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Bounded complete Finsler structures I

by
C. J. ATKIN (Wellington, New Zealand)

Abstract. It is proved that any 0 Banach manifold satisfying a stability eon-
dition admits a complete bounded Finsler structure; in particular, any 0 separable
Hilbert manifold admits a bounded complete Riemannian structure. In finite dimen-
sions, only compact manifolds admit complete bounded Finsler structures. A *“global”
definition of Finsler structures (in the sense of Palais) is also given.

The principal purpose of this note is to resolve a problem proposed
some years ago by Elworthy, [2]. We have, however, appended some easy
remarks on related topics. In § 1, we give a definition of the notion of

. “Finsler structure” in the sense of Palais [8], which, although obvious,

does not seem to have appeared before, and is at léast of some theoretical
interest. In § 2, we discuss Elworthy’s problem in finite dimensions, and
in § 3 we answer the problem in infinite dimensions.

§ 1. Suppose that F is a topological veetor space whose topology
admits a norm. Let 9t denote the set of norms on ¥ which define the given
topology.

(a) M is a cone, in the space of real-valued funections on F with
pointwise addition and multiplication. That is, if 1R and 1>0, and
v €N, then v eR; if »,, v, €N, then v, +3,eN.

Choose » € R, and define 4,: N xRN — R by the following technique.
For » eR, let B(»') = {weF: »'(v) <1} be the closed unit ball with
respect to »'. Thus the correspondence »" «> B(v’) is a bijection between 3t
and the set of bounded, absolutely convex, closed neighbourhoods of 0
in B. Now let A4,(»;,v,) be the Hausdorff distance between B(»,} and
B(,) in the metric on ¥ defined by ». Formally,

(*) 4,(vyy v) = max (“v (B (71)s B("z)) y %(B(”z): B("’l)))y

where, for any two bounded nonnull sets 4, A’ in E,

a,{4,4") = sup inf v(z—y).
zed yeB
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(b) 4, is a metric on N. This is immediate from the fact that B(u),
for u € N, is closed with respect to v, and the Hausdorff distanece is a metric
on the class of all nonnull bounded closed sets.

(c) I »' €M, then Ik, K e R such that 0 <k <K and, for any
vy €N,

E Ay (v, 22) < 4, (91, v2) < K 4,0 (91, v3);

that is, 4, and 4, are “metrically equivalent” metrics on . This fo]lows
from (%), since there exist k, K such that, for all x € B,

k' (2) < v(o) < Kv'(2).

If F is complete, the set of all bounded, closed, nonnull, absolutely
convex sets in F is complete with respect to 4,. (This is standard.) It is
easy o see that M is a dense open subset of this space. Thus, N is incom-
plete and locally complete, and the ideal points of its completion cox-
respond to the bounded closed nonnull absolutely convex non-absorbing
sets in F, i.e. those whose linear spans are proper subspaces of E.

The above definition of the topelegy on 9t instantly proves metbris-
ability but is otherwise inconvenient. However:

(d) Let », € N. A base of nbds for v, is given by sets of the form

{l‘ (vaE) (L—é&)w(2) < plo) < (1"1'5)”0(33)}’:
where ¢ € (0, 1).
The proof is easy. This readily implies that: N

(e) 9 is a topological cone; that is, the maps
(0, 0) XN—-N and RxN-=N

of (a) are both continuous. Also, xRN — R: (%, ») ~s v(2) is continuous.

Let @ = GL(E) be the general linear group of E (of bounded linear
transformations with bounded inverse), given the topology of conver-
gence in operator-norm. There is an obvious right action of G on N:

RXG—-N: (v, T) > +T,
where, for eaeh x e H; vT(x) = v(Tx).

(f) The action N x ¢ — N is continuous. (From (d).)

