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Pour le second facteur dans la derniére inégalité on a la limitation:

(1) 2\1/2 &. |17l
(3.12) (S @nplta— )™ < g,y “Whal-
2

i
QJJ 7

Enfin, moyennant (3.5), (3.11) et (3.12) on obtient

Vim (Lo [+ 100 (0)1)
(ds) 19 (Pn.0%ns Prp B — 9 (8 T} | < (21‘1751})+...+N£;”3 Wl

Remarque (3.2). Dans le cas ot les fonetions 4, dépendent de o ot de
="(t;y -~y 1), les limitations sont pareilles.
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-On projections and unconditional bases in
direct sums of Banach spaces II

by
P. WOJTARZCZYXK (Warszawa)

Abstract. We prove that an unconditional basis in X+ ¥ is a direct sum of
bases in summands provided every operator from ¥ into X is compact.

The main result of the present paper is Theorem 2.1, which says that
all unconditional bases in X + Y are direct sums of bases in summands,
provided every operator from Y into X is compact. The inferesting thing
iy that we do mot know a priori that X and Y have unconditional bages.
This decomposition of unconditional bases in direct sums of 1,-spaces was
proved in [4]. One of the main steps in the proof of Theorem 2.1 is Theo-
rem 1.1, which generalizes Theorem 3.5 of [4] and describes complemented
subspaces in certain direct sums of Banach spaces.

This paper is a direct continuation of [4]. The proofs use the same ideas
as in [4]. :

The proof of Theorem 1.1 is an extension.of the argument given in
[4], so we only point out the necessary changes. The first section of this
paper cannot be read independently of Section 3 of [4]. The proof of The-
orem 2.1 is selfcontained. All our notations and unexplained notions are
those of [4]. ‘ '

1. The following theorem improves Theorem 3.5 of [4].

TuEOREM 1.1. Let X and Y be Banack spaces (real or comples) such
that every operator from Y into X is strictly singular. Let V be a complemented
subspace of X - Y. Then there emisis an isomorphism @: X +¥ 22, ¥ 1 ¥
such that

' (V) =p(VInX+o(V)nY.

For the proof we give only two propositions, the rest is exactly the
same as in [4]. We will denote by Py the projection from X+ Y -onto X
annihilating ¥ and Py = I —Px.

ProPOSITION 1.2. Let X, ¥,V be complex Banach spaces satisfying
the assumptions of Theorem 1.1. Then there exists a projection Py: X+ ¥
X+ Y such that PxP;Py =0 and there ewists a Fredholm operator
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of index 0, @y X+ Y->X+Y such that @,(V) is a subspace of finite
. codimension in P (X+Y).

The proof follows the proof of Proposition 3.3 of [4]. The only differ-
ence is that given P, the projection onto ¥, we define @ =P —PxPPy,
and so the resulting projection P; satisfies PxP; Yy = 0.

PropoSITION 1.3. Leét P, and P be projections in a Banach space
7 and let PP,(I—P) = 0. Then there is an isomorphism y:Z oo, 7 such
that PyPy ' (I—P) =0 and (I—P)yPy™'P = 0.

Proof. Let the matrix form of the projection P, in the decompo-

sition P, (I—P) be ‘
a, §

P =[® ]

[0

thus ‘
P, =P = [“27 af + 5"]

. 0, 2
and this means that
I = ["’ g] — P,—(I—P)P,P

is'a projection. Write ! /

| 8 =(I-P\P,P = [gz ,foz]

Obviously, 8% = 0. Our goal niow is to construct v in such a way that
'Pl? Wt =1L

Since P;—8 = (P,—8) = —P,8—~8P,+P,, we infer that P, S+
+8P, = 8. From this identity we get P,SP, = P,(8P,+P,8)P, =
2P,8P,, so P,8P, = 0. Analogously, (I—P;)8(I—P,) =0. Now we
define § = (I—P,)8P;~P,8(I—P,) and put y =I~§. If we now con-
sider the decomposition P,, I—P,, we will have

