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[2], for instance. The proof of Theorem (a) can now be followed word
for word, except that formula (1) requives alteration. If 9y O are the
Riemannian structures on M and N, respectively (both ¢ and complete; g
i8 bounded), and if f is a C* function on N which is everywhere strictly
positive and has infimum zero, define for ¢ =1, 2, & el M, e T, N,

glz, ) ((En 1)y (_fz; 7]2)) = (f(y))“’gM(m)(Sl, &)+ 95 (1) M)+

The previous proof now shows that ¢ is a complete bounded 0* Rieman-
nian structure on M x N, which may be transferred by the given
diffeomorphism to M.
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Interpolation of weighted I.,-spaces
by
GUNNAR SPARR (Lund)

i i i ith respect to couples of
Abstract. We characterize the interpolation spaces wi ¢
weighted L,-spaces. This is done in terms of the K-functional of Peetre. The m:.in
tool is a gfneralization of the theorem of Hardy, Littlewood, and Polya on doubly
stochastic matrices.
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0. Tniroduction. We are concerned with the following problem:
Tet 4 = {4o, 4} = {Lpoﬂﬂ7 Lplal}: B = {Baos B1}. = {Lp0b07 Lp1b1}7ﬁ0< %I
P, < o0, be two couples of weighted L,-spaces as.mgned.to 501€, N0 ngcess
arily the same, measure spaces. Then ehametel'{ze all interpolation spaces
with respect to 4, B, i.. all spaces 4, B obeying

(0.1) T: A,~»B, (p=0,1) implies T:4->B,

T gwm <o max 1T lpa, 53,0
(operator norms). A both necessary and sufficient condition is found fo be
(0.2) E(t,g;B)<E(,f; 4), ¢>0, implies [glz<Olflls
(“E-monotonicity”), where K is the Peetre functional

(0.3) K5 4) = int (Uil +HlAl):
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Careing also about the constants ¢ and C, we find that (0.2) implies
(0.1) with ¢ = C (“exactness”), while in the other direction (0.1) only
implies (0.2) with ¢ << Yogpyr 1< Vpop, < 2. Using instead a modified K,
we obtain the equality ¢ = ¢ in the latter direction (but in general not
in the former). If 0 < p,, p, < 1, however, we get a complete characteri-
zation even in the exact sense.

Our results were announced in [30]. They generalize those of Mitja-
gin [19], Calderén [6], and Cotlar [ 7] for {L1; Leo}; Lorentz—Shimogaki [17]
for {Z,, L.} and {L,, Ly}, 1< p < o0; Sedaev—Semenov [25], and Sedaev
[26] for Lpays Lpay}, 1< < o0, Recently, and independently of us,
Cwikel [8] has treated the general Banach case {L

Doty ) Lplal}? 1< Py, 1< 00,
His results are about the same as ours, although obtained by different
methods.

The plan of the paper is as follows. In Section 1 we give some preli-
minaries on interpolation theory. In Section 2, also for background pur-
Doses, we briefly recapitulate the classical results and methods for {L,,L}.
In Section 3 we introduce and study the modified K-functionals, mention-
ed above. In Section 4 we establish our main results, having as a con-
sequence the equivalence hetween (0.1) and (0.2). In Section 5 we inves-
tigate the relation between the constants ¢ and (. In Section 6 we illustrate
how our methods apply to the interpolation of Liorentz spaces. In the
Appendix, finally, we derive a matrix lemma which plays a major role
throughout the paper. This lemma generalizes a classical result of Hardy,
Littlowood, and Polya on doubly stochastic matrices. )

1. General background. As a general source for the theory of inter-
polation we refer to [4]. Here we recapitulate a few notions only.

Let 4, and 4, be two (quasi-) Banach spaces, both continuously
imbedded in some Hausdorf topological vector space . They then
constitute what is called a (guasi-) Banash couple, denoted by 4 = {4,, Ay}
+ (For a quasi-Banach space only holds a quasi-friangle inequality: [if - g|
< o(lfl+1llgl), 6>1.) To Z are associated the (quasi-) Banach spaces
2(4) and A(4), defined by the (quasi-) norms

fllyz) = f=i?ff1 (Ifolly + 1falLe,)5

Il g = max(If Ly,s 1filg,)-

Given two spaces 4 and B, we denote by Z(4; B) the set of con-
tinuons linear operators T': A — B, provided with the operator (quasi-)
norm

ITlem = sup TS If L, -

Analoggusly, it 4 and B are two (quasi-) Banach couples we denote by
£(4; B) the set of operators T: 3(d) — ¥(B) such that T € Z(4,,B,),
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= 0, 1. Here and in the sequel, by abuse of notation, we do not distin-
g'uish 7be’cween an operator and its restrictions to various subspaces.
A (quasi-) norm on % (4; B) is defined by

1Ty .5 = 08X Teu, 5,
#=0,1

PrS:)

Denote by £,(4; B) and £,(4; B) the respective balls of radius ¢, 1.e.
TeP(4;B) iff Te#(4;B), [Tleun<o
Tew,(4d;B) iff Te%(d;B), 1Tl 5.5 < °-

4=5B i i A), £,(4), Z.(4).
IfA=B,A=28 wesmxplywnteg’(A),gf 1 Zel- - .
Now ’consider’spaxees A, B such that, with continuous imbeddings,

A(B) = B < Z(B).

(1.1) A(d) < A < 2(2),
We say that 4, B are interpolation spaces with respect to A, Bif
Teg(A;B) implies TeZ(4;B), Mleun< GHTHZ(.Z;E)

for some constant ¢, independent of T. By homogeneity this is equivalent to

(Tnt) £,(4; B) < £,(4;B)

for some ¢. (In fact, by the closed graph thoerem, (Int) is equi;%llent (1):101
the seemingly less restrictive condition #(4; B) < 2”(4; B)) el:f o
places we want to emphasize & particular value of ¢, this is géme; 11313; Irn a‘]-ly
i i - = 1i8 importan'

ing to the above inelusion as (e-Int). The f)a,se ¢ =1 .
:L]]I)lﬁlic(;ﬁons. A, B are then called ewact interpolation spaces with respect
to A, B, obeying thus .

(ExInt) 2,(d; B) < Z.(4; B).

i i Ad=58,A4= imply say that A is an (exact)
articular, 4 = B, A = B, we simp i
'Infx;:ellf;)oll)a.ﬁon spaioe with ;espeet to A. This ease will be referred to as the
1 al case. . A )
dmgo(given Z, B, the problem of characterizing the interpolation spaciz
A, B thus can be treated on two different levels', a non-exact and an hzxa
mie Tn the former case one does not distinguish between sp};c:sto Xmg
equ'ivalent norms. However, it can be shov;:n (’[1], P ’14%311;1]117 > en,ce
obeying (Int) there exist equivalent spaces 4, J?d Obﬁ ](1 diﬁon)(‘EXInt),
i ices to consider the .
whichever level one works on, it suffices « ] .
i the solution of the pro
a§ announced in the Introduct}on, ' ¢
can Iisev;pressed in terms of the K-functional (0.3). To this end we define

a quasi-order (velative to 4, B)

(1.2) g<flE] it K(g;B)<K(¢f;4),1>0.
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Two spaces 4, B obeying (1.1) then are said to be K-monofonic with
respect to A, B if

(L.3) fed, g<fIE] implies geB, |gls<O0|fl,
for some C, independent of f, g. Wanting to stress a particular value of q,
they are said to be (C; K)-monotonic. If C = 1, i.e,

(1.4) fed, g<flK] 9B, lgle < IflLs,
we speak about exact K-monotonicity.

The applicability of these notions depends on

Levva 1.1 If g = If with T e %4(4; B), then g <f[K].

Proof. The assumption T € &,(4; B) yields

E(t,9; B) = K(t, If; B) < inf (| Tfollz, +¢1Tfill5)
I=fo+fy
< Inf (lfolls, +EUfilL,) = K, f; D),
F=fo+f;

=fotf1

implies

ie. g<fIK]. =

We now immediately get .

THEOREM 1.1. (ExInt)is a consequence of exact K-monotonicity.

Proof. Let Te%,(4; B). Then, by Lemma 1.1, Tf<f[K] for
every fe X(4). Hence, if 4, B are exactly K-monotonie, |Tflz < |flL4,
ie Tlgum<l m ) .

_ A natural question is fo what extent and for which couples the con-
verse of this theorem holds true. To describe that sitnation, we say that
A4, B are K-adequate if the conditions (Int) and K-monotonicity are equiva-
lent. T moreover (ExInt) and exact K-monotonicity are equivalent,
they are said to be ezactly K-adequate. Tn the diagonal case 4 — B, 4 — B,
we simply say that 4 is (exactly) K-adequate. (In [8] the term “Calderén
couple” -was used in the same sense.)

Not every couple is K-adequate. Counterexamples were given in 251
(even a finite-dimensional one) and in [81 ({Z,, Wi}, where W! is a Sobolev
space). What we intend to prove is that every two couples of weighted
L,-spaces are K-adequate, provided they refer to the same Pp’s.