Suppose that p: & > X is a veetor bundle of class C° with fibre Z.
Recall (see for instance [5]) that this, by definition, means that the transi-
tion functions between local trivialisations of the bundle are continuous
a8 maps into G. Let 5: ¥ — X be the associated principal right @-bundle.
9 is a left G-module in an obvious way (define T'- v = »-T1). So there
is an MN-bundle associated with ¢, which we may call #: its points are the
equivalence classes of # x % by the relation (g7, u) ~ (g, Tu) (for ge %,
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ueR, Ted), and the projection =: # — X sends the equivalence class
of (g, u) to B(g). Let q: & X xF — X Dbe the fibre product of & and # over
X (i.e. the Whitney sum). Then:

(g) There is a natural map &Xx% — R. For & is the H-bundle
agsociated with ¢ by the natural action @x B —~FE. If ec &, fe #, and

. p(e) = =(f) (so0 that (¢, f) € & xxF), then e is the equivalence class of

(9, &) e < B and f is the equivalence class of (k, u) € ¥ x 9. Since p(e)
= a(f), $(g) = P(h), and there is a unique Ty € G with h = gT,. Write

afe, f)

This is well-defined: if T e @, S € @, then hT = (g8)8~'T,T, and by the
definitions (871 T, T) (T ») (87" &) = Ty p(£). Furthermore, « is continuous
on & X x &, as is easily veritied by working in local trivialisations.

(b) If we fix f e &, the map ¢ > a(e, f) is a norm (giving the right
topology) on the fibre 97 (=(f)) of &. This follows from the above defi-
nition of a. Moreover, and again by definition, any such norm on the given
fibre of & is representable as an element of the corresponding fibre of &
via the map a. So it would be natural to call & the ‘‘bundle of fibre-norms”
of &. It should be noted that, in the language of differential geometry, &
is covariantly related to & —that is, representations of points of # and
of points of & in local trivialisations Whmh correspond to each other trans-
form contragrediently.

DEFINITION. A Finsler structure oni & is a continuons section of #.
If M is a C" manifold, modelled on some normed space, a Finsler structure
on I is, by definition, a Finsler structure on its tangent bundle.

¥ X is paracompact, & admits a Finsler strncture by virtue of (e)
and the existence of C° partitions of unity.

Tt is easy to check (by using (d)) that this is eqmv*a,lent to the origi-
nal definition of Palais in [8], and its only advantage over that formula-
tion is its naturality —it does not requiré @ posteriori verifications that
it is well-defined. Notice, however, that if & were a C" bundle (r>1)
and M, were some subset of N admitting a O structure such thast, for
Te@, BT < Ry, and the map N, x & >N, is 7, then we could defme
analogously a bundle %, of “fibre-norms of type J,” (relative to the
given (" structure on ). #, is a (" bundle, and the O"-sections are the
“Pinsler structures of type %,”. Riemannian structures are the obvious
examples, but there are others which may sometimes be of interess.

§ 2. If M is a connected C' manifold, a Finsler structure on M induces
a metric on M which defines the topology of M [9]. When this mefric
is, for instance, bounded or complete, one may say that the original Finsler
gtructure is bounded or complete.

= Tyu(£).
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THEOREM. Let M be a comnected C' manifold of finite dimension,
perhaps with boundary. M admits a bounded complete Finsler structure
if and only if it is compact.

It is clear that if M is compact, it admits Finsler structures (for it
is paracompact), and all Finsler structures on M are bounded and complete.
So it is only necessary to prove that the existence of a bounded complete
Finsler structure implies compactness. The proof is in several foreseeable
steps, but there are certain technical complications, and the arguments I
present do not seem to appear in the literature. There are five steps, (a)—(e)
below. .

(a) M admits a compatible C* structure (see, e.g., Munkres [6]).
8o we may assume it is 0, though the Finsler structure is only (°.

(b) A connected O™ manifold without boundary, of finite dimension,
admits a bounded complete 0% Rigmannian structure only if it is compact.
Thig is well known: see, e.g., [4], pp. 172-176.

(¢) A connected finite-dimensional ¢* manifold with boundary can
have a bounded complete 0™ Riemannian strueture only if it is compact.
This must also be well known, but T have never seen a proof. For complete-
ness I give one here. The boundary of M is .M.

