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A note on autoﬁomﬁsms of semigroups and
near-rings of mappings

by
G. R. WOOD (Christchurch, New Zealand)

Abstract. Let S(E) be a semigroup, under composition, of selfmaps of a real
locally convex space K. We show that the automorphisms of §(E) which are given
ag conjugation by an element of U (H) (the group of continuous linear invertible map-
pings of B, with continuous inverses) are precisely the antomorphisms of S(E) which
fix U(E) (Theorem 1). The dimension of F must be greater than one and B must have
the weak or Mackey topology.

The semigroup % (B) (all continuous linear selfmaps of E) then represents ¥
(Corollary 2). That is, if ¢ from 2 (E) to 2 (F) is a semigroup isomorphism, there
exists a linear homeomorphism % from F to F such that ¢ (f) = hfh~, for every f € 2 (B).

It §(E) forms a near-ring we show in §2 that the near-ring automorphisms are
precisely those fixing U (E). In § 3 the latter are also shown to be the d-automorphisms
of Yamamuro. [18].

Introduction. Many authors in the past forty years have investigated
the relationship between a Hausdorff locally convex space (F) over the
reals (R) and an associated semigroup, group, near-ring, or ring of fune-
tions from E to itself. Nagumo, Eidelheit, Mackey, Whittaker, Magill and
Yamamuro are amongst such writers (see references).

Let & be a class of real Hausdorff locally convex spaces and 4 be
a category whose objects comprise all elements of &, For any pair H, F e £,
the morphisms A (#, F) are functions from ¥ to F with the usual compo-
sition as their product. For example, let & be all real Banach spaces and’
A(E, F) be all continuous functions from F to F. Immediately A (F)
= A(H, E), Ecé, torms a semigroup, so three levels of the above
problem are suggested:

(R) If ¢ is a semigroup isomorphism (a multiplicative bijection) from
A(E) onto A(F) for E, Fe &, there exists an invertible h e A(H, T)
such that ™' e A(F, B) and

o(f) = ifpt  for every fe A(B).
Following Hofer [4] we say that every isomorphism is representable.

(C) If A(B) and 4 (F) are semigroup isomorphic, for B, F' € &, then B
and F are linearly homeomorphic. That is, 4(B) characterises E.
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(M) If ¢ is a semigroup automorphism of A(E), for F e &, there
exists an invertible & € 4 (#) such that ~! e A (H) and

o(f) =M for every fe A(H).

That is, every automorphism of A (FE) is inner, or following Yamamuro,
A (E) has the Magill property.

In the event that each 4 (E), F € &, forms a group, near-ring or ring
(where addition is defined pointwise) we may make corresponding defi-
nitions in the natural way.

Let us assume without loss of generality that each A (H) forms a semi-
group. Certainly, (R) implies (M). Given property (M) a notational change
in all proofs to date has sufficed to show (R), while if all maps are Hada-
mard differentiable (R) implies (C), ([16], p. 182). However, (C) does
not imply (R) in the event that each A (F) forms a group, as we now show.

Let U(H) be the group of all linear homeomorphisms of a Hilbert
space H, with w* the adjoint of u € U (H) ([15], p. 98). A consequence of [7],
D- 251, is that U(H) characterises H. But the automorphism ¢ of U(H)
given by

p(u) = (w™)* for every w e U(H),
is not inmer.

If we denote by & the scalar selfmap (a map from a set to itself) of H
given by @ — £« for every s e H, 0 £ £ e R, and by M the set of all such
scalar maps, then every inner auntomorphism of U(H) will fix every ele-
ment of M. But ¢ does not fix any &e M.

Let X be any set and S(X) any semigroup of selfmaps of X contain-
ing the constant selfmaps I(X). That every automorphism ¢ of S(X)
has the form

g(f) =HfE™  for every fe8(X),

for some bijection % of B was proved by J. Schreier in 1937, [12]. So if
we form the semigroup UuI(H) by adjoining the constant maps, we have
at once that every antomorphism is given as conjugation by a bijection.
‘Whether (M) held for this semigroup motivated Theorem 1, from which
the main results (Theorems 2 and 3, and Corollary 2) emerged.