- Using this fact, quite a general class of K-adequate couples was
discovered by Cwikel [9]. In fact, for arbitrary 4 = {4, 4,3}, every couple
{Aﬂoqa,‘gqlgl}, 0< 0y, 0, <1, 1< g, 1< o0, is K-adequate. Here, as
usual, 4y, stands for the space defined by o

Hfl?zeg = (f (t—DK(t,f))q fg)w-

This is an exact interpolation space, by virtue of Theorem 1.1. For special
examples of K-adequate couples, see Remark 6.1 below.
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2. Review of the case {L,, L}. Let us briefly recapitulate the results
and methods in the case {L,, L,}. We restrict ourselves to the diagonal
case and to functions defined on R. The exact interpolation spaces then
can be characterized in the following two, seemingly different, ways:

TerorEM M (Mitjagin [19]). Lef & be the set of operators of the form
Tf(x) = e(2)f (y(@)),

where y is a measure preserving bijection on R and |=(x)] = 1. Then A is
an exact interpolation space if and only if

g < 2, (4).

TaEOREM C (Calderén [6], Cotlar [7]). 4 is an exact interpolation
space if and only if

. 12 t
fed, [g6)as< [f(s)ds for t>0 impliss ged, gl <Ifli.
0 o

(Here f* stands for the non-increasing rearrangement of {f],i.e. f*: B, - R,
is non-increasing and meas{z| f*(2) >} = meas{z| |f(z)] >#, t>0.)
It is well known that
i

K (b, f5 {L1, To}) = [f*(s)ds.

0

Hence Theorem C may be restated as

COROLLARY. {L,, L} s evactly K-adequate.

Searching for a link between these theorems, by approximation
with simple functions one reduces to the n-dimensional case 4 = (i, 1%}
‘We note that a matrix T = (i;) belongs to £,(A) if and only if

(2.1) 1T = max Z <1, ‘IITH@ = m?axZ gl < 1.
73 i

As an important subset we recognize the doubly stochastic mairices 9,
defined by

>0, thf =Ztﬁ =1 (4§ =1,...,n).
7 7

2 in turn contains as a subset the permutation matrices 2.
There exists an extensive literature about doubly stochastic matrices,
cf. the survey [18]. The two major theorems are )
TuroREM B (Birkhoff). 9 = the conver hull of 2.

TeeorEM HLP (Hardy, Littlewood, Pdlya). Let f = (fi,...,f ),
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g = (f1y -1 G) with f;,9; >0 (t=1,...,m). Then
k

k
g=Tf with Ted iff DG<f
1 1

n n
;‘g?=_§f§-

These theorems are closely related to the interpolation theorems
above. In fact,‘ since #,(4) is convex, in verifying (ExInt) it suffices to
congider its set ¢ of extreme points. But by means of Theorem B it is
easily verified that @ = & with & = (+1... £1) (n-row matrix). In
this way we obtain the finite-dimensional analogue of Theorem M.

On the other hand, turning to Theorem. C, we rewrite (ExInt) as

(=1, ...,’Ib—*l),

(2.2) g = If with Te%,(4) implies gl <Ilflls-

Tt sutfices to consider f, g and T with non-negative elements. It is readily

seen that any such matrix T € £, (A4) is submatrix of a 2-matrix of order 2n.

Then by means of the 2n-dimensional version of Theorem HLP it follows

that in (2.2) the condition “g = Tf with T €.%,(4)” is equivalent to
k

&
“;g: < ; fi (k=1,...,m)". This proves Theorerh C in the finite-dimen-

gional case. :

In treating the general case {L, o0 ? Lmal} (where a, and @, are weight
functions) we choose the latter of the above two approaches. Then in
particular we need a result of HLP-type, i.e. necessary and sufficient
conditions for “g = Tf with T e %,”. A general necessary condition,
coinciding with that of Theorem HLP if 4 = {I{", 1™}, was formulated
in Lemmsa 1.1. A sufficient condition, less trivial, will be given in Lemma 4.2
below. Here the proof is founded on a matrix lemma of the Appendix.
As a matter of fact the latter one generalizes Theorem HLP too, but in
quite other directions.

3. The functionals K; and #7. Now_con.sirier couples of the form
4 =11, Tpal}

n"o(a’ %,X), Lplal(ay %, X)} = {Lpoaoi ‘pyoy

where 0 < Py, p; < oo and (e, #, X) is an arbifrary measure space. Here

by L,, is meant the space defined by the (quasi-)norm
Iflpa = ([ fal?da)™.

X

As is well known, hereby also the seemingly more general case

4 = Lpo(amgL X), Lpl(al,Q,X)}

icm

Interpolation of 'w;n'ghted Ly-spaces 235
is covered. In fact, since ¢, and a, both are absolutely continuous with
respect 0 @y 4-a; = a, by the Radon-Nikodym theorem there exish a,
and a; such that da, = ag'de, day = o da.

To make certain that 4 is a (quasi-)Banach couple, we claim that
a,>0 (n = 0,1), or, equivalently, that the measures a; and o, are abgol-
utely continuous with respect to each other. However, after minor modi-
fications also the semi-normed case a, >0 (4 = 0,1) can be included in
our treatment.

For couples like 4 it is advantageous besides X to work with
K5t f) = E5(t, f; 4) = int (Iflp, +1fL),
I=foth

1

P~ (Po’ p!.)y

<f. [22] where this functional was denoted by L. Its usefulness depends
on the formula :

Kt )= [ int (Ifo(@)ag(a)* + 1 () oy (o)) da
X F@)=rox)+f1(x)

(3.1)

A more explicit formula (without “inf”) is derived in Lemma 3.4 below.
We shall also use another functional, similar to X,

8.2) A%, f) =H50,1;4) = fnun(jf(m)a,,(m)f’“,uf(m)al(m)p"l)da.
X

Levvs 3.1, K; and o5 are equivalent. More precisely,
. w6 ) <Kt )< A5@E,f), >0,
where x; = in @ +y™). If 0<py, <1, then Kz = 4.
Proof. zﬁ[‘tv;;ﬁices to consider pointwise the scalar-valued integrands

in (3.1) and (3.2). The right inequality then is obvious. The left one follows
from

ot (B i (8] o i,

ie.
inf (fy" +47") = %min (f7, ™).
F=fg+1y
Since #; =1 if 0 < py, p; < 1, K7 and A5 coincide in that case. m
Now let

B = {Ll’obo (53 '5.,): Y): I’plbl (ﬂ1 &, :Y)} = {Lpobo7 Lplbl}

be another (quasi-) Banach couple, assigned to the same P. In analogy
with (1.2), using K, and £ instead of K, we define the quasi-orders
g <f[K;] and g<f[#%). In an obvious fashion, replacing in (1.3) K
by K7 and %7, respectively, we obtain the definitions of K and 5-
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monotonicity, with the different prefices. In analogy with the K-case we
also define the notions of (exact) Ky and A-adequateness.
LEMMA 3.2. Generally holds:
(i) The concepts of K, Ky and X% S-monotonicity coincide.
In particular cases moreover hold:
(i) If1 < poy 1< o0, then exact K and exact K—-monoiomczty coincide.
(i) If 0<<po,py<1, then exact K; oand ewact o z-monotonicity
coincide.
This lemma is an immediate consequence of
LeMMA 3.3. Generally holds:
(i) The following statements are equivalent:

(3.3) g < of [K] for some ¢> 0,
(3.4) g<cf[Ez] for some ¢> 0,
(3.8) g<cof[Ap; for some ¢>0.

In partioular cases moreover hold:

(i) If 1< po, 1< oo, then ¢ < fLE] iff g <SfK7]

(iii) If 0<po, P <1, then g <fIE7] iff g <fLF

Proof. Part (iii) and the equivalence between (3.4) and (3.5) are
jmmediate consequences of Lemma 3.1. What remains are the statements
about X and K. To verify them, we use the functional

B(s) =B(s,f) = it |f—Ffolpa-

1 folip gug<e

There is a close connection between K and B, of. [24], notably Proposition
4.4. In fact,

(3.6) E(f) =

E5(3)

Kb, f) =
=Kt f) = mf(sp°+tE“( )}

(s +1E(s)),

(3.7 = inf (s + 1B (s"70)).

Put
B5(s) = BP1(s'lPo),

The formulas (3.6) and (3.7) then state that K and K; are Legendre
transforms of F and By, respectively.

Beginning with (ii), we assume that 1< p,, p;<< co. Then, as is
readily verified, E(s) is convex and decreasing. This is in fact the case
with Eg too. To verify that, we use in order the concavity of » -+ pliPe
and the decreasingness of B, the convexity of ¥, the convexity of # — 2%,
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thus obtaining, with 4,414, =1,

B (2,814 2585) = EP1((1181 +}»z'5‘s)1’p“) < B (48] 2o +13321p°)
(1 E(stPoy 4 A, B (s} "’0))"1
= 5(31)‘{}‘ A2 B5(s4).

Ay BP1(s1/70) + 1, 871 (5)/70)

This proves the convexity. Under these circumstances, making an inverse
Legendre transformation in (3.6) and (3.7), we get

(3.8) B(s) = sup (___K ) _i),
I i t
e K5 () 8\
(3.9) By(s) = sup (——t - "{)‘

Now by virtue of (3.6)—(3.9) we have the chain of equivalences
K, 9)< Kt f),
Badd Ej_l(s7 [} <E§(8,f), 8>0 <« KE(t; q) <K§(t:f); t>0.
This proves (ii).

