by X. Prikry
in [5], in which he showed:

Let % be a measurable cardinal in some countable model of ZFC, then there is
a Cohen extension of the model, in which the cofinality of % is o, every bounded
subset of % iy in the ground model and no cardinals are collapsed.

Naturally there arises the problem of generalizing the Prikry construchon, so as to
change the cofinality of % to cardinals different than  and this is what is done in
this work.

The author was informed, after this work was done, by an indirect private
communication that L. Bukovsky has a different generalization of the Prikry con-
struction, using different msumptlons on .

The construction we deseribe in this paper is weaker than Prikry’s in thc sense
that in the extension we do have new bounded subsets of ». We give an informal
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can not expect to get Prikry’s full result for every cardinal s which

argument why one / : s
Silver’s Singular Cardinals Theorem is:

has a certain property and a<x.

Singular strong limit cardinal having cofinality >w which violates G.C.H.;
is not the first singular cardinal which violates G.C.H.

We start from a model in which there is % having the required property s> for
some measurable cardinal o. Assume that in the model 2P = B** for every regular
and 2% = B+ for singular f. This behavior of the function p=2% is consistent with
most existing large cardinals as shown by J. Silver [9]. See also T. K. Menas [4].
If we could change the cofinality of x to o without collapsing cardinals or adjoining
bounded subsets of x, we are in contradiction to the fore-mentioned theorem,

The exact assumption that we make on » for changing its cofinality to a is de-
scribed in Section 2. Let us just note that Lemma 2.5 shows that s which is 2 super
compact is more than enough for every a<x.

Are these large cardinals really necessary? This is completely open ™.

2. Preliminaries and notations. We shall try to make our notations as standart
as possible so whenever some notation was not defined it is assumed to be standart
(unless we are just careless). ‘ ‘

Lower case Greek letters are reserved exclusively to denote ordinals. x is a cardi-
nal, whereas upper case Greek letters denote formulas in some concurrent language.
Dom(f) is the domain of the function f. f } 4 is the restriction of the function fto 4
even when A& Dom(f), in that case Dom(f } 4) = Dom(f) n 4. ci(w) is the
cofinality of a, and A4 the cardinality of A.

- We assume that the reader is familiar with forcing techniques; I+ denote weak
forcing. We do not make any commitment whether we really start {rom a countable
universe M and really construct a Cohen extension, M[#)], or take a Boolean valued
extension of the whole universe. Note that the order on the forcing conditions is
assumed to be such that the larger the condition, the more information it gives about
the corresponding generic extension. We may be confusing an element in the generic
extension with its name or term which it realizes, which lies in the ground model
(see [8)).

V is the class of all sets.

It U is a normal ultrafilter on %, it is called normal if

(a) U is » complete,

(b) U is non-principle, .

(c) U is closed under diagonal intersection, i.¢., if 4, & U for every fex then
{lveN el

a<y

(*Y Added in proof. The question is not open any more, Results  of Jensen and of
Dodd-Jensen show that at least the consistency of & measurable cardinal has to be assumed.

.

icm

©

Changing cofinality of cardinals 63
1t is known thut if s is measurable it carries a normal measure, It Uis 2 normal
ultrafilter on %, V*/U is the ultrapower of the whole universe reduced by U. We
denote by V*/U both the ultrapower and its transitive isomorph (see D. Scott [7D
If fe V* then [f ]y is the element in F*/U represented by f (or the equivalence

class of f modulo y)

Lemma 2.1 (Ro$ Theorem, [1]). Let @ be a formula of set theory; fis o fae Vs
then .
VIUE @[ filys v [de) 1 {o €(£©), . fi@)}eU.
The following lemma is also well known.
Lomma 2.2, Let U be a normal ultrafilter on x.
() If Az and [ is defined as f(0) = A na, then [fly = 4.
() If f)so for every o x, then there exists A<x such that
ol dnoa=f@lel.

DerNrTioN. Let U, Z be normal ultrafilters on »x; then U<Z if Ue V¥/Z.
It can be shown that < is a partial well order of the set of normal ultrafilters on .
We just use the fact that it is o partial order.

Lrmma 2.3. (Absoluteness Lemma). Let U<Z, U = [f], then

@ AdeUif Asu and B A naef(0)} ez

(b) If Se V¥Z, then V*/ZF S is a normal ultrafilter on  iff V £ 8 is a normal
ultrafilter on x.

