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Pointwise estimates for commutator singular integrals
by

B. M. BAISHANSKI* and R.R. COIFMAN** (8. Louis, Mo.)

Abstract. Certain weak type estimates are proved for the commmutator integral
of Calderén in R". These extend previous results obtained by the rotation method.

1. In this note 'we prove pointwise and Weak -type estimates for the
maximal operator of the commutator singular integral of Calderén [2].
The characteristic 2 of the singular integral is assumed here to satisty
Lipschitz condition. This enables us to obtain weak-type estimates for
the limiting case (case ¢ = 1 of the theorem). These estimates cannot be
obtained by the rotation method as used in [1].

The results of this paper and some methods used here can be applied
to obtain refinements and exfensions of the original result of Calderén
[2], that will be published in a forthcoming paper.

‘We consistently use the following notation. Points in R™ are denoted
by @,y,t; the coordinates of the point « are %, { =1,2,...,%;8,¢, 4
are arbitrary positive numbers. The ball with center x a;nd radius ¢ is
denoted by S(z, 8); xss OT x5 is the characteristic function of that ball;
the Lebesgue measure of a set ¥ in R™ is denoted by |E]; in particular,
|8(6)| is the m-dimensional volume of a ball of radius 6. The element of
the surface area is denoted do(s). A cube in R™ will always mean a cube
all the edges of which are parallel to the coordinate axes. If @ is a eube,
Q denotes the cube concentric with @ and with diameter twice the
diameter of ¢. By p, g,7 we denote real numbers satisfying 1< p < oo,
1€g¢< o0, 1< r< oo and
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2 B. M. Baishanski and R. R. Coifman

by C we denote any expression which depends only on p, # and the dimen-
sion #; f is a function in L_(R™), a—a function on R" such that grada
e I"(R"). By A5(f) we denote the Hardy-Littlewood maximal function

of |fI?, i.e. '
~ ip
| 17 I”dt)

S(x, )

1
A =sup(———
(@) = sup (s
similar expression defined 4, (grada) if 7 < oo, we shall use the convention
A, (grada)(z) = |igradall, for every ». We write A instead of A,.
The function © defined on R™— {0} is assumed to be homogenous
of degree zero, to satisfy

[ Q@do(@) =0, i=1,2,..,n,

lzj=1
and the Lipschitz condition. So, without restricting generality, we assume
(1.2) @)~ Qi< le—yl for Jol=ly =1
and
(1.3) 1R@)| <1 for Jo| =1.

The operator T,(a, f), which we occasionally write T,(f), is defined by

a(@)—a(y)

T.{a, f)(@) = P

ly—zi>e
It is not diffieult to verify that, for almost every x in R, T,(a, f)(w
is defined and finite for every e. (For a proof, see Section 4 of [1]). By
T(a, f){z) we denote im T, (a, f)(«) which exists a.e. for ¢ > 1 [1]. Finally,
we setb 0

Q(z—y)fy)dy.

M (a, f)(@) = sup|Ty(a, f)(@)].

‘With the notation just introduced we ean state our resulf.

TaEOREM. The following inequalities hold:

® ¥ (a, f) (@) < A(T(, ) (@) + 04, (grad a) () 4,(F) (o)
almost everywhere if ¢ > 1;

W) ol o) > 1< o[ EEL )

if ¢=1.
The letters P, W stand for pointwise, respectively weak-type.
The inequality (W) for the case ¢ > 1, and even the stronger inequality

(14) 1M (@, Fl, < ClgradalIfl, i

g>1,
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has been proved by us earlier [1], and will be uged in the proof of the
nequality (W) for the case ¢ = 1. We shall also appeal repeatedly to
Calderén’s theorem [2]: if ¢ > 1, then T,(a,f) tends to a limit T(a, f)
in L(R") ag -0, and the commutator singular integral T'(a, f) satisties
(1.5) 1T (@, )l < Clgradall, |fll,.

