

On pairs of commuting operators

by

F.-H. VASILESCU (Bucharest)

Abstract. The aim of this paper is to give a characterization of the joint spectrum, in the sense of J. L. Taylor of a pair of commuting operators on Hilbert spaces. An application to tensor products of operators in then presented.

1. In a previous paper we characterized the joint spectrum of a finite commuting system of linear continuous operators by means of the non-invertibility of a certain operator, acting on a direct sum of copies of the initial space [6]. In the sequel we intend to obtain a similar result for pairs of commuting operators, which is not a direct consequence of the above-mentioned characterization. The present statement is more specific and it may be used in some problems of spectral theory, as we shall exemplify at the end of this paper.

Let H be a complex Hilbert space and B(H) the algebra of all linear continuous operators on H. Let $a=(a_1,\,a_2)\subset B(H)$ be a pair of commuting operators.

Consider the sequence

$$(1.1) 0 \rightarrow H \xrightarrow{\delta_a^0} H \oplus H \xrightarrow{\delta_a^1} H \rightarrow 0,$$

where $\delta_a^0(x) = a_1 x \oplus a_2 x$ $(x \in H)$ and $\delta_a^1(x_1 \oplus x_2) = a_1 x_2 - a_2 x_1$ $(x_1, x_2 \in H)$. It is clear that $\delta_a^1 \cdot \delta_a^0 = 0$. We recall that a is said to be nonsingular [4] if the sequence (1.1) is exact. The (joint) spectrum $\sigma(a, H)$ of a on H is, by definition, the complement of the set of all $z = (z_1, z_2) \in C^2$ such that $z - a = (z_1 - a_1, z_2 - a_3)$ is nonsingular on H.

The main result of this paper is the following

1.1. THEOREM. Let $a=(a_1,a_2)\in B(H)$ be a commuting pair. Then a is nonsingular on H if and only if the operator

$$a(a) = \begin{bmatrix} a_1 & a_2 \\ -a_2^* & a_1^* \end{bmatrix}$$

is invertible on $H \oplus H$.

This theorem can be used to solve some special problems concerning the tensor product of two linear operators; in particular, one can obtain a new proof of the result of Brown and Pearcy concerning the spectrum of the tensor product of the operators [1].

2. In this section we give the proof of Theorem 1.1.

Suppose first that $a = (a_1, a_2) \subset B(H)$ is nonsingular on H. Consider the dual sequence of (1.1), namely

$$(2.1) 0 \rightarrow H \xrightarrow{\delta_a^{1*}} H \oplus H \xrightarrow{\delta_a^{0*}} H \rightarrow 0,$$

where $\delta_a^{1*}(x) = -a_2^* x \oplus a_1^* x$ $(x \in H)$ and $\delta_a^{0*}(x_1 \oplus x_2) = a_1^* x_1 + a_2^* x_2$ $(x_1, x_2 \in H)$. It is easy to see that the pair $a^* = (a_1^*, a_2^*)$ is nonsingular on H if and only if the sequence (2.1) is exact, and thus if and only if the pair $a = (a_1, a_2)$ is nonsingular on H.

2.1. LEMMA. If $a = (a_1, a_2)$ is nonsingular on H, then both $a_1a_1^* + a_2 a_2^*$ and $a_1^*a_1 + a_2^*a_2$ are invertible on H.

Indeed, let us show that $a_1a_1^* + a_2a_2^*$ is injective and surjective on H. If $(a_1a_1^* + a_2a_2^*)x = 0$ for a certain $x \in H$, then $-a_2^*x \oplus a_1^*x \in \ker \delta_a^{1*} = (\operatorname{im} \delta_a^1)^{\perp}$. But $-a_2^*x \oplus a_1^*x \in \operatorname{im} \delta_a^{1*}$; hence $a_1^*x = a_2^*x = 0$. Since $\ker \delta_a^{1*} = 0$, we have x = 0. Take an arbitrary $y \in H$ and let us find an $x \in H$ such that $y = a_1a_1^*x + a_2a_2^*x$. We infer that δ_a^1 : $(\ker \delta_a^1)^{\perp} \to H$ is an isomorphism, and therefore $y = \delta_a^1(y_1 \oplus y_2)$ with $y_1 \oplus y_2 \in (\ker \delta_a^1)^{\perp} = \operatorname{im} \delta_a^{1*}$; hence $y_1 \oplus y_2 = -a_2^*x \oplus a_1^*x$.