(©) {o| f () is a normal ultrafilter on o} & Z,

@ IFT<U T =[gly, then T<Z and V¥/ZFT<U and T = [g]y.

Proofl. (@), (b) and (¢) follow easily from Lemmas 2.1 and 2.2 and from the
fact that every function from » into V*/U is in V*/U (see [7]).

(d) follows from the fact that g can be assumed to be in ¥*/U (by changing g on
a set which is not in U) and from (a).

As described in [7] there is o natural elementary embedding of ¥ into V*/U
denoted by * (a—+a*). In particular, %<x* and a<a* <@t for every ordinal a.

The condition on % we are going to use to change the cofinality of % to « is:
There exists o sequence Uy < Uy <. < Uy<...(y<0) of normal ultrafilters on x. We
consider the following lemma us an argument for the consistency of this condition.

TiMMA 2.4, If % Is 2% supercompact, then there exists a sequence of normal ultra-
Jilters on .
U()(t/‘1<-u Uv{-n (’)’<%) . -

Note.xis 2 supercompact il there exist o transitive class M and a mapping f such
that j(@) = o for a<x, j()>x%, M¥SM and j is an clementary embedding of ¥
into M ([6]).

" Proof. In [6] the following statement was promised to be published (due to

Solovay).
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Let % be 2% supercompact and let A be a set of normal ultrafilters on x, zgn;

then there is a normal ultrafilter on %, Z such that for all Ue 4 U<Z,

The lemma follows immediately from the statement by building the sequence U, < U,
by induction, applying the statement at each stage.

3. The forcing conditions. Lot » be a measurable cardinal for which there exists
a < increasing sequence of length a (x<x). Let Uy<Uj<..<U,<..y<a be
a sequence of normal ultrafiliers on % which will be fixed for the rest of this paper,
In this section we present the forcing notion that will change the cofinality of x to cf (%)
without collapsing any cardinals. . ) ‘

Before we do it we have to fix some notations, Smcr? Upe VU, for f<y<a,
we can find a function ffe V™ which represents Uy in the ultrapower ¥¥/u,
G.e, Uy = [fly,). Clearly, by the £o0§ Theorem (Lemma 2.1) and the fact that

.e. 5
each U, is a » complete ultrafilier we get:
A, = {8] VB<yVn<p f7(8) is a normal ulirafilier on &
and f7 8) </} (6} e U,.
We use the Absoluteness Lemma for < (Lemma 2.3). Define

B, = {5l 64, YB<yVn<pLft dlgw & 7@}  for  y>0,
By = {8| < and § is inacessible}.
Note that if 6 & 4, f7(8) <7 (8). Hence there exist a funetion in ¥ which represents
F1® in V¥ 17 (8). 6 e B, means that this function can be picked to be the restriction
of £ to 6.
Lemma 3.1. B, e U,.

Proof. If B, ¢ U, then, since 4, U, and y<x, there exists f<y and n<p
such that

C=1{3| ded,, [f} o1y # /] D} & Uy
Us<U,, dyeUp, hence by Lemma 2.3 (U, is represented in v*u, by /),
D={| 4yndefj@), ded)el,.
Therefore, D CeU,. Fix §eD n C. Since Ay defy(8) and, for gedyné,

£¥(0) is a normal ultrafilter on g, by the Lo§ Theorem LI} 81y is o normal ultra-

filter on 8. 6 & C, hence this ultrafilter is not JY(8), which is ulso u pormal ultra-
filter on 6.

Therefore there exists B,9, £, &f7(8) but Ly ¢ [} 5] fjay, Which implies,
by Lemma 2.3,

Fs = {ol e<d, Byn g ¢ f0)} e 3 .
By Lemma 2.2, there are E=x, Feyx such that

K={0|6nE=EdnF=F}eU,.
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Using Lemma 2.3 again, .
EeU,, Fe U.
(Since, for deDNCNnK, Endef)s), Fnéefl(d) and My, = U,
[f7le, = Uy) For Q& F, £ e#f0). But [y, = U, which implics 5¢ 0,
hence a contradiction. M

We are now ready to deseribe the set of the forcing condition 2.

P is the set of all pairs of the form (9, G) which satisfies conditions O-@v).