The auxiliary results needed for the proof of the theorem are in
Sections 2, 3, 4. In Section 5 we prove (P). There we adapt the method
introduced by Cotlar [3] in the study of the maximal operator for the

Hilbert transform. The main difficulty there was lying in the fact that
the operator D, defined by

la(z) —a(y)
lz—y)

is known to satisty |D(a)], < Cligradall, only for 7> n. We circumvent
this difficulty by using the operators

1
s,

Sz, )

D(a)(z) = sup

2
yeRN

a(2)—a(l) sdt]lls
r—t |

of Lemma 1 instead of the operator D. .
Finally, the proof of (W) for the remaining case ¢ =1 is given in
Section 6.
Remark 1. Tt is easy to see that, in the case q>1, (W) follows
from (P). To prove that, we observe first that by Hardy-Littlewood
maximal theorem and by Calderén’s theorem (1.5)

4T (@, H)l,< CIT (a, )l < Clgrad all, If ],

which gives the desired bound for |{z] 4(T(a, f))@) > 1/2}], and, second,
that for any positive y,

{ol 4, (grada) (2) 4, (f)(#) > u}

. 1
< ol Algrada)(a) > ool 4,(1)@) > ;/ﬂ”’}

and by Hardy-Littlewood maximal theorem each of the last two sets is

I llgrs
easily seen to have measure < (¢ (MEM
= ligrad aliZ®|fli;4".

Remark 2. In this paper we appeal twice to the main result of ],
a result which has rather involved proof: in the proof of (P) we need

(1.6)

) if we choose ¢

T.(a,f)(x) converges a.e. as ¢—0 if g>1,

and in the proof of (W) for the case ¢ = 1 we need (W) for the case ¢ > 1.
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It is possible to remove this dependence on [1] if we assume that 2 is
continuously differentiable. In that case it is relatively easy to show that,
for functions f with compact support and satisfying a Lipschitz condition,
(1.6) holds. (A proof is given in Section 5 of [1].) From Remark 1 it follows
that once we have a (P)-inequality for a funection f, the (W)-inequality
for the same f holds. The restrictions imposed on f are then removed by
a standard approximation argument. Moreover, (1.4) follows by the Mar-
cinkiewicz interpolation theorem.

Remark 3. A careful analysis of the proofs will show that the smooth-
nesy condition (1.2) is not necessary, the only smoothness condition we
need is

(1.7 f 12(2) — Q(z+u)|du < for

2 >0.
|1 el >

|u|<E
2. We infroduce two different maximal operators, closely related

to the Hardy-Littlewood maximal operator. If grade e L” (R”) 1<r< oo,
these operators are defined by
1/p
dt] :

- 1
@) (1) = su [ f
Ay ( P | g
where 1 < p < oo and supremum is taken over all the cubes @ which con-
tain the point #, and ‘

a(z)—a(t) ®

r—1

lo{®) —a(y)l

A(a)(2) = s‘}paw—mpa Hm_yin-rz ay.
LewwvaA 1. There ewist constants Gp n ond O, such that
(2.1) Ap(a‘) (#) < Op,n 4, (grada) (),
(2.2) A(a) (@) < G,,Al(a)(x) .

Proof. Let Q be a cube containing the point %, and § the radius of
the smallest ball with eenter at # containing Q. Then

1 a,(:n a(t) ]P C, a(@)—a(t) P
f a<m | G

4
o 4

{t—zl<d

3
o
<5 [ra |
0 Sp—1

‘We shall prove (2.1) by showing that

@.3) J

Sp—1

¥
da(u).

a({z)—al{z+ru) [P
T

do (1) < 0,42 (grad a) (a).
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Since
la(@) —a(@-+ru)| < [ |grada(@+iu)| a1
0
L (f lgrada(z -+ iu) |vdz)”” ,
[}
we have
— . » 1
(2.4) wi o< [ |gradalo+y) P .
Sp1 r wi<r ]

Writting

2~lrcpyi<z—it1y
and observing that

1

2 emdseryr—

g i ["“
s-frapyi<a=ttlr

211-—-1,

< T lgrad a(z+y) [P dy

=4y

1 0
<2"“Isup;,;~ J lgrada(z4-y) 1" dy
fvl<<s

0,27 A5 (grada)(z),

we deduce from (2.4) that (2.3) holds.
To prove (2.2) we write

- - = a{xr)—a
o [l g, S, i
ly—zl>68 lo—yl im0 alecly—zi<2itls y
and observe that
la (@) —a(y)] ot (%) —a(y)
0 e WY < it gy ATy d
viociy-zritls YLD ( P e miZaitls ¥
f1 a(m)—a €) }
2”"”sup- —_—

— Y2l

< 0,27 4 (a) ().