Using the given Riemannian structure g, construct a geodesic collar-
ing of M. This will consist of & nbd U of dM x0 in .M X I,

U={z,8): 2edM and 0 <s< p(2)}
(for some positive 0 function ¢ on 4.M), and a diffeomorphism
f: U, 0Mx0—>M,0M

of U with an openubd of M in M, which restricts itself to the identification
0M x 0 = 0M, such that, for each # € d M, f(x, 3} is the geodesic through 2
in the direction of the inward normal to dM at o (for 0 < s < @ ().

Let g, be the 0™ Riemannian structure on f(U) induced via f from
the restriction to U of the produet structure om M x I (where dM is
given the structure induced from g). Then ¢, and g agree at points of § M.
The structure g induces a Finsler structure » on M, and 91 induces a Fingler
structure »; on f(U); v, and » agree on dM. Since », and » are continuous
sections of the bundle of fibre-norms, there is a positive € function v
on J M such that, for each s € 0 M, p(») < p(z) and, whenever 0 < s < (),
for each tangent vector & e TreyM,

"’1(f(‘a77 8)) E< 2y (f(ﬁy s))§< 4"’1{]“(‘”3 S))f

Suppose that w: I 1T is a C* function taking the value 0 on the
interval 0 <{ << 0.2 and the value 1 on the interval 0.8 < s < 1. Define

® ©
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a (% Riemannian structure g, on M as follows: g, agrees with g at all
points outside f(T) and inside f(T):

9:(f(2, 9)) = s lp(@))g(f(@, 5) H{1—0(s/p@))g: (f(@, ).
The structure g, is clearly a well-defined ¢ Riemannian structure on M.

It gives rise to a Finsler structure »,. One instantly infers that, for every
yeM and ¢eT, M, '

() 82 < 4o (9) & < 16 (a(0) &%,
and consequently

7 (Y)E < 29(y) £ < dwy(y) 8.

The same inequality therefore holds for path-lengths computed with
respect to », and v. It follows that », must also be complete and bounded.
Now ‘‘double up” M by means of f. Formally, let

Ny =(Mx{-1, +1)u{(=»,s): sedM, |s|< p(z)/3},

with. a Riemannian structure defined as follows: on M x{—1} and
M x{+1} it corresponds in an obvious way to ¢,, and on

{(%,8): © €M, |s| < p(@)/3} = M X (—1, +1)

it is the produect structure. Call this structure &,. Define N to be the
quotient of N, by the identifications

(f(mr 8), +1) ~ (z,8), (f(mys); "‘1) ~ (2, —3),

for # € M, 0 < s< p(x)/3. N then inherits a ¢* Riemannian structure %
from N, hy, because, by definition, the above identifications are structure-
preserving. Write M, , M_, and 0M for the images in N of M x{41},
M x{—1} and 0M x{-+1}, respectively. The image 4 is the image of
three distinet copies of M in N,; no confusion will arise from this use
of the notation. 8 M is clearly a closed C™ submanifold of ¥.

‘We shall prove that & is complete and bounded. Since N has empty
boundary, it will therefore be compact, by (b); and since M is diffeomorphie
with the closed submanifeld M of N, it is also compact. ‘

Define the “folding” map D: N — M, by identification from a similar

‘map for N,, Dy: (»,8)— (#,|s]) (where either #e M and s = £1, or

» €M and |s| < w(®)/3). D is 0° on N and 0% on N\OM, and its restric-
tion to either of the two components of N \9M is a Riemannian isomorphism
with M, \0M. Hence, if p is a piecewise C' path in ¥ Wl{ich meets 0
transversely (and so only finitely often), D-p is a piecewise C* path of
the same h-length as p and lies entirely in M, . Now, the distance between
two points of I, in the metric induced from &, may be eomput(.zd from paths
meeting dM transversely (see below). If both points are in M, then
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any piecewise ' path ¢ joining them in N and meeting 01 transversely
may be replaced by the path D-g, which has the same h-length. Thus
the metric on M, induced by & cannot exceed the restriction of the metric
on N induced by k. It follows that they are the same; since the metric
on M, is calculated from paths in M, , and the metric on N from paths
in N, the metric on N cannot exceed on M the metricin M, . But (M, , h)
is Riemannian-isomorphic with (M, g,), and so is complete and bounded.
It is thus complete and bounded as a subset of N with the metric given
by k. So is M_, by symmetry.