Analogously, the operator $a_1^*a_1 + a_2^*a_2$ is invertible and this completes the proof of the lemma.

Let us return to the proof of Theorem 1.1. According to Lemma 2.1, it is clear that the operator

(2.2)
$$\begin{bmatrix} a_1^*(a_1a_1^* + a_2a_2^*)^{-1} & -a_2(a_1^*a_1 + a_2^*a_2)^{-1} \\ a_2^*(a_1a_1^* + a_2a_2^*)^{-1} & a_1(a_1^*a_1 + a_2^*a_2)^{-1} \end{bmatrix}$$

is a left inverse for the operator a(a) given by (1.2); hence a(a) is surjective on $H \oplus H$. Let us also notice that a(a) is injective too. Indeed, if $a(a)(x_1 \oplus x_2) = 0$, then $x_2 \oplus (-x_1) \in \ker \delta_a^1 \cap \ker \delta_a^{0*} = \ker \delta_a^1 \cap (\ker \delta_a^1)^{\perp} = \{0\}$, and hence $x_1 = x_2 = 0$.

Conversely, suppose that a(a) is invertible on $H \oplus H$. Then $a(a)^*$ is invertible; therefore

$$a(a)a(a)^* = \begin{bmatrix} a_1a_1^* + a_2a_2^* & 0 \\ 0 & a_1^*a_1 + a_2^*a_2 \end{bmatrix}$$

is invertible, and hence $(a_1a_1^*+a_2a_2^*)^{-1}$ and $(a_1^*a_1+a_2^*a_2)^{-1}$ are operators from B(H).

Let us prove that the sequence (1.1) is exact. Indeed, if $\delta_a^0(x) = a_1 x \oplus a_2 x = 0$, then $(a_1^* a_1 + a_2^* a_2) x = 0$, whence x = 0.

Assume now that $\delta_a^1(x_1 \oplus x_2) = a_1x_2 - a_2x_1 = 0$. If $y = a_2^*x_2 + a_1^*x_1$, then $a(a)(x_2 \oplus (-x_1)) = 0 \oplus (-y)$; hence $x_2 \oplus (-x_1) = a(a)^{-1}(0 \oplus (-y))$, and thus on account of (2.2) we obtain

$$x_1 = a_1(a_1^*a_1 + a_2^*a_2)^{-1}y,$$

$$x_2 = a_2(a_1^*a_1 + a_2^*a_2)^{-1}y,$$

i.e. the exactness of (1.1) at the second step.

Finally, if $y \in H$ is arbitrary, then $x_j = a_j^* (a_1 a_1^* + a_2 a_2^*)^{-1} y$ (j = 1, 2) satisfy the equation $a_1 x_1 + a_2 x_2 = y$, and the proof of Theorem 1.1 is complete.

2.2. COROLLARY. If $a = (a_1, a_2) \subset B(H)$ is a commuting pair, then the spectrum $\sigma(a, H)$ of a on H is given by the set

$$C^2 \setminus \{z \in C^2; (\alpha(z) - \alpha(a))^{-1} \in B(H \oplus H)\}.$$

As is known, the set $\sigma(a, H)$ is compact and nonempty [4] (see also [6] for Hilbert spaces).

Let us remark that the set of matrices $\{a(z); z \in C^2\}$ can be identified with the algebra of quaternions and that the map $z \to a(z)$ is an **R**-linear isometric isomorphism [6].

