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On pairs of commuting operators

by
F.-H. VASILESCU (Bucharest)

Abstract. The aim of this paper is to give a characterization of the joint spectrum,
“in the sense of J. L. Taylor of a pair of commuting operators on Hilbert spaces.
.+ An application to tensor products of operators in then presented.

1. In a previous paper we characterized the joint spectrum of a finite
commuting system of linear continuous operators by means of the non-in-
vertibility of a certain operator, acting on a direct sum of copies of the
initial space [6]. In the sequel we intend to obtain a similar result for pairs
of commuting operators, which is not a direct consequence of the above-
mehtioned characterization. The present statement is more specific and
it may be used in some problems of spectral theory, as we shall exemplify

" at the end of this paper.

Let H be a complex Hilbert space and B (H) the algebra of all linear con-
tinuous operators on H. Let & = (ay, @,) = B(H) be a pair of commuting
operators.

Congider the sequence

60

N 1

(11) 0—>H 2 A oH 2 Hs0,
where 83(®) = a;x@ a2 (2 € H) and 05(2, ®®;) = 003 — 6,8, (@, T, € H).
It is clear that 6%-6% = 0. We recall that 4 is said to be nonsingular [4]
if the sequence (1.1) is éxact. The (joint) spectrum o(a, H) of @ on H is,
by definition, the complement of the set of all # = (2;, #,) & C* such that
2—a = (#; —ay, %, — ;) is nonsingular on H.

The main result of this paper is the following

1.1. TeroREM. Let & = (ay, ay) € B(H) be a commuting pair. Then
a 18 nonsingular on H if ond only if the operator

a;, a,
(1.2) ' a(a) = [ ]

—ay a
is invertible on H QH.
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This theorem can be used to solve some special problems concerning
the tensor product of two linear operators; in particular, one can obtain
a new proof of the result of Brown and Pearcy concerning the gpectrum
of the tensor product of the operators [1].

2. Tn this section we give the proof of Theorem 1.1.
Suppose first that a = (a, @) = B(H) i8 nonsingular on H. Congider
the dual sequence of (1.1), namely

T 0%
@1 0=H S A SH > H-0,
where 0 (%) = —ae@atr (v cH) a,nd 6“*(w1®ma) = Q @, +Uny (21, By

e H). Tt is eagy to see that the pair a* = (a}, a3) is nongingular on H if
and only if the sequence (2.1) is exact, and thus if and only if the pair
a = (ay, a;) is nonsingular on H:

2.1. LEmer If @ = (ayg, 65) 18 nonsmgular on H, then both a,0; +a,
and & @y g 0, ar0 inwertible on H.

Indeed, let us show that a,al-+a,a; is injective and surjective on
H. It (a,0; +a,0;)x = 0 for a certain e H, then —aqm(—Ba o € Xer 85"

= (im8})*. But —aiw@als eimd}'; hence aiw = ajo = 0. Since ker 51*
=0, we have 2= 0. Take an arbitrary y € H and let us find an # € H such
that y = a,a* 2+ a;a50. We infer that 8}: (ker8})L—H is an isomorphism,
and therefore ¥ = Oi(y,@y,) With y, @y, e (kerdl)t =imdY*; hence
9.0y = — 6300,

: Analogously, the operator a}a, -+ a; @, is invertible and this completes
the proof of the lemma.

Let us return to the proof of Theorem 1.1, According to Lemma 2.1,
it i clear that the operator

2.2) [ﬁ(%aﬁaw’b" : —az(ataﬁa‘;aa)'l]

@5 (107 + g a3) ™ ay(ata, +a3a,)"

is a left inverse for the operator a(a) given by (1.2); hence a(a) is-surjective
on H®H. Let us also notice that a(a) is injective too. Indeed, if a(a)(s, @
@,) = 0, then 2, ®(—a,) e ker synkers) = ker §3n (ker 6,1,)-L = {0}, and
hence z; = v, = 0.

Conversely, suppose that a(a) is invertible on H@H. Then a(a)*

is invertible; therefore
alat + aza'; 0
0 a 0,4+ a3 a,

a(a)a(a)* = [

is invertible, and hence (a,af+a,a3)”" and (a’{al-i—aﬁaa)“ are operators
from B(H).
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Let us prove that the sequence (1.1) is exact. Indeed, if 62(2) = a,2®
@a,x = 0, then (a}a,+aray) 2 = 0, whence z = 0.
Assume now that &} (2,@3,) = a,2,— a,% 0. If y =
L = Y = a3+ aio
then_a(a) {0 @(—2,)] = 0®(~9); hemce a,&(—a,) = ala)0&(—y),
and thus on a,ccount of (2.2) we obtain

oy = a1(“1“1+“§“2)_1?/7
Wy = “a(“?%‘{‘agaa)_ly,
i e the exactness of (1.1) at the second step.
Finally, if ¥ e H is arbitrary, then 2, = o} (a,1a1+a5a,2) ¥y (=12
satisfy the equation @, -+a,4, =y, and the proof of Theorem 11 is
complete.