Hence N is the union of two bounded sets and is bounded. Algo it
is the union of two complete subsets, and so is complete (any Cauchy
sequence has a subsequence lying entirely in one of the complete subsets,
and so convergent).

It remains to prove the statement that a piecewise ¢ path in N
may be replaced by another, transversal to 03, whose h-length is greater
by no more than ¢, and which has the same end-points. It is well known
that there is a (™ path between the same end-points of h-length greater
by no more than ¢/3. I one or both end-points lie on M, it is clear that
a small further modification may, if necessary, be made to ensure that the
tangents at these points do not lie in the tangent space to dM, without
increasing the length by more than /3. Finally, we must show that a ¢
path transversal o M at the end-points may be (-approximated arbi-
trarily closely by a ¢ path with the same end-points everywhere trans-
versal to 0. This, however, is a very simple case of the stronger version
of the Thom fransversality theorem: see Stong [11], Thom [12], Wall [13],
ete. (The method transcribed by Stong seems preferable, and may be
adapted to ('-approximation with little effort.)

This concludes the proof of (). I have given it in such detail chiefly '
for the sake of the following observation: the argument ddes not work,

at least as given above, for general Finsler structures. The diffieulty is
that it is @ priori impossible to appreximate the given Finsler structure
uniformly over M by a structure ecompatible with the procedﬁre of
“doubling-up”. In finite dimensions, it can be done by means of (d) below,
but this does not simplify the proof here, -

(d) The following result is well known (John [37).

THROREM. For any morm || | on R", there exists an inner product
such that the induced norm | | satisfies, for all x € R", the inequality

o] < Jol < n' ).

Smee this is a basic result in the theory of the so-called Mazur distance
between norms on a given topological vector space, it is appropriate
to rema’rk here that there is no significant relation between the distance
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we have defined in §1(a) and the Mazur distance. The Mazur distance
measures the difference in shape between the unit balls of the norms in
question; my distance measures only the difference in size.

(e) If M is a C* manifold, with or without boundary, of finite dimien-
sion n, and admits & bounded complete Finsler structure, then it admits
3 bounded complete 0* Riemannian structure. This ends the proof of the
theorem.

Given # € M, and a 0 chart about #, p: U — R", the Finsler structure
on M gives anorm || || on T, M, and hence on R", which the chart ¢ iden-
tifies with T,M. Now, by (d), there is an inner product on R* inducing
a norm | | with, for all £e R",

R < 18 < P g

Since ¢ further identifies R™ with T, M for each y € U, this inner product
gives a (* Riemannian structure on U. The set of points of U at which
the norm given by this Riemannian structure lies (for each element of
the tangent space) between (2n) "2y (y) and (2n)»(y), where we write »
for the Finsler structure (thus | || = »(#)), is 2 nbd of z by the definition
of Finsler structure. Thus M may be covered by open sets on which are
defined C* Riemannian structures satisfying these inequalities with
respect to ». Piecing them together by a O partition of unity, we obtain
a 0% Riemannian structure on the whole of M, which, as is easily checked,
satisfies these inequalities everywhere. From the consideration of path-
lengths it follows that this Riemannian structure must be complete and
bounded. .

§ 3. The question raised in Elworthy’s- paper [2] is this: what in-
finite-dimensional C'-connected Banach manifolds admit complete bounded
Finsler structures? Behind the question perhaps lies a conjecture, namely
that some “metrical” property which is necessarily true for compact
manifolds may be possible only for some interesting class of infinite-dimen-
sional manifolds. This seems at least plausible, and in such generality I do
not know whether it is true or not. The answer to the original question,
however, is rather surprisingly easy, although in some sense incomplete,
gince it leans heavily on the results of infinite-dimensional differential

_ topology (for which, and for further references, see the same paper of

Elworthy). It seems to me that this is inevitable, because we have fewer
means of constructing Finsgler structures with specific' properties than of
constructing diffeomorphisms.