Turning to the general case 0 < py, p; < oo, B and H; need not be
convex. Consequently, the inverse transformation applied to (3 6) and (3.7)
does not, in general, give back F and ¥;. Instead we get their greatest
convex minorants F* and E. However, taking into account that

B <BE < G(R),
B (s) < B (s) < 2H%(s)2),

>0 « H(s,g)< E(s,f),s>0

by an argument similar to that above the equivalence between (3.3)
and (3.4) can be proved. We omit the details. m

Remark 3.1. The definitions of K, K; and B; have signiﬁcanee
for general quasi-Banach ecouples. With no changes the proof above applies
to this general situation. Part (ii) of the lemma then generalizes a result
of [14] for the case p, = p;.

The next section will motivate a closer study of the relationship
between K; and #5-monotonicity. Such investigations are then carried
out in Section 5. They are baged on the following integral representation
of K.

LEMMA 3.4. Let 1< Py, p; < oo. Put

Py (1—otPoyrt

3.10 A ===
(3.10) o) = 2 g
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Then

(311)  inf (o +rP1) = f min (poaP o™, ip; a1 (1 — )P do
G+1=a
1

f in (a®o, # Az ( 7)a™)do,
o
1
(3.12) E5(t, f) = [ A5(td5(0), f)do.
0
Proof. Here (3.12) is a consequence of (3.11) and (3.1). In fact,

Ex(t,f) = [ it (1feGl®+]f,0,/") da
x f(x)~fu(z)+f1(x)

=J (f min ("0, .45 (a) | fas")do) da

( Jminifag, 145(0) lfon ?rda) a0

O M

= [A5(t4; (9), f)do
o
In verifying (8.11), without restrictions we may assume a = 1. Put
(3.13) k(s) = inf (6™ +57P1) = inf (0% +s(L—0)?).
0ol

Bemg an infimum of posxtwe concave functions on R, , vanishing at
the origin, % itself has these properties. Moreover k(s) < 1, so that k(s)/s—0,
$ — co. By partial integrations one then verifies the formula

(3.14) ko) = — [ xﬁin(é, Bak'(s),

ef. formula (A.5) of the Appendix and the reference given there.

‘We now restrict ourselves to the case Pos 1> 1. The remaining
cases need some minor modifications, omitted here. To get an expression
for ¥’ in (3.14), first consider k. A derivation yields that the infimum in
(3.13) is attamed for o obeying

(3.15) Poo™™ = sp; (1—0)P11,

This formula defines a bijection between 0< s< o0 and 0< o< L.
Expressing k and k' in terms of o, we get

k(s) = oPo+-3(1— o)1,
a
g PO l— o 2 (1o
K(s) =— /2 =1
® =%/ %@ dsjdo (1—-oy.
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Thus, making the change of variables (3.15) in (3.14), we obtain

1 Pg—1
k(t) =_—!nﬁn(ﬁiho_)§_-l—,t) a(l— o)™

1
= [min(p,o¥0?, tp, (1~ o)1) do,
i

i.e. the first equality in (3.11). Making another chamge of variables, we
get the second one

p{l—g)1?

1
k(t) = f min (1,z T )dcrpb

il

1
[ min(1,#45(c))do. m
0

4. The general case {L 'pyag? Loty 0 < Doy Py < oo, As in the preced-
ing sectlon, when not otherwise stated, let

= {L, poao(a}‘%7x)’Lp1a1(a '% » X)} ={L, Doty ? 171“1}’
{ Pnbo ﬁrgﬂa Y 7 lbl(ﬂyy Y} '—{ "Dobg plz‘zl}

A sufficient condition for 4, B to be interpolation spaces with resp-
ect fo these couples was given in Theorem 1.1 above. Howevet, for com-
parison with the necessary condition to be derived below, it is convenient
to restate it by means of K3 instead of K.

THEOREM 4.1. (BxInt) s a consequence of emact K -monotonmty

The proof is analogous to that of Theorem 1.1, depending on

Levma 4.1, If g = Tf with T € £,(4; B), then g < f[E5]

, Below a necessary condition is derived in two (overlapping)- cases:
(1) 1< Py, p1 << oo with arbitrary measure spaces,

(ii) 0 < Py, P << oo with the following restrictions imposed on the

measures :

(M.1) (8, &, X) is non-atomic,

(M.2) For every DeR, EcS with a(D),p(B)<< o, the normalized
measure spaces (a/a(D),%p,D) and (B/B(B), ¥z, B) are iso-
morphiec.

Here the latter condition means that there existis a measurable bijee-

tion m: D — F such that for every measurable set D' < D,

a(D) _ plaD)
«D) " BB
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We note that if X =¥ =R, a = § = Lehesgue measure, (M.1)
and (M.2) are both obeyed. Consequently they also are whenever X and ¥
are isomorphic to R (or some subinterval of R). This in turn is guaranteed
by their being separable, non-atomic and o-finite (cf. e.g. [12], p. 173).
Also note that if X is discrete, then (M.2) is automatically fulfilled.

The case p = oo is commented upon in Remark 5.1 below.

‘We are now prepared to state the main result:

TeeoREM 4.2. Under the hypotheses of (i) or (i), (ExInt) implies
exact A p-monotonioity.

Theorems 4.1 and 4.2 now yield, by virtue of Lemma 3.2.

CororrARY 4.1. A, B are K-adequate.

COROLLARY 4.2. If 0<po, Py <1 and (M.1), (M.2) are obeyed, then

4, B are exacily A5-adequate.

Theorem 4.2 is a consequence of the following lemma. When com-
bined with Lemma 4.1 we get the generalization of Theorem HLP inquired
for at the end of Section 2, cf. also Remark 4.1 helow.

Levuma 4.2. Under the hypotheses of (i) or (i), if g < fIAF] then to
every o >1 there evists T & £,(4; B) such that Tf = g.

Proof of Theorem 4.2. Let 4, B obey (ExInt) and g <flA5]
For 9> 1,1et T = T, be given by the lemma. Then

lgllz = IT.flie < elfila-

Since this holds for any o> 1, [gllz << lifils- Hence A, B are exactly
A-monotonic. m '

Before proving Lemma 4.2 we introduce some more notations. Let %D
denote the characteristic function of the set . For arbitrary functions f
we write fp =fzp. We consider functions f = ¥ fixry I = Z, with the

del

property that the values {f;} can be renumbered in increasing order.
Such functions are called elementary or, if I is finite, simple.

Proof of Lemma 4.1. The disposition is as follows: In Step 1 we
interpret the condition g <[t 7] for certain elementary functions
Jy9;,, b, (& = 0,1). In Steps 2(i) and 2(ii), for such funetions we construct
in the respective cases the operator T. Here we even get T' e #.(4; B).
In Step 3 is performed the passage from elementary to arbitrary functions.
Steps 1 and 3 are common for (i) and (1i).

It suffices to consider the case f> 0, g > 0.

Step 1. Suppose that f, g, a,, b, (& = 0, 1) all axe elementary. Hence
F=Dfan = Dfry 9= 0=t
i€l iel jeJ jeJ
Without restrictions we may assame that Gy, a5 and by, b, are constant
on F; (iel) and G (jeJ), respectively. For the - p-functional we

icm°®
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then have
5,53 &) = [ min(ifaf, ¢1fa") da
= D' [ min ((fay)32, t(fa,)5) da
i

= X min ([ (fou)itda, t [ (£2 )7}da)
= iUl » W Ba)s

analogously for #%(¢, g; B). The condition g < fI[ot5] thus means

2 min (g 28, » 196, 120,) < 3 min(ifp 20, , $1fplEL,), > 0.
Fl i

®

Now suppose that each set of plane vectors (1f M5y » Wfmylipi,)s iel,
and (Hggjlggbo,[}gaj[];,’llb‘l), jed, can be arranged in non-decreasing order

with respect to the order relation ¢ of the Appendix. Then Lemma A.2

applies. It provides us with numbers 6; > 0 such that

(4.1) Doy =1 (jeJ),

iel .
(4.2) D, 0iilge, e, < fmlBee, (8 =0,1, iel).
jed

These relations shall now be uséd in constructing the operators.
Step 2(i). Under the hypothesis (i), for ¢ € }'(4) we define
1 ?
Ty = 0; (——f—da)g .
? Z Na®y 4 755
Then obviously, by (4.1), Tf = g. We prove that T € #,(4; B). To begin
with, (4.1) and the convexity of # s 2"+ (4 = 0, 1) yield

(4.3) 2ot = | o, (a—éa—)pf %Za)

i

o]\
< 3 Sl [l woe

3 i

Pr
e, 22,

But here, again by the convexity and the fact that f and &, (x =0, 1)
are constant on each ¥, (i eI), :

1 2 Py __1‘__ 2 p"d
(a(Fi) Ff 7 d") Sy Ff 7| %
1 igaa‘ Dy 1
=2 — i I P i
a(Fs) Ff lf% o(F) (fa, )5 F{ lpts,[*+da
— “‘PFl-”;Z‘a”/an‘.“gﬁa# (,; = Q, 1).

3 — Studia Matfematica LXIT.3
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Inserting this in (4.3), we get, by virtue of (4.2),

ITolZe, <_§’ oz, Bt %j 65 19,52, /e, B,

< ;‘ loz,lpe, = lplipe, (s =0,1).

Hence T e #,(4; B).