[Lo 10, &1 5 [0, —6
PI‘[o,O]’ S“[az,O’ =1a,0 |
S P A B p A,
”’_[—a" 1]’ oS e, I

Moreover, 6,0, = 8,8; = 0 because §* = 0. So it is obvious that
§ =0, and v is an isomorphism and ™' = I+ §. Thus

_ I &1L, OV} I, —o I ol[r, —o
) ? 1 ) b 1] bl ’ 1
vFuy ["527 I][07 0][52.; 1] [—527 0][52: I ] )
L e '
=2, n]mEn -

This. completes the proof of Proposition 1.3.
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The above propositions give us

PROPOSITION 1.4. Let X, Y,V be complex Banach spaces satisfying
the assumptions of Theorem 1.1. Then there is a Fredholm operator
P: X+Y>X+Y of index 0 and complemented subspaces X, = X and
Y, < Y such that @ (V) is a subspace of finite codimension in X+ ¥,.

Proof. We apply Proposition 1.3 to P, obtained in Proposition 1.2
and P = Px. Then X, = Im(PxypPwp ) and ¥, = Im(PyyP,yp~") and
P = ypd,.

This proposition corresponds to Proposition 3.3 of [4] and we com-
plete the proof of Theorem 1.1 exactly as in [4].

2. In this section we prove our main resuls.

TEEOREM 2.1. Let X and Y be Banach spaces such that every operator
from Y into X is compact. Suppose that X+ Y = Z has an wnconditional
basis (z,). Then one can divide the set of integers into two seis Ny and N,
in such a way that span{z,: n e Ny} ~X and span{e,: n e Ny} ~

To find sets N, and N, we use two propositions, one being “dual” to
the other. In the case where Z is reflexive they follow from each other
by the duality argument. In the general case we are forced to give separ-
ate, although very similar proofs. Those proofs heavily depend on the
ingenious idea of Edelstein [3] to construet a block sequence which lives
“in between” X and Y.

In the following we will assume that the basis (2,) is unconditionally
monotone. We will denote always Px(z,) =@, and Py(2,) =y,. If 4
is & subset of integers, then Q {4} will denote the projection in Z defined by

Q{A} (Zanzn) = Za'nzn
n=1 ned
It is & norm one projection.
In the proofs of our proposmons we will pass to subsequences many
times. We will omit the subscripts to simplify the notation. This should
not lead to misunderstandings. )

PROPOSITION 2.2. Under the assumptions of Theorem 2.1, let (n,)
be a sequence of indices such that span {z 1 ¢ =1, 2,...} contains an infinite-
dimensional complemented subspace zsomorphw to a complemamed subspace
of X. Then limsup |w, |l = 0. 1Pt

Proof. If our conclusion is false, then we can assume [l <
0.1|Px|~'. We will construct a sequence of blocks g = Za 2,, Where
¥, < pi < ¥y Such that

1) lgall =1,

¢


GUEST


196 C P Wojtaszezyk

L3

@) 12> Px(g)l > Px(@)  for all g = 2 Bs#ngy lll =1,
%

(3) IPx(g)ll > 1/2—0.1{[Px||™" > 0.4

Having constructed v, g, g for k=1,2,...,N, We put vy,
= puy+1 and

dyvyn = max{r = vy IPxlspan{e, : vy <s< 7} <1/2}

and gy, is the element of span{z, : vy < § < 4} of norm 1, where
Pylspanfe, : vy <8< pygq) attaing its norm.

The fact that uy.,, is finite results from the following

Levma 2.3. For every N, |Pxlspan{z,: s =N} =1

Proof. If for some N we have |Pxlspan{s,: s> N} <1, then
PxQ{n,: 8> N} <1 and this implies that I —Px@ {n,: s> N} is an iso-
morphism of Z. But

(I—PxQ{n,;: s> N})(span{z,,: s> N}) = Py(span{z,: s > N}),

and so span{z,: s> N} is isomorphic to. a complemented subspace of
Y, which contradlcts our sgsumptions.