(a) TEROREM. Let M be d Cr-Banach manifold (perhaps with boundary)
admitting a complete Finsler structure. Suppose N is & connected noncompac C*
Banach manifold withowt boundary which admits a bounded complete Finsler
structure. Then M x N admits a bounded complete Finsler siructure.

2 — Studia Mathematica LXIL3
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Proof. Since N is noncompact and paracompact, it admits a positive
continuous real-valued function f whose infimum, never attained, is 0.
Let vy be a complete Finsler structure on M and »y a complete bounded
Finsler structure on N, and define a Finsler structure » on M x N by the
following formula (in which x € M, yeN; e T M,neT,M; and (£, 1)
€T (M x N) by canonical identification):

) v(&, 1) =F(W)ru(®) E+on(y)n.

As usual, the verification that » is a Finsler structure is a tedious triviality.
Observe that the projection w: M x N - N does not increase the length
of paths, and so does not increase distances either. '

We show first that » is bounded. In fact, let k be the diameter of N
with respect to the metric induced from vy, and let ¢ > 0. Suppose, for
4 =1, 2, that (z;, y;) € ¥ X N. Choose a path ¢ between x, and @, in M,
of length 1, say, with respect to v, and piecewise (. Choose y e N so
3f(y)l < £; choose in N piecewise (" paths p; from y, to y of length less than
k+¢/3. Now define p: I->M x N:

for 013, pt) = ('7"1,1’1(3'5))3

for 13123, 2@ = (¢(31—1),9);
for 2/3<i<1, P(®) = (o2, p2(3—31)).

Hence p is piecewise C'. Tts length with respect to » is the sum of the
lengths of the three segments set out in the formulae. All vectors tangent
to the first of these segments have zero component in the M-direction,
so that, from (1), its »length is exactly the »y-length of p,; likewise the
last segment has the same length as p,. The vectors tangent to the second
segment have zero compoment in the N-direction, and so, from (1), its
»length is exactly f(y)l. So the length of p does not, on the whole, exceed
2k+e. As (1, 94), & and (2,, ¥s) Were arbitrary, this shows that the dia-
meter of M X N does not exceed 2k.

‘We now demonstrate the completeness of y. Write dy for the metric
on N induced by vy, d,, for the v;-metric on M, d for the y-metric on M x N.
Suppose that ((w,, y,,)) is a d-Cauchy sequence in M x N. Thén, sinee #
is distance-noninereasing, (y,) is dy-Cauchy in ¥ and has therefore a limit
y € N. 36> 0 such that, when 2z € ¥ and dy(y, 2) < é, f(2) > f(y) /2. But,
on the other hand, &((@,,¥m); (T, ¥n)) < /2, dy(y,yn) < 8/2, for all
sufficiently large m and n. For such values of m and n, the d-distance
between (@, ¥,) and (%,,¥,) may be computed from piecewise (" paths
P: I-> M x N such that, for each t € I, dy(mp(¥), y) < 6; for, if p is a path
of length less than 6/2 (with respect to ») between two such points, mp
is a path of sy-length less than 5/2, starting from a point within dy-dis-
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tance 6/2 of y. Write o for the projection of M x N on M. Now, for paths p
of the type under consideration, f{mp () > f(y)/2 for all teI, and (1)
shows that the vy,-length of op cannot exceed 2/f(y) times the »-length
of p. Consequently, for large enough m and =,

d,M (mm; mn) < (2lf(f']))d((mm: ?/m); (mnf yn)))

g0 that (v,,) is dy-Cauchy in M and so has a limit in M, #.

Therefore (@, ¥,) = (%, ¥) in M x N, as desired. » is & bounded com-
plete Finsler structure on M x N.