Step 2(ii). We make use of the following fact: Let T be a mapping
defined for all characteristic functions yp, D e, with values in 3 (B),
such that

(4.4) Tipup, =Typ,+Txp, i DynD,=@,
(4:3) Supp TZD;““PPTZD, =0 i# DnD, =@,
(4.6) 1T 2plp,p, < l2Dlpe, (B =0,1).

Then, extending T by linearity to simple functions and thereafter by

icm

continuity to 3'(4), we obtain an operator T' € ,(4; B). Thus, to verify

the lemma it suffices to construct T obeying (4.4)-(4.6) and, in addition,
If = g. (Also note that T constructed this way gets the property supp Ton
nsuppTy =@ if supppnsuppy =9.)

We begin by cutting the sets @; (j € J) into pieces. By virtue of (M.1)
and (4.1) there exist sets @; such that, disjointly,

G = L‘)G;j with B(Gy) = 0;8(6;) (iel, jed)

(ef. [13], p. 174). Since g and b, (4 = 0, 1) are constant on G, it follows
that

b5 flgb,,}”ﬂdﬂ = figbﬂp"dﬂ’
& G
ie.
0:';'"98;]55% = ”gaﬁ"gﬁb,‘ (s =0, 1,iel,j ed).

Hence, by (4.2), -
(4.7) O W88, < IfpjBra, (s =0,1, iel).
<t e,

Now put
=U6; (#el).
E]
These sets are pairwise disjoint. Thus, defining 7 so that
if D cF,

it suffices to verify (4.4)-(4.6) for D < ¥, with i e I fixed. Since fis constant
on F;, we may use f, instead of yp,.

suppTyp < I
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To this end, for fixed i, let my: F;— G, be chosen in accordance
with (M.2). For D <« F;, put

a(D) _ B(=yD)

@ T pey Y
Then
(4.8) Wfolbta, = e, WagpliEh, = 4o 19e, 28,
Now define (cf. Fig. 4.1)
Ifp = Z 9nyp-
J

Then (4.4) and (4.5) are satisfied. To verify (4.8), by virtue of (4.7) and
(4.8) we have :
IS5, = X WayolBts, = 1o D, 106,25,
< @olfe e, = folr,, (s =0,1).

Finally, since Tfy, = gr,, We also get Tf = g. This proves the assertion.

LTI ASS LIS 17

T T; T,
Fig. 4.1

Step 3. Now consider the general case, dropping thus the assumption
the functions to be elementary. In order to reduce to that case, for ¢ > 1
and positive functions ¢ we define the discretizing operator ¢ > ¢® by
(keZ)y.

Pm) =" it PF<o@<

~ Then

(4.9) P <e< o9
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For technical reasons we also have to work with g, defined by

{(21—20)P

0 =0 i opi>py =0 H pri=p (4=0,1).
Pub
¢ = max(g, 0, 01)-
Let
To _
4 {Lpoago’ Lplagl}’ - {Lpobgo’ Lplbfl}'

By (4.9) and the hypothesis g < f[£5], we have

%E(t: g% BY) < ‘%E(ty g3 E) < ffa(t:fi Z) < ME“) .ézfg; zg)y >0,
ie. ¢°< §f°[of 5] with respect to .4°, B°. Here all functions involved are
elementary. To use the first two parts-of the proof we also have to verify
the monotonicity assumption made in“the course of Step 1. To this end,
considering f, let ¥; (¢ € I) be common sebs of constancy for f2 and af, afl.
Then, for some integers %, &, &, the inclination coefficients (cf. the Appen-
dix) of the vectors (Ilf%iH; :agf)’ ”flg”iﬂillagx) are of the form

' llf%gllﬁl‘agl/ “ﬁ’"i”ﬁgaga = gP1F P11 [gPok gDoko — (P12 5-Doey GPky

He{me, by the definition of ,, they are integral powers of g”1"%0 if p, > p,,
of if p;, = pe = p. The vecbors-( }U?Fi}]::ago ][f%iﬂﬁ; o) thus can be numbered
- 3 ) . ° al
n non»d_ecref,smg order. Doing the same with g, by Step 2 there exists
T e #,(4% B% such that

, eIf =g
Regarding T' 45 a map 4 — B, in view of (4.9) we have uz"'ug,(g;,g, <6

Indortlle;" to get a T with Tf, = g, T has to be somewhat modified. To this
end, le .

Up =ofilf for ped(d), Vy=ypglg® tor ye Y (B).

Then, again by (4.9), [Ullgz <1, [Vl < & Thus, defining T by
T = §@VvIUv,

we obtain an operato ith i : 75 <P
e D v r with the properties wanted: |7y 5 < 8°

Remark 4.1. In certain cases the lemma is true even with o =1.
In S13ep 2 of the proof above, this was seen for particular elementary
functions f, g, a,, b, (& = 0,1). If 1< p,, p, < o0, it is true also without

this assumption. This can be verified in the following way, using a slight

modification of the corresponding argument of [6], Lemma 2, £
of. also [8]. o ctor y ool

icm
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Let A be 2 linear functional on 7., of norm one, such that A{(e,).)
= lim ¢, if this limit exists. Let T, be the operator obtained from
00
Lemma 4.2 if g = 1-+1/n. For ¢ € Y'(4) one verifies that
1
=A|l— f T,.pd
( Tiim ) 17 ﬁ)

x

4,(B)

defines 2 measure on Y, absolutely continuous with respect to f. Let

T¢ = dl,/df, the Radon-Nikodym derivative. Then

1
(4.10) Tedp = A(——— T, dﬁ).
Ef Y 1+1/"’Ef ¢

In particular, with ¢ = f,
[ias =A(1—+1—1/;JTnfdﬂ) ~ 455 o) = [0

E

Tenece Tf = g. To prove that T € %,(4; B), consider simple functions
ve(Lyp,) =L, 1, Where 1/p,+1/p, =1 (u =0,1). Then by virtue
#n

of (4.10) "
[ 7p-vap = 4 (ﬂ%ﬁff,w«zﬂ).

Hence
i 1
[ 7-vap| < s | [ 2o vt
EEET HTﬂ(P“pﬂb” n'{’“p;‘b;l < H‘P”p;ﬁﬂ ll?ll‘qg;b;l (g =0,1).

It then follows that T ¢ £,(4; B), which concludes the proof.

We do not know whether Lemma 4.2 edmits a generalization to ¢ =1
also in the quasi-Banach case (ii).

Exampie 4.1. Let H: R% —~ R, be homogeneous, ie. H(i',2s")
= 1H (2", «1), 4> 0. We say that H is an eract p-interpolation funclion
if, for arbitrary A = {Ly s Dpa}s B = {Lpgpys Loy

g = Tf with T e &,(4; B) implies
JH(1gbof?, 1g5:17) 38 < [ H(Ifaol™, |fasf™)da.

‘We t1y to characterize such functions H. There algo is the analogous
non-exact problem, with a constant ¢ inserted in (4.11). In that case the
interpolation functions are characterized by being equivalent o the

(4.11)
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exact ones. Since the functional

(4.12) Frs [ H(Ifal™, |fa,") da

only accidentally defines a quasi-norm, in general in (4.11) we do not
deal with inferpolation spaces. However, if p, = p; = p (the most interest-
ing case), (4.12) reads

e [IfPH 62, i) da,

ie. it is the pth power of a weighted L,-norm. This case has been exten-
sively studied, cf. notably [12], [20], and [21]. In the case Po # Py, claim-
ing on H some kind of convexity property, by means of (4.12) it is possible
o define a quasi-normed space Oy (a “weighted Orlicz space”) by

REE

In this way we thus obtain exact interpolation spaces. For the case a,,b, =1
(p =0,1),see [22].

Returning to (4.11); by the homogeneity of H we may write H («° , oY)
=2 k(2 [2') with h(z) = H (#,1). Hence there is a one-to-one corres-
pondence between the exact p-interpolation functions and a class, denoted
by .#;, of non-negative functions » on R ++ As in the Appendix, let %,

be the set of non-negative coneave functions on R - For 1< py, py < oo,
we define a clags .fff, congisting of functions of the form

20
’

: Ja
Wllog = mf{s &

)

h(@) = [ A5(0)p(0]45(0)) do,

where g € €., ¢(#) = o{max(1, ?)) a8 0 or oo, and 45 ig defined by
(3.10). Note that here, by (A.5),

(413) #(@) = [min(z, 1w ()

Wwith a positive measure dw.
We are now able to prove

(4.14) N T

In the cases p, = p, and p, # p,, @, b, =1 (s =0, 1), these inclusions
are well kmown, ef. the references given above. (One verifies that if Py =P
our class .fz—lf coincides with that of, e.g., [12].) It will be apparent from
the proof below, using also Lemma, 3.2(iii), that if 0 < p,, p, < 1, then
IS5 = €,. I py=p,, we thus obtain a resu_lt of [21]. By means of Bx-
ample 5.1 below one easily constructs an example showing that if 1 < Doy P1
<< oo the right inclusion in (4.14) is strict. Concerning the left one, in [11]

kS
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ms proved that S, = $,,. It is not kmown whether there holds

equality for other values of 7. )
. To verify the right -inclusion in (4.14), let H obey (4.11). Then by

Lemma 4.2
g<fl#5] implies [H{igh?, Igb*)dp < [H(Ifoel™, |fasl™)da.