The fact that (1), (2) and (3) are satistied follows easily from the con-
struction. '

Let us write

Pxlgy) = f’k+bk’ where @, = Q{n,: 1, <8< .“k}(PX(gk))r
Py(gy) =, —by, where &’lc =Q{ng: v, <8< ) (PY(yk)) .
Observe that ’
_ P x(g)i - Px(ar) +Px(bp)ll < P x (@)l + [P x (Bp)ll
IPx (i)l llas + bkn A llas+ byl
1Px(an)ll 1P (B)ll < LPX(bk) fl
flog P x(gx)ll IPx(g)ll’

and this implies [[Px(b)ll > 1/2 1P x(g)l > 0.2.

Our goal now is to get a confradiction by constructing a non-com-
pact operator from ¥ into X. Consider Py(g,). Passing to a subsequence,
we can assume that Py(gy) is weakly Cauchy. Indeed, if Py(g;) has no
weakly Cauchy subsequence, then by a deep theorem of Rosenthal [7]
(see [9] in the complex case) we can find a subsequence spanning 1,
and so by C7 of [2] this implies that ¥ has a eomplemented subspace
isomorphic to 7;, which easily produces a mnon-compact operator from
Y into X. For a fixed j, the sequence @ {n,: » < s < u;} (Py(g;)) is a norm
convergent sequence, because Py (g;) is weakly Cauchy.
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Let us write
Uy —th{ﬂs <8 ﬂg}(PY(gk))

Observe that for |g| =1 and % =1, 2, ... we have {12 gu|<|[Pyll. Now
we will pass to a subsequence to ensure =1

4 10 {ng: v, < 8 < pg} (b)) F gl < (0.1 for* k<,
(5) 1@ ez % < s <m0+ for  r<k.
‘We are able to ensure those conditions because for &, # &,
Q {n,: Vg S < pgy} (bk2 +PY(gk2)) =0.
Observe that (4) and (5) imply
r—1
et ms < b =1,2, 30— S| <( 0.
j—1
In particular, Q{m.: v, <s< g, kb =1,2,...3(b,) is weakly Oauchy
re-1
since so is 3 u;. Also
j=1
(T—Q{ny: m <8<y, b =1,2,...}) <br)

=—I—Q{ng: m<s< w; k=1,2,.. })(PY(gr))

is' weakly Cauchy, and so b, is weakly Cauchy. This implies that a, is
weakly Cauchy, and since &, is unconditionally basic, ay; 15 weakly null.
This enables us to pass to a subsequence to ensuve that:

There exists a sequence of indices N, such that for every k-

© ug{wdk}(laxgj o) ~2x(3u) <2 o3

andl.
@ {n: Ny < n < Nyy} (Px(in)) — Pr(@o]| < 27*I1Px(@)ll-

Recall that Py(d,) = Pg(b,) and has a norm greater than 0.2. Now
having conditionns (1)-(6) satisfied, we define @ = @{ng: % <8< iy,
kE =1,2,...) and define a non-compact operator from ¥ into X by PxQPy.
To see tha’ﬁ it is & non-compact operator consider

PxQPy(g;) = PxQ(@~by) =PxQ (@) —PxQ ) = Px(dk)—PxQ(bk)
(e—1
= P +Px( ) )+,
‘ =
where [v3] < (0.1)*1|Px|. The last equality is by (x). Condition (6 ) implies
that this sequence has no norm convergent subsequences. This contradie-
tion concludes the proof of the proposition.
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Remark. All complications in the above proof vanish if 7 is reflexive.
Then we have g weakly null and we eagily pass to a subsequence safﬁlsfymg
(1), (2), (3) and

(4") The sequence Py(g;) is-almost disjoint with respect to (z,).

If Py (g;) were exactly disjoint, then PxQPy(g;) = Px@Q(d,—by) = Px(a,)
= Pg(b,) would have norm 3> 0.2. In the general case an easy approxi-
mation is necessary.

Our next proposition deals with the dual smuatmn The main diffi-
culty here is that the biorthogonal funcmonals (#)) need not span the whole
space Z*.