3. Luvwa 2. Let a be a function on R™, such that gradae e I (R"), 1<<r
<+ o0, et 2 be & point in R, and 8 a positive number. Then there exists & Sfumnc-
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tion A with support in S (v, 26) such that

(1) A(u)—A(t) = a(u)—a(l) for u,teS(z, d)
and

(i) ligrad A, < 06" 4, (grad a) ().

Proof. Let ¢ be an infinitely differentiable function on R* satisfying
the following eonditions: 0 < () < 1 for every u; @(u) = Lforu e 8(z, d);
@w) =0 for u¢S(z,26); |grade(u)| < 2/8 for every u. Seb

A (u) =|:a(u)—~l—s—(]%§ﬂ- fa(t)dt] o(u).

8(z,0)
Then (i) is obviously satisfied, and so.is (ii) in the case r = oo.

. 2
Since |jgrade]] g—g}gw, we have

| {
lgrad A (u)] < grada(w fp(u) + ]Mm—é%;famﬂwmwwn
S,

2

< lgrada(w) ] ges(u) + | a(u) a(m)l—bd(“)"}‘

+ s [ O-e@id .

S( z,6)

To prove (ii) it is sufficient to show that the rth norm of each of the
three summands in the last expression is < 6% A ~(grad a) ().
For the first term this is obvious gince

lerada- o, = (

fu—x|<<20

— Ganlr( 1
8(26)

lgrada(u)[ du) Hr

[ mwadu<unj”i

8(2,28)

For the second term we have by Lemma 1

1 1 1/r
) 3“(“(')*‘“(5‘))'xuur = 3( o (%) — a(x) |’du) /

U] <28
r 1r
u)

For the last term which we denote by I(u), we obtain from Holder’s

a(u)—

1
<3@W
lu—zl<25

< 08" A (grada) (x).

U—o

icm
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inequality and Lemma 1
jr
Lu)] < — — afx)|" dt
) uwmﬂmwam )t
1 a(t) — a(x)] ir
<2(S(6) .‘ %l f— @ l dt) Z26(2t)

S(zx,0) i
< 24, {grad a)(z) xas(u),
80
M, < OA,(grad @) (z) sl < O™ A, (grada) (z).
4. The proof of (W) will be based on the following lemma, which is
extension of a well-known result of Calderén and Zygmund.

LeEMMA 3. If S is a sublinear operator of weak-type (Do, go), @ suf-
ficient condition that S be dalso of weak-type (p, q), where 1/p~1/g = 1/py—
—1/qo, Po> P = 1, is that for every sequence of pairwise disjoint cubes Q;
and every function h in L*(R®) having support in \_J@Q; and such that

f h{z)de =0
9

the following estimate holds
l{ml ‘”ERW”"U Qu lh”pM)

where@; is the cube conceniric with @; and such that dia,m(Q,-) = 2 diam (@;).

Proof. To show that § is of weak-type (p, q), i.e. that for every f
in L

(4.1)

for every i,

By (@) > 4} <

[{e] 18() (@) > 2} < Olf 1,127,

it is gufficient in view of sublinearity of § to prove (4.1) for f in L” such
that f>> 0 and ||fl, = 1. Applying awell-known lemma of Calderén and Zyg-
mund to the funetion fP we obtain, for each A > 0, a sequence of pairwise
disjoint cubes @; such that

1 ~
49 B | Ao <22
(42) P A
and
(4.3) fP@) <A for almost all @ in R"—(JQ;.
From (4.2) we obtain
1 1
(4.4) Zm%gﬁzuy@m<ﬁwﬁrp
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and
1 1 Uz
4.5 — <|— < (2 Ao,
(4.5) lQi|é[f(w)dw<(!Qil é{fp(m)dm) < (@)
Let .
—}—ff(w)dw, v eQ;
HORSS PR Y
f(@), J)ER”’—UQ“
and let k(2) = f(x)—g(2).