Applying this condition fo simple functions, we get
Y min(af, i) < D, min(yl, tg3), ¢>0, implies
NH@E, )< Y H®, ¥

That the function h, corresponding to H, belongs to %, now iy a conse-

uence of Lemma A.3(i). .
¢ To verify the left inclusion in (4.14), by Lemma 4.1 & sufficient con

dition for (4.11) is ‘ |
g<fK;] implies [ H(lgh™, gb")ap < [H(Ifacl™, |foul™)da.

One instance when such an implication holds true is

(418) E5(t, )< Ez(5,f), t>0, implies
K5, g)dw() < [K(t, fdwd,

where dw is a positive measure.’]zlﬁnt here, by Lemma 3.4,
[E5t, faw() = [ [ #5(45(0), f)dodw(t)
= [ [ f min(ifayl®, t45(0) fas ) dodw () da
= [H({fal", |fa:/) de,
where, With ¢ given by (4.12),

H(®,1) = h(z) = [ [min(s, t5(0)) dodw (1)
= J’(A;(q)fmjn(m/,d’j(a), t)d’w(i))do’ = j:A;,(o')tp(m/A;(o‘)) do.

Hence h . Treating in the same way [Ep(t, g)dw(t), we hicsonclui:
that if & ej—% then (4.15) and, consequently, (4.11) are valid. This prov:
»

e 31:3821;1;; 4.9. Tet X = ¥ = R, provided with the Lebesgue meas-

ure, and let 4 = {Ly s Lp by 0 < Doy 1< oo Consider the dilation oper-
ator o, defined by
of@) =flals), &> 0.
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Then

o:f) = [min (If(@/s)i®, #f (@/s)™) do

— [min (85 f (2) 2o, tisP1f (2)7) .
If follows that
0, < max (870, s f [ 5],

Henee, by virtue of Theorem 4.2, for any c-interpolation space 4 holds

(4.16) losflLe < ¢ max (s, §21) 7] .

This should be compared with the results for interpolation of weak type
operators, i.e. operators T': {Lpo’l,Lj,l_l}—>{mem,Lphm}, ‘where [|f|]Lp’q
= ([ (#f* )*dtpij's. Folowing Boyd [5], we define :

0(6) = SUD o a1

a, = limlogu(s)/logs,

800

B4 = limlogu(s)/logs.
§->0

Then by (4.16) a necessary condition for 4 to be a (strong) interpolation
space is

Upi<Ba< ay <1/p,, 0< Py <py < 0.

where
(Here the information about ¢ is lost.) In the Banach case 1 LKP< P11 o
under additional, rather restrictive, agsumptions on 4, (4.17) (or (4.16))
is also sufficient for 4 to be an interpolation space, cf. [27] with the adden-
dum made in [15]. For weak interpolation, on the other hand, by [5]
& both necessary and sufficient condition is, generally,

Ip<By<ay<lip, if L<Po< Py < ool

5. On the gap between the necessary and the- sufficient conditions.
In Section 4 was proved that exact H-monotonicity is sufficiént and
exach A 5-monotonicity necessary for the condition (ExInt) to be satisfied.
‘We now investigate quantitatively the relationship between the two
kinds of monotonicity. When not otherwise stated, let 4 and B denote
the same couples as in Section 4. However, we now restrict ourselves o
1< Py, 1< oo. Bince § = (¥, 1) was fully covered by Corollary 4.2, that
case is excluded too.

It is natural first to compare the quasi-orders I< flEG]land g < f [A£5]
One result in this direction can be derived from Lemma 3.1, with the

icm
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deviation expressed in terms of ;. However, this yield‘s too rough an
estimate. In fact, since. x(, > 0, p;— oo, measured T;hls way the gap
between the necessary and sufficient conditions would increase unhound-
edly as p — co. In the limit case P = (1, o), ]1.0W‘6V€:J‘, we haer reason
to expect Theorem C of Section 2, at least !;o VErlthm norm eqmva.lence_s.

The following lemma settles these objectioms. In order to obtain
there the best constant, not just an estimate, we suppose that thq? measure
spaces are not purely atomie With'ﬁnitely many atoms and thab if p, = p,
the weight functions are non-equivalent.

LEMMA 5.1. Under the above asswmptions we have

(6.1) g<fl#z] implies g<flEzl,
{5.2) g<flE;] dmplies g<ysf[H3]

where vy, the smallest constant possible, is determined by

inf (a%04+yP1) =1.

Y=y

(5.3)

Here, generally speaking,

(5.4) 1<yp<2.

Proof. The main tool is Lemma 3.4, expressing K; a8 a fzerﬁain ﬁ;eﬁ
value of ;-functions. As & first consequence, We immediately obta
5.1).
( )Less trivial is (5.2): There the best constant y; can be gxpressed a8

(5.5) ys = sup ¢, where ¢, = inf{c| g < of [ A5}
P ek

After approximation it suffices to consider si.mpl’e f@ctions f ,1;!{1 , a(‘i;fbi‘j
(s = 0,1). A5, f) and H5(8, 9) are then piecewise linear. By the
nition of ey, for some 7 > 0 we have

(3.6) AH5lr, g) = H5(T, 60f)-
Here .
5.7) Hy (v, 6uf) = Gtz (v o)

Let p, > p,. Consider the points
P (16?;_”01'}{5(76?;_%:]:))7 Q: (r,f;(r,g)).
Defining the multiplication : R, X R, — R} by

o (@,9) = ("7 Pw, Y),
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(8.6) and (5.7) express that

[ Q=2P.
@ is, or may be chosen as, a corner of the A5 (%, g)-polygone. If ¢, > 1,

which we may assume, the relative localization of P and @ is indicated
by Figure 5.1

A5 (t.S)

Fig. 5.1

Now let p and y be functions defined by the graphs in Figure 5.1.
Since '
p() < ( +9),

_we have, in view of Lemma 3.4,

A <o),

[oltd(o)do < K5t, ), K56, ) < [@(t4(0))do,

where we have put 4 = 4;. If g < f[E7], it follows that

[w( m(a))dogf,p {t4(0)) do.

The problem of finding the supremum in (5.5) now can be reduced
to an optimization problem for functions of ¢ and y-type. To this end,
to every point P € R: we assign the set ®p of positive, increasing linear
functions having graphs containing P, and the unique function y = yp
= min (a, bt) having its corner at P. We enunciate that

(5.8) where ¢4 Q = P and

[wolt4(0))do < [p(i4())do

Yy = 8up¢,

for some ¢ € Pp.
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In fact, comparing (5.5) and (5.8), by the considerations above every
¢ =¢y in (5.5) also appears in (5.8). Hence p; < supc, where ¢ obeys
the conditions in (5.8). (Astually this estimate is all we need in the sequel.)
On the other hand, since w(f) = A ;(t, g) for some g and ¢(t) may be
approximated by A5 (t, f)-functions, there is an inequality in the reverse
direction too. (It is here the additional assumptions we made on the
measures and the weight functions are needed.) We omit the details on
this point.

We have tio make the conditions on ¢ in (5.8) more explicit. With-
out restrictions, let @ =(1, 1), i.e. ¢(¥) = min(1, #). Then P = (¢?1~Ps, ¢7%0),
Writing @(t) = &% 4-i#p®, Pegraphg: means that 5’0—;—0”1"'0«:;’1—-0“"0
ie.

(5.9) (08)Po+(em)™ = 1.

'i‘urning to the integral inequality in (5.8), we handle the two members
1

separately. Since [4(o)do =1, for ¢ holds
0

1 1
[o(td(0))do = [(&0+t4(0)n®)do = P+
0 0

For y we get, using the deereasmgness of 4 and defining » = x(f) by
tA(z) =1,

f'(p(tA(cr))do' = fmjn(l,td(a))do' = w-l—th(cr)'da.
-0 0 x

If 1 = p, <P, this formula needs in fact a minor modjﬁea,tioh, omit-
ted here, originating from the fact that A(c) then attains no values smadler
than 1/p,. The inequality in (5.8) now can be rewritten as

m+th(a Ydo << £ +inP1,

or, sinee ¢ = 1/4(=),

(5.10) oA (@) + [ A(0)do < 0 A(@) +o.

In (5.8), for the extremal choice of @, for some ¢ there holds equality be-

tween the integrals. Hence, for some z this must be the case in (5.10) too.
A derivation yields # = £, Inserting this in (5.10), we get

1

f A(e)do = 771,

D,
& 0
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= fﬂox (L— 171/1’;” Pt do — f?l (1— O.lmo)m—lddllpn
Do

Po £ Do
l . I
f p(l—0)Prlde = (L— &)

&

I

Thus, for the extremal choice of ¢ we have
(5.11) 1—2=n.

In conclusion, the conditions on ¢ in (5.8) are equivalent to (5.9)
and (5.11). Hence

(5.8") v; = sup{el(c&)Po+(en)"r = L with £+n = 1}.
But this is the same as
inf (y58)" +(m)” =
§49=1

which in turn is the same as (5.3).
What remains is (5.4). Obviously, y; > 1 (remember the assumption
P # (1, 1)). On the other hand, in view of (3.11) we have

1
1 = [min (p 2 0™, p, 21 (1 — 01"} do
0

a’ 1
= [pylio"tdot [ py2i(l— o) do

] a’
for some ¢, 0< a< 1. If a>1/2 we get, cancelling the second and esti-
mating the first integral,

a E
1> [ pyy2oo™do > [ pyRo™ e = (y5[2)%;
0 1]

Le 7 <
(5.4). m
It is now possible to formulate partial converses of the theorems
and lemmata of Section 4. Thus, combining Lemma 5.1 with Lemma 4.2
and Lemma 4.1 respectively, we get
Levma 5.2. If g < f[Ez] or, equivalently, g < f[K], then there exists
Te .Sfyp(A B) such that Tf =g.