PRrOPOSITION 2.4. Under the assumpnons of Theorem 2.1 let (ng)

be a sequence of indices such that span {, } contains an infinite-dimensional -

’ mwlemmted subspace isomorphic to a complemented subspace of Y. Then
Limsup Py (2 )1 > 0.1 | Pgl

Proof. Suppose the conclusion is false. As in the proof of Proposmlon

" 2.2, we construct-a sequence of blocks g} = 2 a2 ngy WHETE ¥ < M < Vg1
such that

M gzl =1,
. A
®) 12> le(gk)li Py forall  g* = Mg, oM =1,
. ]
(9) P> 12— 01 Pl > 0.4,

The construction is made possible by

Leuma 2.5. |Pylspan{e; : s> N} =1 for all N.

Proof. If for some N, [Pylspa.n{z : 8= N}l <1, then we have

PiQ*{n;: s> N}< 1. Observe that we use the fact thab Q* {ng: s> N}

is w*-continuous and the unit ball of span {z : 8> N} is w*-dense in the
unit ball of Tm@*{m,: s> N}. But this glves Q{n,: s = N} Pyl < 1,
and 80 @ =I—Q{n,: s> N}Py is an isomorphism of Z. Since & | X =I|X
and &(Y) < span{z,: n # n,, s > N}, ‘we conclude that span{z, : s> N}
is isomorphie to a complemented subspace of X. This contradlctmn finighes
the proof of the Lemma.

Write

Px(gy) = GZ-Fb;; ‘where “: = Q*{'”’a: "’Icés‘g/“k}(P*X(g:))v

Py(g) = dp—by, where @ = Q" {n,: v, < s < e} (Phigh)-

By the same computations as in Proposmon 2.2, we get I]P* bl > 0.2
and Pray = —Pyb,c Observe that since gi > 0 and af — 0, we have
Phlgh) = 0 and by,
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LA 2.6. Given an arbitrary natural number N, an dement b* e 2%

and &> 0, there is a matural number r such that for every set of matural
numbers A with inf 4 > rwe have

1" fn: m < N}PY Q*{A} b)) < s 1¥].

Proof. If the claim is false, then there exist &> 0, an integer N,

an element b* e Z* and a sequence of disjoint finité subsets of integers
A, such that

19" fn: < NYPLQ* {4, } (0" > sip*|| for = =1,2,...

But it is clear that Q* {4,}(b*) is an unconditional basie sequence equiva-
lent to the unit vector basis in ¢,; so @*{n: n < N}Pylspa,n{g*{An} 5%}
is a non-compact operator with a finite-dimensional range, which is absurd.
This contradiction finishes the proof.

To get the final contradiction we find three increasing sequences
of natural numbers %,, 4., and v, such that

(10) L ne* n: n< Z,}Pyak > 0.2,
(A1) 9% {n: n < L}P% Q" {n,: /‘ki for
' i=1,2,...,r—l}(b}:,)ll<0.05,
(12) Q% {n: n < L}PR@*{A}( (b,)i < 0.05- for all sets of infegers A4
with infd > v,,

(13) >0,

ykr-(—l
‘We start the induction with k¥, = 1 and I, big enough to ensure (10).
(This is possible since [[@*{n: n< T} (d™)] 7> [b*]l.) Condition (11) is satis-
fied vacuously. We choose »,, using Lemma 2.6.
Suppose we have k,, 1., and v, and we want to find k,,,, l,+1 and Vpyy-

- First we choose k,,, big enough to have

and VEpi >=IU’
1Q* {n,: M S8 ppp b =1, 2, cee (R k,_,.l ) < 0.05 P
This is possible since b} —> 0 and @* e v Ss< gyt =1,2,..,1}

is a finite-dimensional 'w*-contmuous operator This choice of k‘r +1
ensures (13) and (11) for arbitrary- l.,,. Now we choose l.,, to satisfy
(10). To those k,,, and l, +1 we find »,,, by Lemma 2.6 to satlsf.y (12).

Let us write 4, = U {me: i, <8<y} and consider P 0" {4} Pk ..