Notation. The class of all real, Hausdorff locally convex spaces
is denoted by LCS. Greek symbols will be used for real numbers and Roman
symbols for elements of F e LOS. We let £ be the conjugate spage of
E and & (E) be the space of all continuous linear selimaps of H, where
necessary equipped with the topology of uniform convergence on bounded
sets, while U(H) will be the group of units in £ (¥).

When » e B and Z € B, (v, ) will denote ‘the value of Z at @, while
2@z ¢ Z{F) will be the one-dimensional map given by

zQ%(a) = {a, ZT)x  for every ac H.
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The constant selfmap of B whose single value is = € E is denoted by O,
and the collection of all constant maps by I(H).

The symbol for a family of selfmaps of E, S(¥), will often be ab-
breviated to 8. The semigroup operation will at all times be funetion
composition while addition will always be defined pointwise.

1. The main theorem. From now, unless otherwise stated, B, F e LCS
will be equipped with either the weak or the Mackey topology and will

- have dimension greater than one.

TeEOREM 1. Let 8 be a semigroup of selfmaps of B such that I, U = 8
and let ¢ be an automorphism of S. Then ¢ is inner and ke U if and only
ife(U) =TU.

Proof. The necessity is straightforward. Suppose ¢(U) = U. The
proof that ¢ is conjugation by an element of U is in ten stages:

1. There exists & bijection h of B such that @(f) = hfh™ for every f € 8.

This is an application of Schreier’s result, [12]. Note that as ¢ fixes U,
B(0) = 0. Since ¢! fixes U and ¢~ '(f) = b~ 'fh, for every feS, any
statement about h will hold for A~. With the non-zero scalar map &,
and M the set of such maps as before, we show

2. There ewists a bijection i: R — R such that p(&) = A(&) for every

£eR. .

If Z(U) denotes the centre of U, routine methods show Z(U) = M.
But ¢ is an automorphism of U, so preserves M. Since ¢(0) = 0 there
exists a real valued function of the real variable & such that &(&) = A(&)
for every £ e R. That 1 is one-to-one, onto and multiplicative follows from
the corresponding properties for ¢.

Certainly, A(1) = ¢(1) =1, while since

A(—1) =p(=Dg(-1) =¢(1) =1

and o(—1) # (1), (—1) = —1.

Further, 1(0) = ¢(0) = 0.

3. Given a, b € B, there ewists u, o € B such that

B (a+b) = k(@) + ek (D).

With <2,z % —1, ¢(1+2®%) is linear, so

1) B[ Ya+b)+ <k (a4b), Ba] = k[ {a) + <7 (a), o]+
+h[ET(B) + BT (B), Za)

for arbitrary a,b e B. When both ¢h~'(a), %) = 0 and <&7'(b), %) =0
we have from (1)

a4+ b)+<E 7 a+b), Ba = ke +D),
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50 <h7'(a-+b), ) = 0, since # may be chosen to be non-zero. This means
that h~*(a+b) lies in the subspace spanned by A~'(a) and h~*(b), so the
result follows.

4. When b (a) and 71 (b) are linearly independent, u = o.

Note that h(&x) = A(&)h(x) and A™'(&x) = 17'(§)h*(2) for any
¢eR, »cB. Choose Z such that <A '(a), ) =1 = <h~'(b), Z). Then
with # = —h™ (a)~7"1(d), (1) becomes )

B (@) — (5 + o) (X (@) +17 (B))]
=h(—=b7 () +h(—17"(a)) = —(a+D),
since A( —1) = —1. Thus,

W ad) = L2 (17 @)+ 7 0) = i (o)1 05 ).

Since 57 () and k™' (b) are linearly independent, (u-+0)/2 = u, or p =
Note that 4 cannot be zero. ’ (M» o e

8. h preserves linearly indepéndent sets of elements.

Suppose that ™' (a) and h~*(b) are linearly independent, and as- fb
=0 for some a, f € B. Then

0 =k Y (aa+8b)
= [k (aa)+ k"1 (BB)], since h~'(aw) and h~(Bh)
* are linearly independent;
= plA7 (@ P @)+ 271 (BB (B)].