Lemwa 5.3. If T e 2,(4; B), then Tf < yzf[45]

2. Treating in the same way the case a << 1/2, we end up with
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As immediate consequences we obtain

THEEOREM 5.1. (ExInt) implies (y5; K5)-monotonicity and, aqmvalmtly,
(yp, K)-monotonicity.

THEOREM 5.2. (yz—Int) is a conssquence of ewact A z-monotoniocity.

Note that here we do not assert y; to be the best constant. However,
in Lemma 5.3 it actually is. This is seen in Example 5.3 below. On the
contrary, in Lemma 5.2 and Theorem 5.1 it is not (in general). This is indi-
cated in Remark 5.1, referring to the limit case p = oo. That in these
instances y; cannot, in general, be replaced by the constant. 1 is shown by
Examples 5.1 and 5.2. There the case 7 = (1, p) is considered. In par-

ticular, we eonclude that, generally 4, B are not exactly K-adequate.

Remark 5.1. By Lemma 5.1 the deviation between the 4 and the
K5 (or K) quasi-orders is measured by y;. For p-values close to 1, v is
close to 1 too. This is not surprising, since 45 is modelled after the K-
functional for {Ly,, Lml} (where A7 = K K ). Considering the optimal
partitions of f involved in calcu]atmg K5 a,nd. 5, it seems equally natural
that p; increases with py, p;. One readily veriﬁes that the extremal value 2
is approached in the limit p, andjor p; = oo

Trying to characterize the exaet interpolation spaces in this limif
case, a sufficient condition is as usual given by Theorem 1.1. What necess-
ity eoncerns, X7, thus also Theorem 4.2, loose their sense. However,
congidering instead Theorem 5.2, by a continuity argument it can be
extended to the present case. Thereby, as was remarked above, y; = 2.
But if in particular p, = 1, we know from Theorem C that the best con-
stant is 1. We thus conclude that the constant y;.in Lemma 5.2 and The-
orem 5.1 is not, in general, the best one. For the couple {L,; L}, 1 < p < oo,
in [17] was proved analogues of Lemma 5.2 and Theorem 5.1 with constants
estimated by 2*#°, 1/p +1/p' = 1. Concerning this value, ¢f. also [2], [3].

Remark 5.2. ¥ B = (p, p), y5 = 2" For this case, in Theorem 5.2
we thus obtained the same estimate as in [26].

Showing that the constant 1 does not do in Lemma 5.3 and The-
orem 5.2, we need the following partial converse of Lemma 4.2.

LevvA 5.4. Let a,,b, (s =0,1), f and Tf be non-negative simple
functions, where T .,Z’l(A B). Suppose that T is nownegatwe (7, e. Tp=0
if 9= 0) and |Ifllyp, = Ifl,q, (6 =0,1). Then If < LA

Proof. To fix the ideas, let a, =b, =1 (p =0,1) (and hence
Po # ;). The modification needed in the remaining cases just consists
of the insertion of certain constamts

Let f = 2 fiar, 9 =1f = Zg, ¥g;- Without restrictions we may
agsume that T maps the space sparmed by {yr,JT' onto that spanned by
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{ij}g'. Hence T is determined by a matrix (¢;) in the sense that

g =Dl (F=1,...,m).

4e=]

{5.12)
By the positivity of T, t; > 0.
Put a(F;) = a;, B(G;) = B;. By assumption we have

sup |72l = lglh, W, = Ifls, (8 =0,1),
or equivalently

sup Zlgtﬁwf
Fl

Since [ Tle@s =1y Iflp, = 9lp, (' =0,1), n Dboth instances the
supremum is attained for @ = f. Hence, using Lagrangian multipliers 1,
we get

where

"iB; = lgigs  where  Mlmi"ra; =IfIgx  (x =0,1).
¢ ;

(5.13) ;(Ztﬁff)”ﬂ“tﬁﬁ,. =L le (i=1,..,m, 4 =0,1).

7 K . ot . - -
On multiplying both sides by f; and summing after 4, by means of (5.12)
we obtain . : SRR

0By = h ) e (s =0,1).
.3 i .
Thus, since llgl, = Ifll,» 4 =1 (4 = 0,1). Put
05 = t:f; /g5 )

The cquations (5.12) and (5.13) then are equivalent to

m
261'7'=1 (=1,...5m),
=1

n
D bugrby =fPra;  (i=1,...,m, u=0,1).

J=1

Since moreover ;> 0, application of Lemma A.2 yields the assertion
g<flAz] m ’

EXA.‘MZPLE 5.1. Letp = (1, p), @,,b, =1 (g = 0,1). We construct f
and g with g < f{K;] such that Tf = g for all T e #,(4; B). To this end
we ngte that by the proof of Lemma 5.1 there exist simple functions

2 3
f= 21“ Trp9 = Zl’ 9g;, having A'Z-fomctionals as in Figure 5.2, such that
9<flEzl;, g<LfIA5]

Fr?m the beh_av?lours at 0 and oo it follows that |fl,, = llgl, (u =0,1).
Without restrictions we may assume [f]l, = gll; = 1. Let & and @ be the
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H5(L.f)
Hi(rg)
®
-~
Fig 5.2

spaces generated by {yz )} and {xaj}i, respectively. Let &, be the subspace
of # defined by 9= 0, [pda =1.
Now suppose that T € #,(4; B), Tf = ¢ and, without restrictions,

'T: & —>%. The functional on I,

tPHquvd{f

then has & norm not exceeding 1. Since it attains the value 1 on #, ab
the interiour point f, it is identically 1 on #,. But then Tp > 0 for g € #4,
since otherwise

[1Tpidp > [Tpap =1,

contrary to the hypothesis. Hence T' must be non-negative. But this
is impossible by virtue of Lemma 5.4. We conclude that there does not
exist an operator T € #,(A; B) such that Tf = g.

ExAMPLE 5.2. By means of the preceding example, we now construct
an exact interpolation space with respect to {Ly, Ly} (or generally
{Tagys Lpa })y 1< < 0 which is not exactly K-monotonic. In fact,
with f and g as in Example 5.1, let A be defined by (cf. [1], p- 99)

by = inf [THe-
h=Tf

Tt is readily verified that A is an exact interpolation space with res-
pect to 4. Obviously, [fll, <1. But expressed in terms of 4, the content
of the preceding example is that [gll, > 1. Hence gl > lIfl, despite
g <f[K], which proves that A is net exactly K-monotonic.

ExAMPLE 5.3. We show that y; in Lemma 5.3 cannot be replaced
by any smaller constant. Referring to the proof of Lemma 5.1, let y(i)
= min(l, ) and (i) = Eo+ty™, where & and 74 are the optimal ones
in (5.8"). Let g = 7o with §(G) =1 and let /™ = f§ +1# be a 2-valued
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simple function with

Wil = & Fhlbogay =% Wfbilogay = 1B lpyey = 1-
Then X5(t, g) = ¢(f) and A5, f") 7 @(f), n— oo, of. Figure 5.3.

o0

= H(tS")

H5(t.8)=w(®)

Tig. 5.3

Define T™ by
"fs, =&, I'fp =ng.

Then T™f"* = g and, as is readﬂy seen, I" € %, (4; B) with o(n)— 0,
n - oco. However, by the proof of Lemma 5.1, T*f* < vl "2 5], umformlv
in m, where the constant y; cannot be improved. Taking into account
the homogeneity, this proves the assertion.

6. A remark on the Lorentz case. We finally show how Lemma A.2
applies to yield a short proof of the results of Lorentz-Shimogaki [16]
for interpolation of Lorentz spaces. {For Corollaxy 6.1 below, another
simplified proof was given in [297). P

Let @ be a positive, decreasing funetion on R, and let D(t) = [op(x)do.
Define the Lorentz space A(g) by means of the norm o

1flagy = ff*lpdﬂ"r =ff*dd5.
? 8

In particular, if f* = 20,2y We have [|f|l 4 = D (2).
The following theorem and its corollary are in essence equivalent
to Theorem 4 of [16].

TEEOREM 6.1. Lot 4 = {A(py), A(p)}, B = {A(w,), A(y)}. Then

A= A(qa) and B = A(y) olwy (ExInt) if and only if they are epacily K-
monotonic.
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Proof. That K-monotonicity is sufficient for (HExInt) follows as
usual from Theorem 1.1. What remains is the necessity.
It is well known that (cf. [28])

K(t,f; A) = [ f*(s)d(min(Py(s), 12:(3)),
E(t,9; B) = [g*(s) d(min(P,(s), t%(s)

Asg in the proofs of Lemma 4.2 and Theorem 4.2, the problem can be
reduced to the case of non-negative elementary functions f, g, i.e.

f=Dfap, With fi,<fi, 9= g with g,<g-
iel jeJ
Put
le =fi*f1‘—17 F::‘_‘U-Fk; g; =g;—9Gj—1, G;'___UG]"
k>i k=j
Then
F=D firry 9= Zg}x,,]g-
7 7
Putting meas(F;) = a;, meas(Gy) = f;, the condition g< f[K] means
2 g5 (Bo(B), W (B)] < ), fimin(@o(a), ia(w),  8>0..
But then, by Lemma A.2, there exists a matrix @ = (8;) such that
(6.1) Z by =1 (jed),

(6.2) D) 05GP, (8) <fi®u(a) (eI, p=0,1).

jeJ
Now define operators T; by

- 1 ,
T‘ZF;. = ‘J?;‘;‘ eijgjxaf'
and, generally, for locally integrable functions » by

T,.h=(—~1— fhdw)l"x .
Y i
F;

Then, by (6.2),
1 ,
Iy e = 3,,—2 0,10, (5;)
1 1 ]_

Py (@) ( =y lae,y)  (#=0,1).