Notice also that $a=(a_1,a_2)\subset B(H)$ is nonsingular if and only if the matrix

(2.3)
$$\beta(a) = \begin{bmatrix} a_1 & -a_2^* \\ a_2 & a_1^* \end{bmatrix} = \alpha(a^*)^*$$

is invertible on $H \oplus H$.

2.3. COROLLARY. If $a = (a_1, a_2)$ is nonsingular on H, then we have the following commuting relations:

$$a_{1}^{*}(a_{1}a_{1}^{*}+a_{2}a_{2}^{*})^{-1}a_{1}+a_{2}(a_{1}^{*}a_{1}+a_{2}^{*}a_{2})^{-1}a_{2}^{*}=1,$$

$$a_{2}^{*}(a_{1}a_{1}^{*}+a_{2}a_{2}^{*})^{-1}a_{2}+a_{1}(a_{1}^{*}a_{1}+a_{2}^{*}a_{2})^{-1}a_{1}^{*}=1,$$

$$a_{1}^{*}(a_{1}a_{1}^{*}+a_{2}a_{2}^{*})^{-1}a_{2}-a_{2}(a_{1}^{*}a_{1}+a_{2}^{*}a_{2})^{-1}a_{1}^{*}=0.$$

Formulas (2.4) can be obtained by using the fact that (2.2) provides also a right inverse for a(a).

3. In this section we shall give an application of Theorem 1.1. If H_1, H_2 are Hilbert spaces, then we denote by $H_1 \otimes H_2$ the tensor product of H_1 and H_2 , complete for the canonical norm.

3.1. THEOREM. Let H_j (j=1,2) be Hilbert spaces, $\alpha_j \in B(H_j), H = H_1 \otimes H_2, \ \tilde{\alpha}_1 = \alpha_1 \otimes 1, \ \tilde{\alpha}_2 = 1 \otimes \alpha_2$ and $\tilde{\alpha} = (\tilde{\alpha}_1, \tilde{\alpha}_2) \subset B(H)$. Then we

have

(3.1)
$$\sigma(\tilde{a}, H) = \sigma(a_1, H_1) \times \sigma(a_2, H_2).$$

Proof. It is known that $\sigma(\tilde{a}_j, H) = \sigma(a_j, H_j)$ (see, for example, [2]); hence

$$\sigma(\tilde{a}, H) \subset \sigma(\tilde{a}_1, H) \times \sigma(\tilde{a}_2, H) = \sigma(a_1, H_1) \times \sigma(a_2, H_2)$$
.

In order to prove the reverse inclusion, let us introduce some notations. Namely, for any $b \in B(H)$ let $\pi(b)$ be the approximate point spectrum, $\gamma(b) = \sigma(b, H) \setminus \pi(b)$, and $\sigma_{\pi}(b)$ the point spectrum of b.

It will be sufficient to show that if \tilde{a} is nonsingular on H, then $(0,0) \notin \sigma(a_1,H_1) \times \sigma(a_2,H_2)$. We shall show that $(0,0) \in \sigma(a_1,H_1) \times \sigma(a_2,H_2)$ with \tilde{a} nonsingular leads to a contradiction. We have to eliminate certain possibilities.

(1) $0 \in \pi(a_1) \cap \pi(a_2)$. We then have two sequences $x_n \in H_1$, $y_n \in H_2$, $\|x_n\| = \|y_n\| = 1$, $a_1x_n \to 0$, $a_2y_n \to 0$ $(n \to \infty)$. Notice that

$$\beta(\tilde{a}) \begin{bmatrix} x_n \otimes y_n \\ 0 \end{bmatrix} = \begin{bmatrix} a_1 \otimes 1 & -1 \otimes a_2^* \\ 1 \otimes a_2 & a_1^* \otimes 1 \end{bmatrix} \begin{bmatrix} x_n \otimes y_n \\ 0 \end{bmatrix} \to 0 \qquad (n \to \infty),$$

while $\|(x_n \otimes y_n) \oplus 0\| = \|x_n \otimes y_n\| = 1$, which is not possible since \tilde{a} is nonsingular.