Thus, A (a) =17'(8) =0, 50 a = = 0.

) In a similar way we may show this result for any finite set of linearly
independent elements.

6. h(a-+Db) = h(a)+h(b), for every pair of linearly independent. ele-
ments, a, b e H. L ’ ? 7 oty @nd&p@w@em e

Since @, b and 6= a--b are '-pa,irwise lineé.rly indépendént we have
h(o) = ha-+b) = u[h(a)+A()], for some peR,
=alilo—b) 4B
= p[p’ (h(6) (b)) +h(B)], for some x' eR,
= p' B(o) +p(1— By (D).

Bﬁth(b) and k(o) are linearly independent, 5o up’ = 1land 5 — uu’ —
whenee g =1, ' e o =0

T 2(E+m) = 2(E) +A(n) for amy &, neR.
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We may assume &,# = 0. Choose linearly independent a,b e H.
Then

ME+n)h(a)+1(B) = h{(&+n)a+D)
= h{&a+(na+b))
= h(£a)+h(na+Db)
= M(&)h(@) +A(n)h(a) + (D)
= [A(€)+A(n) k(@) +h(b).

So A(£+n) = A(5)+a()..

8. A(f) = & for all £eR.

Since A is an additive and multiplicative bijection of the reals, it
follows from [17], p. 41, Theorem 4, that 1 is the identity function.

9. h is linear. )

We have h homogeneous, and 2dditive on linearly independent ele-
ments. Suppose a, b ave linearly dependent, with & = aa. Then

h{a+b) = h(e+aa) = (1+a)h(a) = h(a)+ ah(a) = h(a)+h(D).

10. h is continuous.

For this we need the conditions on the. topology of E.
(i) B has the weak topology.
Suppose the net {&.} converges weakly to zero. For <{z,%) # —1,

P(L+2®7)(2,) = h(l+2@7)h (z)
= W @) + B (), @]
=2, + (7 (30), B h(2)

converges weakly, with d, to zero. Thus <k~ '(x,), Ty converges to zero,
and since # may be arbitrarily chosen, 1! is continuous with respect

to the weak topology at zero, hence everywhere. We may show the same -

result for h.

(ii) B has the Mackey topology.

Since every map in Z(H) is also continuous in the weak topelogy
-([11], p. 39, Proposition 13), we may use the above and [11], p. 62, Prop-
osition 14 to obtain the result.

Remark. The theorem is not true when F has dimension one. Let
h(z) = a#, for every # € B. Then the awtomorphism ¢ of MUI(R) given
by
o(f) = hfh~t  for every fe MUI(R),

is not inner.
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COROLLARY 1. Every automorphism of the semigroup UUI (B s
inmer .

Since any automorphism of TUI(E) fixes U, this is an immediate
consequence of Theorem 1. Recall that U(H), H a Hilbert space, does not
have this property.

Let B be as in Theorem 1. The main consequence of Theorem 1 is
the following:

THEOREM 2. Hvery semigroup aulomorphism of % (H) is inner.

Proof. Let p be an automorphism of #. We show that ¢ can be ex-
tended to an automorphism ¢’ of ¥ UI. The keystone of the proof is
the construction of a bijection % of  such that

2 o(l) = Wk~

The method, an unpublished result of . Yamamuro, sidesteps
Schreier’s need for the constant mappings. Leb

for every le #.

R, = [o@®%: Tk}

1. R, is & minémal right ideal in .
For any Q% e R, and l e %,

for 0 £z B,

(e@7)l = 2@ (7l),

again an element of B, . Suppose that D is a right ideal contained in R,.

Take #®% in R, and any #®% in D. Pick y € B such that <y, 7 =1.
Then

Q% = (2 QY)Y ®%),
an element of D, so D = R,.
2. If D is a minimal right ideal, D = R, for some v € B.
Take l € D, a € B. Since 1(a)®F = l{a®@7F) eD,
Byys D, so D =Ry,

Each one-dimensional subspace of B gives rise to a family of
identical right ideals, 50 we select a single member, R, say, to represent
ea.chy such family. Since ¢ preserves minimal right ideals,

¢(R,) =R, for some y € B.
3. There exists o bijection h of B such that (2) holds.
‘We define a self-map h of F by letting
kiz) =y it (R, =R, h{ax) = p(a)h(z) for acR.