(b) Remarks. Every ¢* Banach manifold admits a complete Finsler
structure (provided, of course, that it is paracompact). This fact, which
is still not sufficiently known, was proved by Penot in his thesis [10],
following the method of Nomizu-Ozeki [7]; thus, indeed, any Finsler
structure is conformally equivalent to a complete one. I have, neverthe-
less, given the statement of the theorem without appealing to this result,
because essentially the same proof may apply in cases where the existence
of complete structures is not automatic. For instance, if we define a C”
Fingler structure on a ¢ manifold as a Finsler structure which is 0°
as a function on M (see § 1(g), (1)), then the theorem is valid for such ¥
Finsler structures, with the hypothesis that N is C° and admits a positive
unbounded analytic function. In this case the existence of a C” Finsler
structure, and a fortiori of a eomplete one, is not assured a priori.

(¢) DErINTTION. Let M and N be C" Banach manifolds (perhaps with
boundary), r > 1. M is said to be ("-siable by N if there is a (-diffeo-
morphism of M with M x N. (Notice that, in fact, N must be without
boundary; but, for this definition, it may be compact.)

An important class of theorems in infinite-dimensional differential
topology concerns situations in which a manifold M is C"-stable by some
other manifold ¥, most usually a Banach space of infinite dimension.
For such theorems, see Elworthy [2]. One then obtains, from Theorem (a),

(d) TEEOREM. Suppose that M is a C* Banach manifold (perhaps with
boundary), admitiing a complete Finsler structure amd C'-stable by & con-
nected noncompact manifold N which admits a complete bounded Finsler
structure. Then M itself admits a bounded complete Finsler structure.

(Indeed, the structure on M x N may be transferred by the diffeo-
morphism to 2 bounded complete structure on A.)

(e) TEHEOREM. Any separable O Hilberi manifold (with or without
boundary) admits @ bounded complete C° Riemannian struciure.

+= Proof. Let N be the unit sphere of a separable Hilbert space, with
a Riemannian metric induced from the inner product. This makes ¥ bounded
and complete. It is C™-diffeomorphic to a separable Hilbert space, by
Bessaga [1], and so M x N is ¢*-diffeomorphic to M by Theorem 22 of
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[2], for instance. The proof of Theorem (a) can now be followed word
for word, except that formula (1) requives alteration. If 9y O are the
Riemannian structures on M and N, respectively (both ¢ and complete; g
i8 bounded), and if f is a C* function on N which is everywhere strictly
positive and has infimum zero, define for ¢ =1, 2, & el M, e T, N,

glz, ) ((En 1)y (_fz; 7]2)) = (f(y))“’gM(m)(Sl, &)+ 95 (1) M)+

The previous proof now shows that ¢ is a complete bounded 0* Rieman-
nian structure on M x N, which may be transferred by the given
diffeomorphism to M.
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Interpolation of weighted I.,-spaces
by
GUNNAR SPARR (Lund)

i i i ith respect to couples of
Abstract. We characterize the interpolation spaces wi ¢
weighted L,-spaces. This is done in terms of the K-functional of Peetre. The m:.in
tool is a gfneralization of the theorem of Hardy, Littlewood, and Polya on doubly
stochastic matrices.
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0. Tniroduction. We are concerned with the following problem:
Tet 4 = {4o, 4} = {Lpoﬂﬂ7 Lplal}: B = {Baos B1}. = {Lp0b07 Lp1b1}7ﬁ0< %I
P, < o0, be two couples of weighted L,-spaces as.mgned.to 501€, N0 ngcess
arily the same, measure spaces. Then ehametel'{ze all interpolation spaces
with respect to 4, B, i.. all spaces 4, B obeying

(0.1) T: A,~»B, (p=0,1) implies T:4->B,

T gwm <o max 1T lpa, 53,0
(operator norms). A both necessary and sufficient condition is found fo be
(0.2) E(t,g;B)<E(,f; 4), ¢>0, implies [glz<Olflls
(“E-monotonicity”), where K is the Peetre functional

(0.3) K5 4) = int (Uil +HlAl):
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