(2) $0 \in \gamma(a_1) \cap \pi(a_2)$. As $\gamma(a_1) \subset \sigma_p(a_1^*) \subset \pi(a_1^*)$ and $\sigma(a_2, H_2) = \sigma(a_2^*, H_2)$, if $0 \in \pi(a_2^*)$ then $0 \in \pi(a_1^*) \cap \pi(a_2^*)$ and we proceed as above \tilde{a}^* being also nonsingular.

If $0 \in \gamma(a_2^*) \subset \sigma_p(a_2^{**}) = \sigma_p(a_2)$, then $0 \in \sigma_p(a_1^*) \cap \sigma_p(a_2)$; hence $a_1^*x^* = 0$, $a_2y = 0$ with $x^* \neq 0$, $y \neq 0$, and therefore

$$\begin{bmatrix} a_1 \otimes 1 & 1 \otimes a_2 \\ -1 \otimes a_2^* & a_1^* \otimes 1 \end{bmatrix} \begin{bmatrix} 0 \\ x^* \otimes y \end{bmatrix} = 0$$

and $0 \oplus (x^* \otimes y) \neq 0$, which is not possible since $\alpha(\tilde{a})$ is invertible.

The case $0 \in \pi(a_1) \cap \gamma(a_2)$ is similar.

(3) $0 \in \gamma(a_1) \cap \gamma(a_2)$. Then we have $0 \in \sigma_p(a_1^*) \cap \sigma_p(a_2^*)$ and it is easy to construct a vector $\xi \in H \oplus H$, $\xi \neq 0$, such that $\beta(\tilde{a}) \xi = 0$, which is again a contradiction.

In this way we have eliminated all possibilities and the proof is omplete.

As a consequence of Theorem 3.1 we obtain the well-known result of Brown and Pearcy [1]:

3.2. COROLLARY. With the notations of Theorem 3.1 we have

$$\sigma(a_1 \otimes a_2, H) = \sigma(a_1, H_1) \times \sigma(a_2, H_2).$$

Proof. It is sufficient to apply the spectral mapping theorem ([5] Th. 4.8) to the commuting pair $\tilde{a} = (\tilde{a}_1, \tilde{a}_2)$ and to the function $f(z_1, z_2) = z_1 z_2$.

Analogously, if $f(z_1, z_2)$ is any analytic function in a neighbourhood of $\sigma(a_1, H_1) \times \sigma(a_2, H_2)$, then $f(\tilde{a}_1, \tilde{a}_2)$ makes sense and we have

(3.2)
$$\sigma(f(\tilde{a}_1, \tilde{a}_2), H) = f(\sigma(a_1, H_1), \sigma(a_1, H_2)),$$

by applying again the spectral mapping theorem from [5] (see also [3] for similar topics).

Theorem 3.1 is a partial answer to a problem raised by D. Voiculescu within the seminar of Operator Theory, Institute of Mathematics, Bucharest, 1976.

It is plausible that Theorem 3.1 can be extended to the case of n operators ($n \ge 2$ arbitrary), with a similar proof, by using the characterization of the nonsingularity of a finite commuting system given in [6].

References

 A. Brown and C. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), pp. 162-166.

T. Ichinose, On the spectra of tensor products of linear operators in Banach spaces,
 J. Reine Angew. Math. 244 (1970), pp. 119-153.

[3] M. Scheeter, On the spectra of operators on tensor products, J. Functional Analysis 4 (1969), pp. 95-99.

[4] J. L. Taylor, A joint spectrum for several commuting operators, ibid. 6 (1970), pp. 172-191.

[5] — The analytic functional calculus for several commuting operators, Acta Math. 125 (1970), pp. 1–38.

[6] F.-H. Vasilescu, A characterization of the joint spectrum in Hilbert spaces, Rev. Roumaine Math. Pures Appl. 22 (1977), pp. 1003-1009.

INSTITUTE OF ATOMIC PHYSICS

and
INSTITUTE OF MATHEMATICS BUCHAREST, ROMANIA

Received March 30, 1976 (1142)