4 — Studia Mathematica LXIL3
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Making two integrations by parts and using the fact that éi# (@) Jz decre-
ages with z, we get

1 ®,(a)
iblagy = |— [ B |ITx gy < <2 [y
) o Fy e o;
7, 0

D, (w)

(ot (@) + f iwd(—h*@))

ai)

= &, (a)) 1" (a) + f wd(—1*(2))

< 0, (@)1 (a) + f ®,(@)d( 1" (@)

a,

= [ @i, = by (5 =0,1).
0

In other words, T; e #,(4; B). Assummg that A(p), A(y) obey (ExInt),
we get

£

IT hux‘l(v)
Thus, for & = f; gy

;‘ 04595 ¥ (B;) < f1 P(ay)

“hHA(w) it hed(p).

(7 eI).

" A summation after § now yields, by virtue of (6.1),

lolan = D628 = 3 3 6:02(8) < i () =
F) i F 1

e llgllam < ]if]l,lm. This concludes the proof. m
In [16] also the following condition on A(p), A(p) was dealt with

7(y) (2,0 )
o() <m"‘“‘(@o(m) By(x)

”f ”A (®)?

(L.8)

) for all ,y> 0.

‘We also introduce the slightly less restrictive

P(y) < Poly) | Pily)
B(z)  Bylm)  By(w)

(L.8" for all &,y > 0.
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COROLLARY 6.1. Let A, B and A, B be the same as in Theorem 6.1.
Then

(i) (ExInt) implies (L.8),

(ii) (L.8') implies (2.Int).

Proof. Note that, by the above theorem, (ExInt) and (2.Int) are
equivalent to exact K- and (2; K)-monotonicity, respectively. In the
proof to follow we argue throughout in terms of K-monotonicity.

(i) Let

Poly) Pily)
g = Xo,u) f=max (Qo(ﬂf) ) Ql(m))l(o )
One readily verifies that ¢<f[K] Assuming exact K-monotonicity,
we obtain ligllaq) < 11f1lagy- Bub this is exactly the same as (L.8S).
(ii) Suppose that (L.§') is valid and that g < f[K]. We then have
relations (6.1) ard (6.2). On dividing (6.2) by @,(«¢;) and adding the two
inequalities (x = 0, 1), by means of (L.8') we get

Z(B) | ()
of 1 = 2 i1 9 J(@o(ai) +m)>;0

AL
T b

Hence

PRAA L AR IA-TCAR
j .
In view of (6.1), a summation after  now yields
D g <2 ) fid(w),
Fi I3

ie. llgllay <21f lagy- This proves the assertion. m

Remark 6.1. Concerning the family of Lorentz spaces Ly, defined
in Remark 4.2, any couple {L, % Ly} OF such spaces is K adequate,
1<9p,,q,< o, 4 =0,1 This is a consequence of the result of [9],
cited at the end of Section 1, and the fact that L,, = (L1, Lu)i-1p,q-
(That the couple {L, cs Ly} is K-adequate, in fact exactly, was first
proved in [23]) In particular, the couple {L, ., Ly, .} = {A(#""7Y),
A1)} is K-adequate. Hence every interpolation space with respect
to this couple is K-monotonic, although not necessarily in the exact
genge. Theorem 6.1 thus may be congidered as a sharpening of this result
for intexpolation spaces which themselves are Lomntz spaces.

For a related result, showing that 4 = {A(p), L}, B
are exactly K-adequate, see [10].

= {L1, Lo}
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Appendix. Some matrix lemmata. Let R be the positive (vector-)
quadrant, i.e. & = (2°,4') e R if 2’ 4> 0. On R are defined order
relations (inclination) by :

ot o’ < gy,
e < yify°.

We consider sequences (possibly non-finite) X

der 8 = (F)g =« RL, J < Z,
such that Z; € 7;,, and

(A1) D<o, Nai< .
=0 i<o
I Y = (%);; is another such sequence ‘and O =

(043)icr, je7 » matrix,
we agree %o Wnte -

0X =Y it D0F =3 (icl),
jeJ .
6X<Y iff Zeﬁ@g% (i el).

Here % < 7 stands for 2° L ¢°, o' < y'. Leb 9’ denote the set of ma.trwes
= (0)ier,jer Such that
y Dby =1

iel

uj./

(eI, jed),

and such that the non-zero elements are distributed in accordance with

the figure:

—

possibly non-zeroes o

zeroes

9 851
i1 g Bt et
zeroes : H
1
-
Fig. A1
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Thus, in particular, each Tow contains only finitely many non-zero elements,
and for all but finitely many j there exists a number ¢ = i(j) such that
0;; = 0 for 4 > i(j) or £ < i(j).

To start with we assume that I and J arve finite. Then & is the seb
of all (finite) stochastic matrices. To every X = (%);s We associate the
set (of vectors)

wx = {2 &% 0< <1, j EJ}
jeJ
Using the point P as origin, let wxp be its affine repregentative. wx p.
then is & convex parallelotope, cf, Figure A.2. By yx » and yx p» Wwe denote
the boundary polygones, and also the {unctlons on R having them ag
graphs.

5

Fig. A2

Tmmwma Al Let I, J be finite. Then the following conditions are equiv-
alent . .
(i) ¥ = 00X with O,
(i) oy < ox, 2“_91 =237i;
Jed iel
Cill) yxp<?yr.p-
Proof. The equivalence between (i) and (iii) is obvious. As a conse-
quence of (i), 2’ #: € wx for every I' ¢ I. Hence oy = wx. Since obviously

> = Y7, We have verified that (i) implies (ii).

. We now prove that (iii) implies (i). Thus let y x p < yy P To construct @
we use induction over the number of z-vectors n. For n = 1 and 2, the
statement is obvious. Suppose it is true for n—1. Let 2 be chosen in accor-
dance with Figure A.3 (along the “tangent” of yy p through the corner
P +%, 0l yx p)
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Fig. A.3

Since
Y@l S Viap Vi P1 Vg Pray S YE i yypor s P4y 9
the induection hypothesis yields . :

% = 0u% +47,

: k k
Ge=OuTathi with 6, =1, Yi =1,
T=1 i=1
and
o1 = Opp1 0T+ oo +04 0%,

Yn = Bmﬁz‘F e +enm§n1A :
& .
- T, with mt+ 36, =1(j=2,...,n).
Inserting the expression for Z into the fir b oqua
. or z into the first k equation i
-of coefficients having the properties stated. E % 7o StAmn.A ssheme
As a corollary we get the theorem of Hard: i
A : - y, Litlewood and Pélya
c_lted in Seem?n 2. In fact, considering the particular vectors z, = (2, S;.)’
¥ = (9, 1) (8 = 1,...,n), the equations for the second c:)mpor;t’mt;
in ¥ = 00X with @ e.9”" say that every row sum of @ is equal to 1
Hence (i) of :}}emma Al ig etquiva.lent to “y = Oz with 6 e 9”, wher(;
fn: m.(la;s(;pﬁ ) T;hy = h(;yl voe U aald' 2 stands for the doubly st(;cha,stic
3 the other ham;‘d, by virtue of Figure A.4, the condition (iii)

13
is equivalent to “Yyf << S} = 3 3
q 21,1.% \g'm, for k=1, ...,,n-l{ %‘,'y,‘ = 3o”. Thus
Lemma A.1 reduces to Theorem HLP in this cage. !
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(ilyin) = (il x3)

k
k- (%yﬁk) ()'_k'.xITk)
1

1 (78Y)
[€:8))

Tig. A4

Now consider the general (i.e. not necessarily finite) case. To X = (F)jor
we assign the piecewise linear function yx defined by having a graph with
vertices at the points (cf. Figure A.5) ‘

P,: (—— ng, Zm})
i»m g<m
It Y o) iy finite, let yx(t) = 0 for i< — Yz?. (That the coordinates of P,
jer jer i
are finite is ensured by the assumption (A.1)). yx thus is located in the
second quadrant and has the coordinate axes ag (possibly attained) asymp-

totes.
Our main result reads

LEMMA A.2. The following statemenis are equivalent:

(i) OX < Y with O,

(il) yx < vpy

(ifl) Ymin (s}, o)) < Jmin(y3, t93), ¢> 0.

jeJ iel

If Y% = Y7, then (ii) and (iii) are equivalent to

(i) 60X = Y with 0.
(Here by D% = > 7; is meant that 3af = 3y, Yuj = Xyi, where in
each instance either both sides are finite and equal or both infinite.)'