By our assumptions this operatm is a w*-continuous, norm-compact oper-
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ator, and so it transforms sequences w*-convergent to zero into sequences
norm convergent to zero. Bub

2 Q (A Pylgh) = PyQ* (Ao} (ar, +%,) = Py(a; ) +P7Q" {4} (8)
= —P‘I‘f("’z,,) +P3Q" {Aom a2, Mk,_l}}(bzr) +

+PyQ* (Ao fn: n= v, 3 (OF)-
Conditions (10)—(13) imply that

19* {n: n <1} PHQ* {AO}P’%(yZ,.)u =01,
and so also -
IPYQ" {4e} Px (g3,) = 0.1.
This eontradietion finishes the proof of the proposition.
Using the above propositions, we can start the proof of Theorem 2.1.
Proof of Theorem 2.1. Let us write

Ny = {n: |l2a]l > 0.05Px] "},
N, = {n: |m,}| < 0.05|Px[™"}.

Proposition 2.2 and Theorem 1.1 imply that span {z,: n € N} is isomorphic
to & complemented subspace of ¥. Now we want to prove that span (s,
7 € Ny} does not contain any infinite-dimensional complemented subspace
isomorphic to a complemented subspace of Y. Suppose that it contains
such a subspace. Then Proposition 2.4 gives us a subsequence (2,) = Ny
such that [Py (e}, > 0.11Px| . But P¥(2,,) —> 0; s0 by the theorem of
Johnson and Rosenthal [6] we can pass to a subsequence such that there
are g, € ¥, |y, |l < M and P (2, ) (¥,,) = 4,4 Because Y does not contain
I, (cf. the proof of Proposition 2.2), we can assume that y, are weakly
null. But now the operator T': ¥Y—X defined by T'(y) =P§(Z‘zﬁs(y)zns')

is a non-compact operator because liminf|T(y, ) | > 0. So Theorem 1.1
gives us an isomorphism ¢: X 4+Y—>X-} Y such that ¢(span{z,: n € N,})
= X,+4 V where X, is a subspace of X of finite codimension and V is
a finite-dimensional space. .

To ensure spanfz,: nelN;} ~X and span{e,: neN,} ~Y¥ we
can shift a finite number of integers from N, to N, or vice versa, if neces-
Sary.

3. Concluding remarks.

- a. Our Theorem 2.1 can be considered as a statement about certain

. purely atomic Banach lattices. We do not know if a theorem like Theorem
2.1 holds for some non-atomic Banach lattices. In particular, let us
mention the problem asked in [1]. Let X be a Banach lattice, isomorphic
 a$ a Banaeh space to Ly (0, 1) +E,(0, 1). Do there exist two disjoint bands
in X, X, and X,, such that X = X;+ X, and such that X, is as a Banach
space isomorphic to L,(0,1) and X, is as a Banach space isomorphic to

e ©
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I,(0,1). Recall that the results of [1] show that in this case X, is order-
jsomorphic to the L;-space and X, is order isomorphic to the L,-space.

b. We do not know if in Theorem 2.1 we can replace the condition
that “all operators from ¥ into X are compact” by the weaker condition
that “all operators from Y into X are strietly singular”. Observe, how-
ever, that we have to assume something about X and Y for the conclusion
of Theorem 2.1 to be true. For example, in L,(0,1), 1<p #2< o
the Haar system is an unconditienal basis and L,(0, 1) ~ T+ Ly,(0, 1),
but the Haar system has no subsequence spanning I, (ef. [5]).

¢. Tn a sense Theorem 1.1, Theorem 2.1 and Remark a deal with
a special cases of the following general problem: Suppose we have a bounded
Boolean algebra of projections # on the space Z, and a projection P:
Z-»7. Under what conditions does there exist an isomorphism ¢: Z ;;;;Z

such that the algebra ¢@ep~' commutes with P? The easiest unknown
special case of this problem seems o be to extend Theorem 2.1 to uncondi-
tional finite-dimensional decompositions.

d. Using the assumption that X+ ¥ has an unconditional basis
we can avoid the use of Resenthal’s theorem [7] in the proof of The-
orem 2.1.
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