Recall that p(a) e M Whénever « € M. Tt may readily be verified that %
is both: one-to-one and onto. We now show that (2) holds. As before we

and,
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may show that sets of the form
Iy = {Q@%: »eH},

are precisely the minimal left ideals in %. So ¢(I;) = Iy, for some 7€ .
Now for arbitrary @ = az € F as above,

0£ZFek,

P(6@%) = p(az@F) = ¢(a)p(r QF)
=9(a)h(®)@F = h(r) ®F = h(a)®F.
Take 1 e.2. Then,

p(Mh(a)®7 = ¢(Ne(607) = ¢(H{a®7))
= p(I{a) ®%) = M(a)®7.
Since 7 # 0, ¢(l)h(a) = hi(a), for all a € E, or

() =hh™*  for every le .
4. @ i8 inmer. .
‘We define an automorphism ¢’ of % UI(F) extending ¢, by
o' () =¢(l) for le”, ¢’ (Cp) = Oy for Gy el.
It is easy to check that
@' (f) = ikt for every fe L VI(H).

Since our semigroup includes the constant maps, k is the only bl;ec'
tion to represent ¢’ in this way. Finally, as ¢"(U) = U, Theorem 1 gives
that h € U so0 ¢ is inner. ) o

Remarks. In [13] Stephenson showed that & pnme ring with 1de:pt-
ity and a non-zero idempotent is a unique addm'mn ring. Such a rnin;g
has the property that every semigroup isomomln.sm from the mflg 2‘
another ring is & ring isomorphism. We may vgl'{fy 13]-1315 2 (H), for
with dimension greater than one, is a unique addition ring. al

For E a real Banach space with dimension greater than ene, .Elde -
heit [3] showed that every ring automorphism and ev.emy cm;’}ninm‘)us
semigroup automorphism of £ (¥) was inner. In [10], ‘Ru‘:karb, 1:hovm:lg‘
that % (E) was a unique addition ring, x:;&iz abl(laﬂ ;:o eliminate the co

inuity requirement. Theorem 2 extends this result.

’ mi?ack&y ([6], p. 536) has proved that the ring ¥ (&), for E ELC’S
with the weak or Mackey topology, characterises B. From Stephenson’s .
result we have for such spaces, o

Result 1. The semigroup £ (E) characierises E That is, if £ (H)
-and £ (F) are isomorphic semigroups, B and F are linearly homeomorphic.

A notational change in Schreier’s Theorem and Theorems 1 and 2
enables us to derive, for ¥, F both having either the weak topology 101-,r
the Mackey topology and dimension greater than one, the stronger result,

and
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COROLLARY 2. Every semigroup isomorphism from Z(B) onito Z(F)
is representable. That is, given o semigroup isomorphism g: & (E) — Z (T,
there emists a linear homeomorphism h from H onto F such that )

o(f) =HMn

2. Near-rings of mappings. Many semigroups, 8, of selfmaps of
alocally convex space, form near-rings. Let C be the near-ring of continuous
selfmaps of ¥ (as in Theorem 1) and suppose that N is a near-ring with
I,U cNg O Then we have,

THEOREM 3. The Jollowing statements are equivalent:

(1) ¢ is a semigroup automorphism of ¥ and ¢(U) = T,

(2) ¢ is an inmer semigroup automorphism of N and h e U,

(3) @ is a near-ring automorphism of N.

Proof. Statements (1) and (2) are equivalent by Theorem 1, so it
will suffice to show that (2) implies (3), and (3) implies (1). The former
implication is straightforward, so suppose that @ is a near-ring auto-
morphism. Schreier’s result provides bijection % of E such that

¢(f) = hfh™?