Proof. (i) < (ii). If I, J are finite, this is exactly what iy expressed
by Lemma A.1. In that case the following lengthy argument thus should
be excluded.
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Dealing with the non-finite case, to fix the ideas let I =J = Z.

Beginning with the implication (ii) = (i), let yx <yy, 2% = Y'7,. The

situation is illustrated in Figure A.5, where 3 a7 is divergent, 3 af con-
i=0 i <0

vergent. Without restrictions we may assume that Z; e 55,:,1, Ti € Fipr
strietly. Drawing from the vertices of yy tangents of yy, the vectors 7,
are constructed, k¥ = +1, £2, ... In this way the region D bordered by y
and yy i8.decomposed into subregions D,, ke Z. Let X, = (%), and
Y, = (#:)ier;, e the subsets of X and Y, associated with Dy,

,

Fig. A5

Now to every D, Lemma, Al 15 appheable It prowdeg uy with
finite &-matrices @, such that )

k>1,

’ (Wr1s i) = O, X3), »
(A.2) (@_y, Yo, "71) = 0,X,, L
(U—1; Yo} = Op(, Xp), k<< —1. =

On eliminating successively the %’s, k =1,2

we find that
if iel, T = 2 0,4%;
J'e?.fp

[REES) k= —1, ——2, ey

then (keZ).

Hence ¥ = 6 X with 6 having the shape of Figure A1,

icm°®
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What remains to prove iy that all column sums equal 1. Let us talk
about 6 a8 “the’ - -coefficient for 7,”. In-the analogous way we describe
the coefficients of the equations (A.2). Beginning with j e J;, k> 1, put

o, = the Z-coefficient for .,
== the %,-coefficient for %, if u>%.

By their construction the elements 6, of the jth column can be interpreted
in the following way:

if fel,, u<k: 0;=0,

it dely: 0, = the Z-coefficient for 7,
it dely: 0y = ay- (the %, ,,-coefficient for %),
if 4el, 0 = @y gy .. a, ;-(the T -coetficient for 7).
Put
"B = the sum of the %-coefficients for 7, . ieIy,
B, = the sum of the % —ooeﬁfmlents for 7;, tel,if p>k.

Since a,+ B, is a column sum in. @M, we haNe

(A.3) e+, =1, ux=k.’

The problem is to determine the sum of the geries

Bt s T O Op1 B +

In view of (A.3) its partial sums can be written

8, = fr+ ... 1Py =L1—ay...a,.

But here the product oy ...cq, has the geometrical significance of the
F;-coefficient for #,., when in the iterative process above %, is expressed

T+ O ...

’ n
as a linear combination of %, jelJJ,. This coefficient thus is major-
b=k

ized by the length of the projection of %,,, onto Z; along the % -direction,
where j, is the greatest integer of J,, cf. Figure A.6. But this Jength ob-
viously tends to zero. Hence s, -1, # — oo, which proves the assertion
if j e Jy, k> 1. In the same way one treats the case k < —1. Thereafter,
by a combination of these two cases one settles-the case k = 0 (where
the sum hag to be taken over all integers). By this we have proved the
implication (ii) = (i)".
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P

*

Fig. A.6

To verify (;)’ = (ii), let Y = @ X with @ € #. Consider an arbitrary

corner of yy:

) (% (—Z?Igyzy}')-
. izk i<k

We prove it is situated above yy. By definition (of &) there exist m,

and ny,, M < "y, such that :

g

6y =0 for i<k, j=mn,
0y =0 for ixk,j<m.
Then '
29ij=l it < my,
i<k .
Zﬂﬁ:aj with 0< <l i my<j<my,
i<k
2@,:0 it j=m.
i<k

Taking into account also that all column sums equal 1, for the coordi-
nates of @, we get .

— Nyt == D6y = “'_2”?2;%
3 >

ik k7

' 0 9
= - Y- D (-md=— Y+ > aa,
j=ng np>i=my, i>my np>j=my,
1 L — 1 1
DEEDHDEEEITES R I
i<k i<k j i<k F<my, mE<j<ny
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In other words, Q, € » X Prg,? VI K= (B)mr <y r Prg,= —jg”nk o ,jg'"kaz}).
Hence all vertices of yy lie above yx, which proves the agsertion.

(i) = (il). Let yx<yy (but not necessarily 2% = Y'§,). Choose
the points R,, B, in Figure A.7 so that the segment B, R, intersects yy.
From thesg points we draw the tangents of y5. Also connect them with Yx-
Let & = (&) a0d H = (7;);e; be defined by the figure. Then yg < pr,
%= 37, and thus, by the equivalence just proved, H = OF with 0 e &.
Since % < 7, % < & (4 e1,jed), it follows that OX < ¥ with 0 e &.

Fig. A7

Oonversely, let ¥’ = OX <Y with 6 e%. Then, by the equiv-
alence between (i)’ and (ii), yx < yy-. One easily verities that yg < Y-
Hence yx < pyp, which concludes this part of the proof.

(ii) < (iii). Here we use the Legendre transform

Zy(t) = inf(iy(s)—s).
8<0
Since yx and yy are convex, there holds the equivalence

Yx<vr < Lyx< Lyyp.
Thus, proving that

(A.4) Lyx(t) = ) min(af, ta}),
jeJ

the agsertion will follow.
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‘To this end, referring to Figure A.8, where we have drawn t?e tap;
gent of yx in the (£, 1)-direction, Lyx(f) can be represeonted as .;llgle i;ls-
tance [OM|. Tet the point of tangency be Py: (—j;cmj,é’kmj). y e

figure we have ) ’ .
Lyx(l) = |0M| = ON|+ N M| = > al+1 Y a}.
) ) i=k i<k

But here : _ ' e
T j << By then F g (¢, 1), ie. )< af, 0] = mm(a;,,taij),
if j=F, then (1,1) e, Le. af<<to}, o) = min(af, &y).

This proves (A.4).

Let us denote by ¢, the set of positive concave functions on R,.
It is well known (cf. e.g. [4]) that every such function admits. the repre-
sentation : .

(A5) o(z) = a—}—ﬂm%—j min (2, #)dw(f), dw positive measure.
0

(Here, in fact, w = —¢', 0< ¢ = limp(z), 0K = ]J'n%qa(w)/m.) Writ-
-0 Ead
ing yx < yy for any one of the three equivalent conditions (i), (ii), (if)
of Lemma A.2, the following lemma generalizes a result of Pélya on doubly
stochastic matrices (ef. [187).
Leyma A3, Let I,J be finite. Oonsider the condition
D abg(aa)) < D viowi).

jeJ iel

(A.6)

icm°®
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Then
(i) (A.8) is & consequence of yy < vy if and only if pe ¥,
(i) (A.6) is valid for every o €%, if and only if yx < yyp.

Proof. The “if” parts of (i) and (if) coincide. To verify them, let X, Y
obey (iii) of Lemma A.2 and let ¢ € %, be given by (A.5). Then

Zﬁ;)SZy?, va}‘sz.v/%, ‘

and by an integration

2@ [min(adia}, naw) < 3yt [ min(g2l, )dw ).

Oombiﬁing these three inequalities, we get (A.6).
Verifying the “only if” part of (i), suppose that yx < y, implies (A.6).

Let @, = (21, 1), & = (,, 1), 41 =5 ((w1+m2)/2, 1)- Then ¥ =6X
with @ e . Hence, by (A.6),

0 (@) +p(:) < 20 (0, +2) 2),

which proves the concavity. To see that ¢ 18 positive, let X and Y consist
of the single vectors # = (v, 1)and 7 = (2@, 2), respectively. Then y5 < yyp,
80 that @(2) < 2¢(w), i.e. > 0. Thus pe?,.

The necessity part of (ii), finally, follows immediately by taking
in (A.6) the particular function p () = min (#, 7). We then obtain condition
(iii) of Lemma A.2. m

Remark Al. These lemmata can be extended in various directions.
Firstly, it is not necessary to restrict oneself to the quadrant R:. In
fact, there exists an analogue of Lemma A.l for arbitrary X = (@71,
Y = (7,){~, in R* In particular, such a result applies to complex vectors
@1y ..., m,) € C", 1y ooy Ym) €C™

Above we have been confined to vectors %; (j ed) which are, or
can be, arranged in mnon-decreasing order. However, by an argument
similar to that of the proof of Lemma A.2 in the transition from the finite
to the non-finite case, Lemma A.2 can be extended to X and ¥ being
countable unions of monotonic sets.

In formulating Lemma A.1 we could also have used Yx,p = Py p, Which
obviously is equivalent to vx,p < yrp (cf Figure A1) In passing from
Lemma A.1 to Lemma A.2 we used the translates into the second quad-
rant yx and yyp of yyp and Yr,p; having the axes as asympthotes. Here
the assumption (A.1) enabled us to consider the non-finite case. Translat-
ing in the same way Vx,p o0d Py p, we obtain what we define as jy
and 7. Assuming >'a? or Y@} to be finite, also in this ease the sequences
are allowed to be non-finite, Arguing exactly as in the proof of Lemma A.2,
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we find that the following conditions are equivalent:

() 6X > Y with @ e,
(i) yx = Pp-

(i) ¥ max (], taj)

> X max(yl, ty), t> 0.
jed iel

It 3% = D7, then (i) and (iii) are equivalent to
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(i) X = ¥ with O e&.
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