L g is an increasing function from a finite subser of « into % such that g(Be By,

a<g(B). (In particular, g(B) is alwaps inaccessible.) G is a function from
a~~Dom(g) into P ().

The intended interpretation is that g supplies partial information about a func-
tion which enumerates a closed unbounded subset of x of order type . Let us denote

the intended function by . G(y) is the set of possible candidates for extending gtoy,
hence defining g (y).

IL If yeo and for every f € Dom(g), B<y then G(y) €U,

The set of possible candidates for being g (y) is large in the sense of U,.
IOL If yea—Dom(g) and Dom(g)—y # 0, then G effgp) for
f = min (Dom(g)~—y).

Once we decided what is g(f8) the set of possible candidates for defining g(y) is
drastically reduced. (Since 4.(¥) should be less than g(B) to a bounded subset of *,
but it should be still large in the sense of g (B).) It is of measure 1 with respect to some
ultrafilter on g (f) which reflect some of the properties of U,, namely f2(g()).

IV. For y e a—Dom(g), G()SB,, if ¢<y then G(3) A g(o) = .

This restriction is mainly due to technical reasons. The intvitive remarks above
motivate the following partial ordering of 2: (Note that we adapt the convention
that larger condition means more information or smaller element of the corresponding
Boolean algebra.)

h, M)<(yg, G) (g9, G) extends (h, H)) if

L hey,
IL Ve Dom(g)~Dom(h) ¢(f) e H(p),
I V& a—Dom(y) G sHP.

In similar situations the Tollowing lemma is trivial. Flowever, here we need a little
argument,

LrmmA 3.2. For every condition (h, H) and for y € a—Dom(h), there exists a set A
such that 4 e U, if Dom(i)y, 4efl(h() if Dom(i)—y # @ and

B = min(Dom (5)~7)

8~ Fundamenta Mathematicae XCIX
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such that: for every § € A there is an extension of (b, H), (g, D) withg = h v {{y, 65}
and G} B'+1 = H f'+1 for f ey 0 Dom(h).

Proof. Assume y¢ Dom(h). (Otherwise we -are done.) We give the argument
for the case: ':],BGD01n(h) y<pf. The argument for the other case is completely
analogous and even simpler. Let § be the minimal element in Dom.(#)~y. Fix

n<y; such that there is no o e Dom(h), n<<y.

' H(n) ef}(h(8)) and both f7(h(§)) and fE(h(B)) are normal ultrafilters on h(f)
such that : ,
o RO <A BD).
Hence, by Lemma 2.3,

D, = {8] 6<B, H@m) ndefiO} fo(h([})) .
We used the fact that h(f) € By which implies
. - - o ‘

LA h(ﬁ)]f«‘,’(n(m) =1 ;f (h (/3)) .

Let D, be h(p) in the case where there exists g € Dom(hj, n<e<y, H@) e f.,”(h »)
and D, ef(h(B)) for every n<y; therefore

N Dy~ HG) = Aeff(1®).

1<y
A is the required 4. Let 6 € 4. Define:
g=hu{{y,6},
and for ¢ #7,
G(p) = H(@ nd if o<y and there is no n&Dom(#), g<n<y.
G(o) = H(g)

(g, G) is trivially an exténsion of (k, H) which has y in. its domain. (g, G) can
be verified to be a condition the main point being:

otherwise.

G(g) € £2(5) for o<y for which there is no ¢<n<y, n& Dom (). (This Tollows
from 6eD,) W

The following lemma easily follows from the fact that o is a limit ordinal.
LemMMA 3.3. For every condition (g, G) and an ordinal & <x there exists an exten-
sion (h, H) of (g, G) such that < | Rang(h), and '

(h ) B+1,HY B+1) = (g } +1,G } B+1) B = | Dom(y).

Proof. Since a is a lLimit ordinal and Dom(g) is finite, there exists yeo
UDom(gj<y. Let G' be like G except that G'(y) = G —(@-+1). (g, G) is
a condition which extends (g, G). (G'(y) is expected to be in U, and indeed it is
because 8 <x and G(y) € U,.) Use Lemma 3.2 to extend (g, G) to a condition (4, H)
such that y e Dom(k), but, since A(y) € G'(y), S<h(y) = < () Dom(k). W

where

Changing cofinality of cardinals 67

. Lemmas 3.2 and 3.3 combined imply that a generic filter in £ naturally generates
a function ftom o into % whose domain is cofinal in ., 'We shall not distinguish
between the function and the generic filter. The main point in the construction is
that the cardinals of M are the same as the cardinals of M[¥] and no new subsets
of « are introduced in M [#¥]. Hence if « was regular in M, it is still regular in M [¥]
and cf (%) = «, but no cardinal was collapsed,

4. The hard core. In this section we introduce the technical machinery needed
for the proof of the main (and the only) result.