From the first inequality in (4.5) we have

[P @ae< [f(@)da,
Q; Q;

hence

lgll, < Ifll, =1
and thus

Ikl < 2
Obviously, the support of % is eonta,med in (J@; and é[ h(z)ds =0

for every 4; so that using the assumption of Lemma 3 we have

(4.7) I{m[m eR”—UQ: and |8 (k) (z)] > l}l C(lIbll,/2)? < 290)2°.
On the other hand, (4.4) implies
U <2/,
which, together with (4.7), gives
Hol 18(R) (@) > 4| < 0/a2.

In view of the sublinearity of S and since f = g+ h, (4.1) wﬂl follow
from the last inequality if we show that also

(4.8) [zl 18(9) (@) > A} <

By the assumption of Lemma 3, 8 is of weak-type (po, ¢o) which
means that

(4.9)

g,

Hal 18(9) @) > 2 < O(lglly, 4)"
Using (4.3) and (4.5) we obtain

g(o) <2"A7F ae,

icm
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which together with the assumptions p,>p>1,1jp—1/qg =1/py—1/g,
and the fact that |lgll, <1 gives

Do i/p,
ot =2 ([ ()

n 1/p,
wo( ] "

< 0294,

From this and (4.9) the desired estimate (4.8) follows.

5. In this section we prove the pointwise inequality (P). We fix
4> 0 and #,s e R* and such that T, (a, f)(») is defined and finite for
every &> 0. (As was mentioned earlier, almost every point in R"™ has this
property.) We denote by x, the characteristic function of the ball 8(z, ).
Then, by the theorem we have proved in [1], for almost every point  in
8(z, 6/2) both T'(f)(¢) and T'(xsf) (¢) ave defined. For such a point ¢ we have

(5.1)  Ts(f) @) —T(fIE+T (2:f) (@)
2t —y)] dy

a(o)—a(y) a(t) a(y)

R R R

lz—y|>6

= fy)ZA(w,y, Yy,

le—y[>d t=

where

_ a(@)—aly)
4, = g [2(@—y)— Qt—9)],

1 pu—
lo—y™  y

= [t —ate)1 | —r| @te-w,

a () ——a(t)
Ay = ——————
3 |t__?nn-r1

For [x—y|> 6, lx—1] < 6/2 we have

2t —y)

1 1
lm—~yi"“ ]t_yln-}-l

é

le—y"+*’

1

so that

[/}
[y <0 o=y la(@)—a(y)].
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It i also easy to verify

<ot s —am
3= lz— |

y]1l+1 1 »—1

From the last two inequalities and (5.1) we obtain

1T (F) @) < 1T () (0] + 1T (af) ()] +

|2 (@) — a(y)|
" lav—'£>a 7 Ww 1R@—y)—Q@¢—y)ldy+
é
e —ypE a@—eWl 1f ) dy +
[x—yi>d
| 0 a(w)—ﬂ:(t)
i Glz—h>s le—y™ | o—t ‘ilf(y)ld?%

‘We integrate both sides of the last inequality in ¢ over S(x, §/2) and divide
by 18(6/2)|. Observing that by (1.7)

2 [ |2@—y)—-2(-gla<c——,

8(612) gl le—yl

that by Lemma 1

1 - | a@)—a() |
| dt < CA(grada) (2),
BOB) gyl ot |
S(x,0f2)
and that
1
T(f) () di < A(T ,
o S(z£2)| (@)@ < A(Z() (@)
we have

c
63 ILOEI<ATO@+5 [ ITwHOE+

(- >5[2

8
+0 fm-ﬁ[a(m)—a(y)l if(y)ld?/:l-

je—gi>6

+CA(grada) ()

lx—yi>d

‘We shall show that each of the last three summands on the right-hand

f)ldy.