2.2. COROLLARY. If a = (ay, as) = B(H) is & commuting pair, then
the spectrum o (a, H) of a on H is given by the set

O'\{z e C*; (a(e) —a(a)) e B(HDH)}.

As is known, the set o(a, H) is compact and nonempty [4] (see also
[6] for Hilbert spaces).

Let us remark that the set of matrices {a(2); # € (*} can be identified
with the algebra of quaternions and that the map z—>a(2) is an R-linear
isometric isomorphism [6].

Notice also that a = (a4, a;) = B(H) iy nonsingular if and only if
the matrix ’

(2.3) B(a) = [“1 _“jJ = a(a*)*

Gy, a;
is invertible on H @H.

2.3, COROLLARY. If .a = (ay, a;) 48 nonsmgular on H, then we have
the following commuting relations:

* * Hoy—1 * R ™
0y (G, 0F + 0y 03) 0y + ag(ay 8+ ay @) ey =1,

(2.4) 0} (0,0% + 0y a) " a4 0y (0} 0y 03 a) " af =1,

a (“1“? + O y) " 0y — ay(ay 0y -+ a3 @p) My = 0.

Formulag (2.4) can be obtained by using the fact that (2.2) provides
algo a right inverse for a(a).

8. In this section we shall give an application of Theorem 1.1. If
H,, H, are Hilbert spaces, then we denote by H, ® H, the tensor product
of H, and H,, complete for the canonical norm.

3.1. Taorem. Let Hj (j =1,2) be Hilbert spaces, a;eB(H,), H
= Hi ®H27 5'1 = ®11 6’2 =1Qa, and & = (d,u 6’2) < B(H) Then we
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hawe
(3.1) o{d, H)= o(ay, Hy} X o(ay, Hy).

Proof. Tt is known that o(b;, H) = o(a;, H;) (see, for example,
[2]); hence

0(a, H) = o(Gyy H) X 0(8y, H) = (a1, Hy) X 0(ay, Hy).

In order o prove the reverse inclusion, let us introduce some notations,
Namely, for any b e B(H) let =(b) be the approximate point spectrum,
y(b) = (b, H)\=(b), and o,(b) the point spectrum of b.

It will be sufficient to show that if 4 is nonsingular on H, then (0, 0)
¢ o(ay, Hy) X o(ay, H,;). We shall show that (0,0) € o(ay, H) X o(ay, H,)
with- G nonsingular leads to a contradiction. We have to eliminate certain
possibilities. ) : )

(1) 0 e m(a;)n7(a,). We then have two sequences », € H,, y, € H,,

lgall =yl =1, @,8,—0, ag9,—~0 (n—>o0). Notice that

~ ] 1 —1Qallz,®
B(a) [wn ?yﬂ] = [:15% u;:@;]{l[ » 0 y”] >0 (n—>o0),

while [{(x, ®Y,) @0 = |z, @%,] =1, which is not possible since & is
nonsingular. :

(2) 0 eyla) nwlas). As y(a) c o,(a]) = n(a}) and o(ay, Hy)
= o(ay, Hy), if 0en(a)) then 0 € #(a})nx(a}) and we proceed as above
" being also nonsingular. '

I 0 ey(a) < 0,(a5") = op(ay), then 0eoy(a})no,(a,); hence oo™
=0, 4,y = 0 with 2* % 0,y 5 0, and therefore

a,®l 1Qa[ 0 7
[—1 ®a d ®1][w* ®y] =9
and 0 (#* ®y) # 0, which is not possible since a() is invertible.

The case 0 ex(a,)y(a,) is similar.

(3) 0 & y(as)ny(a,). Then we have 0 e o,(a}) N o,(al) and it is easy
to construct a vector £ e H@PH, & # 0, such that f(a)¢ = 0,  which is
again a contradiction. .

In this way we have eliminated all possibilities and the proof is
complete.

As a consequence of Theorem 3.1 we obtain the well-known result
of Brown and Pearcy [1]:

3.2. CoroLLARY. With the notations of Theorem 3.1 we have

o(a,Qay, H) = o(ay, Hy) Xo(a,, H,).
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Proof. Tt iy sufficient to apply the spectral mapping theorem ([5]
Th. 4.8) to the commuting pair G = (d,, @) and to the funetion f(e,, 2,)
= 2,2,. ' '

Analogously, if f(z, 2,) is any analytic funetion in a neighbourhood
of o(ay, Hy) Xo(a,, H,), then f(&,, d,) makes sense and we have

(3.2) O-(f(&"h dsy), H) =f('7(a17 Hy), U(a'uﬂz)):

by applying again the spectral mapping theorem from [5] (see also [3]
for similar topics).

Theorem 3.1 is a partial answer to a problem raized by D. Voiculescu
within the seminar of Operator Theory, Institute of Mathematics, Bu-
charest, 1976.

It is plausible that Theorem 3.1 ean be extended to the case of n
operators (n > 2 arbitrary), with a similar proof, by using the character-
ization of the nonsingularity of a finite commuting system given in [6].
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