DerFNITION. Let (g, @) be a condition f<u; then
g,y s (gt B+1,G}B+1)

(g,0" is (g~g }B+1,G=G } f+1).

If (g, G) and (h, H) are conditions, then (g, G),," (h, H)®? is the unique condition
(i, 1) (if it exists) which satisfies (Z,1); = (g, G)p, (G, D! = (h, H). T 4<2 is
a generic filter, then ‘

and

gl’ = {(gs G)ﬂl (g,G)e?},
gﬂ ={(g:G)pi (g,G)E-(g}- .

Note that if g(8) is defined then {(k, H),| (g, O<(h, H)}<2®,
Lemva 4.1. Let f<a and let (g, G,),<s be a sequence of conditions (5<x); such

that
‘ ')’#y’:(g’Gy)=(g’Gy')p
and for every g, f<g, o € Dom(g) = 8 <g(). Then there exists a condition (g, H)
which extends each (g, G,) and (g, H)y = (g, G,); for y<9d.
Proof. Define H(g) = () G,(0), ¢ €a—Dom(g); (g, H) is a condition since
<3

for g< B G,(0) is a constant 7a.nd for f<g H(o) is supposed to be a member of
some normal ultrafilter on % or on some g (1) for <7. In any case this ultrafilter is
8+ complete, so H(g) is of the right form. ) '

For. technical simplicity we shall assume that ff are extended to be defined
also for x by the natural definition:

fle)y =U,.

Lemma 4.2 (Diagnalization Lemma). Let (g, G) € P, Let y<a, y¢ Dom(g). Let
o = the minimal g e Dom(g), y<g if there exists such an ordinal and o if not. Let
n = g(q) if <o and x otherwise. Z = f3(n) if ¢<a, Z = U, otherwise. Let A€ Z.
For every £ A, let (¢% H*) be an extension of (g, G) where ¢ =gu {4, O
Let ey n Dom(g). '

Then there exists a condition (g, H), (g, ©<(g, H), (9, G)g = (g, H)y>: such
that for every (j,J), 4, H).s(j, J), yeDom(j), there exists {ed such that
(¢%, HH<(, ). :

[id
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Proof. Let § be the maximal member of Dom(g) which is <y. (If no such §
exists, the following proof applies with trivial modifications.) Define for
0eA:3(8) = (g5 HY;. Jinduces a partition of 4 into at most 29 classes, Since
209 <y and Z is a normal ultrafilter on 1, 4 € Z, there is BS 4, B € Z, such that % is
constant for ¢ € B. Denote this constant by (i, I);. Let d<u<y; by definition of 2,
Hiw) e (%) = £7(6). Note that [f}]; = f(n). By Lemmas 2.2 and 2.3 there
exist 4, €Z, D,efin), such that for £ed, D, n &= H'u). We are ready to
define H:

I(u) for us<d,
. H(w) =4D, for g’<u<y,
<,

Dlve N HYW} for
‘ é<v,éed
HE)=Gmn BN N A
d<p<y

(9, H) is the requited condition. It is an extension of (g, G) because each (g%, H¥)
was. H(y) is always in the right ultrafilter as can easily be verified. (We used
the fact that all these ultrafilters are normal.) If (g, H)< (i, I) and y € Dom(j), then
i(y) = ¢, £e BS 4, and then (i, I) is an extension of (g%, H*) as can be again veri-
fied. M

Lemma 4.3, Let f<u, § a statement in the forcing language, (g, G)e P and
B<ay<..<m<a, a;¢ Dom(g); then there exists H such that: ‘

(a') (ga G)s(g: H)’ .

(b) (g: G)ﬂ = (gs H)ﬂa

(©) if (g, H)<(, 1), (4, Dy= (g, H)y, (i, 1) I B, Dom (i) —Dom(g) = {ay, ..., e}
Jor some (i, I), then (g, H) I &.