[m_y]n-!—l
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side of (5.2) is < €, (grad a) (@) 4, () (#), which will imply that A{T(a, i)

-+ 04, (grada)(z) A, (f)(«), an expression not depending on 6, is a major-

ant of M(a, f)(z). This will end the proof of the pointwise inequality.
‘We observe first that the expression

1
= [ mwnmae
li—z<dfz
_ 1 ’[ a(t)—a(y)
671

_ L
]t__an.-l ¢ y)f(y)dyidt

jt—ai<die w—zi<s
does not change its value if the function 4 is replaced by the function A
of Lemma 2. Using Hélder’s inequality, Calderén’s theorem (1.5) and
Lemma 2, we have

1 ~
* T (ay 7:) ()] dt = — T (4, 70 (D)t
5 '}

ft~ai<d li—zi<ai2

C !’ —
S SN (4, xof )iy < C6~"1 |grad Al ligsfliy

<08, (grada) (@) [ I1f(u)rdu)”

ju—z}<d

1p
<osmiae(5; [ ifwra)

ju~zxl<d
) < 04, (grad a) () Ay (f) (),
‘which is the desired estimate for the second term on the right-hand side
of (5.2). ’

Since ¢ > 1, we have p’ < r and so A, (gradae)(z) < 4,.(grad a)(z).
From this and from Lemma 1 we obtain for ¢ =0, 1, ...

_ la (%) — a(y)|
Ki(2) = 5W

f)ldy
2iscir—yi<ai+ls

5 ~

== (21" 6)%1’—1

a(x)

D =aW)] gy
r—y |

le—-yi<2t+1s

ot | a(@)—a() | v

< (251 oy Joool w—y
le—yl<ettlst

! 1/p’
dy) ( f Ifr dy)
le—yl<2t+ls

a(z)—aly) jp’ dq,)l/pl X
r—Y | e

< 21;—'5 (

1
T+1 5\n
(270) le—yl<2i+ls
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1 ) Up
X ((—2‘,117)); ]f(y)l”dy))
<2704, (grad a) (2) 4, () (@)

< 2704, (grad a) (2) 4,(f) ().

Since

lz—yj<2t+ls

la(2) —a(y)| B
b g Wy = 2 (o)
< 04, (grad a) (5) 4, (F) (@),

the desired estimate is proved for the third term on the right-hand side
of (5.2).

le—yi>d

Since
@ X, L,
+1 — L
ly—z|>8 lz—yl” i=0 2ciy—al<2itls lo—yl
hid 2"{‘1
< T Ifyiay
igZﬂ (271 8) gl e +s

<0 Y2 A(H@

< 0A(F) (=),

we . obtain that: the last” term on the right-hand - side of (5.2)
is < CA(grada)(®) A(f) (). Since 4 (grada)(®) < 4,(grada)(=), A(f)()
< 4,(f) (%), the desired estimate holds for the last term too.

6. In this-section we prove (W) for the case ¢ =1. We fix 7,1 <
< oo, and a, grada € L"(R"), and apply Lemma 3 to the sublinear oper-

ator M (f) = M(a, f), which is known to be of weak-type (p,, ¢o) if ¢o > 1,

1/gy—~1/pe = 1jr. We need only show that the condition of Lemma 3 is
satisfied. :

Let % be a function in L7 (R™) with the support contained in the union
of pairwise disjoint cubes @; and let [h(y)dy =0 for every . We fix
. < ,

@ in B"—|JQ, and &> 0. Let

Iz, &) = {i] Q:n8(z, &) = a3,

0 J(@,5) = fil Q.08(z,s) =G and Q;—8(z, ) # G}

icm
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Then
(6.2) T.(a, h)(2) = Ly
T Q8.9
- is%js) Q{ ot is%a) Q;—8(z,9) s
where each of the integrands is %io—w%?{_) Q(z—y)h(y).