Jor every fe 2(B).

for every fe V.
For any z,y e B,

P(0,+0,) = (C)+p(0,)
RO
h(o4y) = o)+ h(y).

As we have the same property for h~%, for any u € U ¢ () is continu-
ous and additive, so p(u) e 2. Similarly, (u™!) = g(u)yle¥, so
¢(u) e U, or (U) = U. Equally, U Usoo(U) = T.

Remarks. 1. That every near-ring automorphism of such an N is

inner refines [17]. Here Theorem 3 was proved for B a Banach space and

I, <c¥N<0 .
2. Suppose that F is the ‘near-ring of all

is discontinuous and additive. Then P, given
o(f) = Hh™

is & near-ring automorphism but & ¢ U, indicating that a containment
condition is necessary.

selfmaps of ¥ and % in F
by :

for every fe F, .

3. d-automorphisms. In this section we extend the idea of a d-amto-
morphism of a semigroup of differentiable functions, first introduced by
Yaniamuro in [18], and present a theorem showing them to be precisely
those we have considered earlier.
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A selfmap f of ¥ is said to be Hadamard differentiable [2] at a ¢ F if
there exists an % such that

lime™" [f(a+e2) —f(a)~1(e2)] = 0,
>0 .

uniformly for # in any sequentially compact subset of B. Then Iis uniquely
determined and denoted by f’(a). Since the chain rule holds for such
differentiation ([2], p. 234), the family of all such Hadamard differen-
tiable selfmaps of H, Py, forms a semigroup:

For the remainder, F is as in Theorem 1, while § is a semigroup
of selfmaps of B such that :

I, U c8c 2y5.

We say that ¢ is a d-automorphism of § if
. {p(FY(a): s e B} = {p[f'(#)]: ac B},
for every invertible f € § for which f~' e 8.

THEOREM 4. The following statements are equivalent:

(1) ¢ is an automorphism of S and ¢(U) = U,

(2) @ s an inner automorphism of 8 and h e U,

(8) ¢ is & d-awtomorphism of S.

Proof. It suffices to show that (3) implies (1), and (2) implies (3).
Suppose ¢ is a d-automorphism. We show that ¢(U) = U. ]

If u e U, we can-find an invertible f € § such that ¢(f) = u. Since
fF=¢w™), f1el. Now )

{u} = (/) (a): ac B} ={p(f(a)): ac B}

80 f'(a) is constant. By the Mean Value Theorem for functionals [5],
since f(0) = 0, f € &. Further, p(f™") = «~* so similarly f~ € &, whence

fel.
Suppose f € U. Then f is invertible, f € 8 and f = g(u) for some u.

Now
fe(u)(a): 6 e B} = {p(u)},
50 p(u) € #. Similarly, p(u)™ € £ so g(u) = fe U, whence ¢(U) = U.
If (2) holds and f, f~! € 8, we have :
fo(f)(a): a e B} = {{(Afh") (a): ac B}
= {af (N (@) ": acE}
= {Wf'(a)1"': a e B}
. = {p(f'(a)): ac B},
so ¢ is a d-antomorphism. - .
Remark. Tf S is also a near-ring each of the above is equivalent to
(4) @ is & near-ring automorphism of S.


GUEST


218 G. R. Wood

References

[11 J. Aczél, Leciures on functional equations and their applications (Translated
by Scripta Technica Inc.; Academic Press, New York, London 1960).

[2] V. 1. Averbukh and O. G. Smolyanov, The theory of differentiation in linear
topological spaces, Uspekhi Mat. Nauk 22: 6 (1967), pp. 201-260; Russian Math.
Surveys 22: 6 (1967), pp. 201-258.

[3] M. Eidelheit, On isomorphisms of rings of lmear operators, Studia Math. 9
(1940), pp. 97-105.

[4] RobertD.Hofer, Restrictive igroups of continuous functi
gpaces, Canad. J. Math. 24 (1972), pp. 598-611.

[51 John Lloyd, Differentiable mappmgs om topological vector spaces, Studm Math.
45 (1972), pp. 147-160.

[6] G. W.Mackey, On convex topologwal lmsa'r spaces, Trans. Amer. Math. Soc. 60
(1946), pp. 519-537.