Proof (by induction on k). Let k = 0. If there exists H such that (9, H<(g, H),
(9, H)y = (9,G)gand (g, H) I+ &, then we already have our (g, H). If there is no
such H define H = G. . )

Assume the lemma for k1 and prove it for k. Let ¢ be the minimal in Dom(g)
a<gand n = g(g)if there is such an ordinal. Otherwise, n = %, Z = JS2(0) il g exists,
Z'= U, otherwise. Let 4 be a set which satisfies the assumptions of Lemma 3.2;
for (g, 6) and the ordinal a,. For ¢ e 4 define (¢4, G*) as follows:

¢* =g v {ay, O,
2 JGWNE for  p<a,,
JRERE “G(m - {G(,u)—-i for oc1<[,1¢.
Apply the present lemma to (¢, G%) and a,
assumption. We get (g% H%) such that;
(@ (¢5% HY, = (6%, )y = (g, @), (note that f<ay),
®) @< HY,
© i GSHYKGD, G 1), = (3, 6)
= {03, .., o4}, then (g%, H%) I &.

«vy 0 Which we can do by the induction

(D, ‘Dom(i)QDom(g)

i
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H()) € Z, hence since Z is an ultrafilter on #, either {¢] (g% H* I &} e Z or
{¢l (¢% H*) not |- 8} € Z. In the first case, let 4’ = {¢ € 4| (¢, 1) I &}, in the second
A" = {fed] (¢°, H*) not [ #}. Apply the Diagonalization Lemma (Lemma 4.2) and get
a condition (g, H), (9, G)<(g, H). Note that the proof of Lemma 4.2 yields that
(9, H)p = (g, G)y. (Sinceforevery & € 4 (¢°, H),= (g, G);.) Assume (g, HD<(, I),
(@, Dp=(9,G)y, (DI ¢ and Dom()—Dom(g) = {ay, ..., o). By definition
of (g, H) there exists {4’ such that (g%, HH<(, I). Since (7, 1), = (4%, H,
and Dom (i) —Dom(g%) = {&s, ..., %}, by definition of (g%, H*), we have (%, HH i &.
Hence by definition of 4’, for every e d’ (g% H') I+ 8.

We claim (g, H) I+ . Otherwise, there is (g, H)< (i, I) and (i, I) | . Without
loss of generality we can assume o; & Dom(i); hence (g% H®)<(i,I) for some
Eecd, but (g% HY I &, a contradiction. So (g, H) is the required condition. W

Levma 4.4. Let B, @, and (g, G) be like in Lemma 4.3. Then there exists H such
that:

@ (g, O)<(9, H),

(b) (gs G)ﬂ = (g: H)ﬂs

© if (g, )SE, D, G, D;= (9, H);, and G, 1)+ D for some (i,1), then
(9, H) I D )

Proof. For every o, ..., o, <a, o, ¢ Dom(g), we can get a condition (g, H*"™)
which satisfies the conclusion of Lemma 4.3. Since the cardinality of possible se-
quences oy <..<o<o is the cardinality of o, we can apply Lemma 4.1 and get
(9, H) which is a common extension of (g, H*"™), (g, H); = (9, H);. Let-
(9, <@, D if G, D, = (g, Hy,, (1, 1) |F @, then let ay, ..., % be an increasing
enumeration of Dom(i)—Dom(g). (i, I) is an extension of (g, H*"*¥), hence by
the definition of (g, H*™"™*): (g, H**"™*) | ®. Therefore, (g, H) I §. W

LemMA 4.5. Let B,(g, G) and ® be like in Lemma 4.3, B e Dom(g). Then.there
exists (g, H) such that:

@ (4, <@g, H),

() (g»G)/J—”'-(gaH)/h )

© if (g, )<, 1) and (i, ) decides &, then (i, 1) (g, G decides ® (the same
way, of course).