‘We show first that

(6.3) | > . By | < 04, (grada) (2) 4, (h) (2)-

ieJ(x,8) Qi——S(z,s)

From (6.1) and the assumption » e R*—| JQ; it is easily seen that there
exist positive constants «,§, dependent only on the dimension % such
that

Q; < {yl < ly—a| < fa}
Sinee Q,’s are pairwise disjoint, it follows thab

for every i ed (s, &).

1@ =Wl 165y iy
_ jo—yt
ieJ(z,8) Q;—S(,e)
- fo(@) =40 150yl 1hy)Idy
lz—yl :

as<|y—x|<pe

< [ | e

&
! Up' (1
u) (&

ly—=z|<Be

1
<0(—;‘

€

a(a) = a(y)

ip
[R{I® dy)
=Y

ly—z|<Bs ly—zi<<pe

< 04, (grada) (@) 4, (7) (%)

which proves (6.3).
‘We show now that for i e I(, &),

(6.4) lf,..dy1<oa,.flil(g):——mllh(y)ldy+
9

' —y["*
<
' 10— [ Algmda wir@Ids,
[w_yiln-H 3
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Where ¥; 18 the center and 9; the diameter of the cube @,. The right-hand
side of the last inequality we denote by 4,(z).
Let te@,;. Since [h(y)dy = 0, we have
9

65 | Q[%f)_;ﬁ;ﬁy%mwy)h(y)dy
Qlf[iffl;i,#m%y)~—“—|f)__t|++‘?9<m—t)]h<y)dy{
J L 10— 0—o) mway+
+ Q{ 0(0) a0 | [y — | By +

1
+Q[|a(t)—a(y)1mm(y)| 12(z—)ay.

~ Observing that, for y, t€Q;, » € R*—@;,

1 o 6; - ¢
Im__tlnﬂ = E—y] ]"1?‘—?!{["“ ’

then integrating in  over @, both sides of (6.5), dividin ici
Shat by (L7) i (6.5), g by @], noticing

d;
lo—y|

0 J ~(fv~111)—; (z—1)|dt< O

and that by Lemma 1

1
1€l Q[
we obtain (6.4).
It follows from (6.2), (6.3) and (6.4) that

ITo(a, B)(2)] < C4, (grad a) (@) 4, (B) (@) + ' A;(o)

iel{z,5)

< 04,(grad a) (w) 4, (h) () + 5,‘11{(-’8%
i=1

ﬂ?ffﬂldt@ugmdauy),

Thelast e.xpression is independent of & and so it is & majorant for M (@, h){z).
The condition of Lemma 3 will be satisfied by M(a, f) if we show

(6:6)  |{wl 2 e R", 4,(grada) (@) 4, () (0) > 2} < 0 SEL Al IRl
2

icm
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and

) lgrdal

o] © e R*~UQ:, 3 Aix) > 1} <C

Since (6.6) has really been proved in Remark 1, it remains only to prove
(6.7). We have

> fA;(w)dm<§‘ [ As@)ds.

=1 R"’"U@i i=1 Rn_’Q’l:
There existi a constant-y, dependent only on the dimension #, such
that if # ¢ Q;, ¥y € @;, then [x—y| > yd;. Thus, using (2.2),

la (@) —a
J A< OQifa,-( [ Ja@—aly)

: dw) h(y)ldy +
Rn_'q_i 193-1/] +2

lz—yi{>v8;
d

+05, © [ Algrda) ) )iy

\z—yg >0y [ —y;l Q

<0 [ agmao)y) m)dy.
Q;

i

Since the cubes Q; are disjoint, and 1/p +1/r = 1, we obtain

[ 3 4@ <0 [A(grada)@)hiy)dy
Rrn

R -UG;
< Oli4(grad a)ll, Al
< Cligradall, ||kl
which implies (8.7)» This ends the proof of the theorem.

Added in Proof. We call the reader’s attention to a recent paper by Calixto
Calderén (see Studia Math. 59 (1976), pp. 93-105) in which similar estimates on com-
mutators are obtained. The results there are for a different range of spaces I? and
involve different methods complementing our own. ’
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