[71 — Isomorphisms of normed linear spaces, Ann. of Math. 43 (1942), pp. 244-260.

[8] Kenneth D. Magill, Jr., Aut rphisms of the igroup of all differen-
tiable functions, Glasgow Math. J. 8 (1967), pp. 63-66.

[91 M. Nagumo, Uber eine kennceichnende Figenschaft der Linearkombinationen

von Véctoren und ihre Anwendung, Nachr. Ges, Wis. Gottingen 1, Nr 35 (1933),

pp. 36-40.

C. E. Rickart, One-to-one mappings of rings and lattices, Bull. Amer. Math.

Soc. 54 (1948), pp. 758-T64.

A. P. Robertson and Wendy Robertson, Topological wvéctor spaces,

Cambridge Tracts in Mathematics and Mathematical Physies, 53; Cambridge

TUniversity Press, Cambridge 1964; reprinted 1966.

J. Sohreier, Uber Abbildungen einer abstrakten Menge auf ihre Teilmengen,

Fund. Math. 28 (1937), pp. 261-264.

W. Stephenson, Uniqué addition rings, Can. J. Math. 21 (1969), pp. 1455-1461.

James V. Whittaker, On isomorphic groups and homeomorphic spaces, _A.nn

of Math. 78 (1963), pp. 74-91.

A. Wilanski, Functional analysis, Blaisdell Publishing Company, New York,

Toronto, London 1964.

G. R. Wood, On the semigroup of Z% mappings on Fréchet Montel space, Studia

Math. 51 (1974), pp. 181-197.

Sadayuki Yamamuro, A nots on néar-rings of mappings, J. Austral. Math. Soe.

16 (1973), pp. 214-215.

— A note on semigroups of mappings on Banach spaces, ibid: 9 (1969), pp. 4565-464.

5 on 0-dimensional

[10]
[11]

n2]

[13]
[14]

[15]
f16]
]
[18]

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CANTERBURY !
CHRISTCHURCH, NEW ZEALAND

Receivéd February 5, 1976 (1119)

icm°®

STUDIA MATHEMATICA T. LXII. (1978)

Bounded complete Finsler structures I

by
C. J. ATKIN (Wellington, New Zealand)

Abstract. It is proved that any 0 Banach manifold satisfying a stability eon-
dition admits a complete bounded Finsler structure; in particular, any 0 separable
Hilbert manifold admits a bounded complete Riemannian structure. In finite dimen-
sions, only compact manifolds admit complete bounded Finsler structures. A *“global”
definition of Finsler structures (in the sense of Palais) is also given.

The principal purpose of this note is to resolve a problem proposed
some years ago by Elworthy, [2]. We have, however, appended some easy
remarks on related topics. In § 1, we give a definition of the notion of

. “Finsler structure” in the sense of Palais [8], which, although obvious,

does not seem to have appeared before, and is at léast of some theoretical
interest. In § 2, we discuss Elworthy’s problem in finite dimensions, and
in § 3 we answer the problem in infinite dimensions.

§ 1. Suppose that F is a topological veetor space whose topology
admits a norm. Let 9t denote the set of norms on ¥ which define the given
topology.

(a) M is a cone, in the space of real-valued funections on F with
pointwise addition and multiplication. That is, if 1R and 1>0, and
v €N, then v eR; if »,, v, €N, then v, +3,eN.

Choose » € R, and define 4,: N xRN — R by the following technique.
For » eR, let B(»') = {weF: »'(v) <1} be the closed unit ball with
respect to »'. Thus the correspondence »" «> B(v’) is a bijection between 3t
and the set of bounded, absolutely convex, closed neighbourhoods of 0
in B. Now let A4,(»;,v,) be the Hausdorff distance between B(»,} and
B(,) in the metric on ¥ defined by ». Formally,

(*) 4,(vyy v) = max (“v (B (71)s B("z)) y %(B(”z): B("’l)))y

where, for any two bounded nonnull sets 4, A’ in E,

a,{4,4") = sup inf v(z—y).
zed yeB
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