This lemma means that the truth of & depends just on ¥, after we decided
that (g, H) is true. 4

@, I) decides & if either (1, 1) I+ @ or (i, I)‘Il- 1P,

Proof: The cardinality of possible (i, 1), for (g, G)<(, I) is at most 2°P.
Let (2,, T;), y <2/, be an enumeration of {(i, I); (9, G)<(#, I)}. Define a sequence
(9, H,), y<2/P, where (g, H,); = (g, G). Apply Lemma 44 to (2, TT? 4, 6
and & to get (1, L g, H;) such that for every (i, 1), if (¢, v g, H)<(. D, @D,
(&, Dy = (¢t,, T,), then (¢, v g, H) &

f&pplvae:ilma 4.4 again to v(t,, Uy, H) and & to get (¢, U g, H;) such that
for every (,I) it (t,ug, H})<G, 1), (D)9 and (D)= (t,, T,), then
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t, 0 g, HY) 6. (g, Hy) is (9, Gy (4,9, m2,Y, (g, H) is & common extenision of
(g, H,) for p<2'®, which exists by Lemma 4.1. (If f<o<a then g (o) is inaccessible,
9(0)>g(B), and hence 2P <g(e).) ‘

It (g, H)<(i, I) and (i, I) decides &, then there exists such. 't]'u'xt (85, T)) = (i, 1)y
but this means that (i, 1), (g, H)* =(t, U g, H) which by definition of A’ implies:
since (i, I); = (t,, T, (1, V g, Hy) decides @. Hence (@, Dy (g, H) decides . m

Levva 4.6. Let (g, G) € 2, let B(x) be a formula in the forcing lunguage with
the: only free variable x, f<a and & an ordinal. f € Dom(g). If f<q, ¢ @ Dom(g),
then 5<g(o). Then there exists (g, H), (g, Q) <(y, H), such that the conelusion
of Lemma 4.5 holds for (g, H) and ®(0) for every Q<8 simultaneously.

Prool. For every o<6 we get (g, H?) whith satisfies the conclusion of Lemma 4,5
with respect to & (o). By Lemma 4.1 we get (g, H) Wlljcli is o comnion extension of
all (g, H®) o<é. W

5. Cardinals are preserved. In this section we conclude the proof by showing

that a cardinal in M is still a cardinal in M [#]. Let
\ P = {4, (4.9, 0(P) =1},

B<a, n<x. (Thus &% can be identified with {r}.) # can be partially ordered by:
(9, @p<(h, H)y if

@) g ) p+1ch p+1,

(b) for y e Dom(h } f+1)—Domlg } f+1) h(y) & G(y),

(0) for yef+1, y ¢ Dom(h) H(y)sG(). .

LemMaA 5.1. {2, é)‘satisﬁes the w* chain condition. (", <> satisfies the n* chain
condition.

Proof. It follows from Lemma 4.1 that (g, H) and (g, &) are always compai-
ible. Thus the cardinality of a set of mutually incompatible conditions is at most the

cardinality of possible g’s, which is ». The argument for 9/’{‘, is the same with the

obvious analogue of Lemma 4.1.

LemMA 5.2. Let @ be genevic filter in & und /}‘<oc, (g, Q) e @, g(ff) = 4; then 9,
is generic in 3”,’; . ’

This is the famous product lemma. (Sce, for example, Shoenfield [8])

LemMa 5.3. Let @ be generic filter in @ fi<a, (g, Y& @, y(f) =1, S&n; then
if acd, ae M9, then ae M|%,].

Proof. This actually is a restatement of Lemmu 4.6, M .

It follows from Lemma 5.3 that if a e M[9], asd for some §<g(0), then
ae M because %, is always in M. It follows thut PM(a) = PMPYy), Hence if « is
regular in M it is still regular in M[%]. In this case cf™®) w o, W
‘ THEOREM 5.4. M and M%) have the same cardinals,

Proof. Let y be the first cardinul'm M which is not u eardinal in M[¥]. v is
a successor cardirial in M. (Otherwise by definition of y it is a limit of cardinals
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in M%), hence a cardinal in M[%]). y<x by Lemma 5.1, y¢Rang(g) if (g, H)e¥
because y is not inaccessible; hence since & defines a normal function from « into
%, there exists ¢ <o such that for some (g, H) € 4 g(@)<y<g(o+1). By Lemma 5.3
every subset of y is a member of M[¥,y ] M[%,..,] is the same as: M [#,] as can
easily be verified. &, is generic in 25, which satisfies g (¢)* chain condition. Hence y is
still a cardinal in M[%,]; this contradicts the fact that some subset of y codes a map-
ping of y onto a smaller ordinal. M
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