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Factorization of compact operators and finite representability of
Banach spaces with applications to Schwartz spaces

by

STEVEN F. BELLENOT#* (Tallahassee, Ila.)

Abstract. Let X and ¥ be Banach spaces, X with a finite-dimensional decom-
position. Necessary and sufficient conditions are given for every compact operator, X
to X, to factor through a subspace of X. Also derived are sufficient conditions for X
uniformly finitely representable in ¥ to imply that every compact operator, X to X,
factors through a subspace of ¥. Examples of spaces X are constructed with X x X
not wniformly finitely representable in X. Finally, these results are applied to Schwartz
prevarieties, partieularly with respect to the approximation property.

1. Introduction. Let X and Y be Banach spaces. We say that ¥
has the subspace factorization property [8] (abbreviated s.f.p) for X if
each compact operator X to X factors through a subspace of ¥. The s.f.p.
is related to the approwimation property (abbreviated a.p.) of Grothendieck
(see [8]). In Theorem 2.3, we obtain conditions eduivalent to Y having
the s.fp. for X when X has a finite-dimensional decomposition. Thess
equivalent conditions are the existence of cerfain kinds of fragmentatione
(see Section 2 for definition) in Y.

Consider the statements (i) ¥ has s.£.p. for X and (ii) X is uniformly
finitely representable in Y. Are (i) and (ii) equivalent? When X has a finite-
dimensional decomposition, (i) implies (ii) (Proposition 2.2) and conver-
sely with certain restrictions on' X or Y (Theorem 3.1). In particular,
if ¥ x Y is isomorphic to a subspace of ¥ and X has a finite-dimensgional
decomposition, (i) and (ii) are equivalent. Figiel [8] has shown' that (i)
and (ii) are equivalent if X = 7,,. (See also remarks at the end of Section 3.)

Another collection of spaces ¥ for which (ii) implies (i) are the galac-
tie spaces. A Banach space Y is galactic if for separable spaces X, X uni-
formly finitely representable in ¥ implies that X is isomorphie to a sub-
space of Y. Galactic spaces are considered in Section 4.

Figiel has shown in [7] that there are reflexive Banach spaces Y with
Y x ¥ not isomorphic to a subspace Y. In Section 4, we show that some
of these examples arve not even locally square, that is, ¥ X Y is not uni-
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274 §. F. Bellenot

formly finitely represenfable in ¥. This is done by showing that ¥ is
a galactic space (Theorem 4.1). The proof of Theorem 4.1 uses non-stan-
dard analysis.

The remainder of this paper applies these results to Schwartz pre-
varieties of the form ¥ 5. For a Banach space X, &y is the collection of
Schwartz spaces isomorphic to a subspace of X7, some power of X. In
particular, we consider when ¥y = &y (Theorem 5.4) and we construct
universal generators for some %y (Corollary 5.6). Lastly, we show that
for a Banach space X, X' has a.p. if the Schwartz space (X, &)
has a.p. (Proposition 5.7).

An operator is a continuous linear function. A compact operator
between Banach spaces maps bounded sets into relatively compact sets.
To say that the operator B: X — Y factors through Z, means there are
operators U: X—~Z and V: Z-—+ Y with B = VU. The dual of X is
denoted by X’ and the transpose of the operator 7' is written 7. We abbre-
viate linear span by linspan and closed linear span by cl lin span.

A sequence of finite-dimensional subspaces {E,}is a finite-dimensional
decomposition (abbreviated £.d.d.) for X if for each # ¢ X, there is a unique

sequence {®,} with «, € B, and 2 = Y'»,. We reserve the letter X for

n
a Banach space With at least a f.d.d. {8} A £.d.d. is monotone if the
projections: Em »Em all have norm one. We reserve 1 = (4,) for null

sequences of reals w117h 1=17,2 22 ... >0. Also reserved is the letter T,
which is always a diagonal operator on a space with a f.d.d. For instance,
T,: X — X is the operator which sends # = @, onto Tyo = 31, x,. The

n n
following fact will be needed, a proof is essentially given in [22], p. 40.
Faor 1.1. If the Banach space X has a monotone f£.d.d. {#,} and 1
and T, are as above, then T, is a compact operator. Furthermore, if m < n

are integers, letting X, = linspan{®,,,, -.., B,} and §,,, the restriction
of T, to X,,,, then §,, is an isomorphism With

(1) . [!Smnu < }‘m+1 +ln < 2j’m&-l ’
and

(@) Iomall < 227 — 251, < 227t

If Y and Z are isomorphic Banach spaces, then the Banach—Mazur
distance between ¥ and Z is @(Y,Z) = inf {|8] |I87Y: 8: Y—>Z an
isomorphism}. The Banach space ¥ is said to be uniformly finitely repre-
sentable (abbreviated u.f.r.) in the Banach space Z if there is a constant K
such that, for each finite-dimensional subspace ¥, of ¥, there is a subspace
Z, < Z of the same dimension and d(¥Y,,Z;) < K.
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The proof of Theorem 4.1 uses non-standard analysis, in particular,
it uses facts about the non-standard hulls of a Banach space found in [2],
{10] and [11]. For basic results about non-standard analysis see [17],
[16], and [9], the last for non-standard topological vector spaces.

A locally conver space (abbreviated LCS) (F, &) is a vector space B
with a Hausdorff locally convex topology £ Let % be a &neighborhood ba-
sis of the origin; we will always assume that each U e # iy weakly closed

and absolutely convex. For U €%, the Minkowski functional of U is g
where .
op(®) =inf{A>0: zeAT}.

If U e%, Ey will denote the Banach space formed by taking the comple-
tion of the vector space F [ker o;; with the quotient norm obtained from gy;.
If V < U are elements of %, there is a natural operator By, By induced
by the identity on B. A LCS is a Schwartz space if, for each U e %, there
isa Ve, with V < U and the natural operator By — By compact.

2. Fragmentations and factoring compact operators. For this and
the next section, let X be a Banach space with a finite-dimensional decom-
position {E,}. All our results are independent of the choice of the norm
on X, s0 we may and do assume that {E,} is monotone.

This section is devoted to proving Theorem 2.3, which gives condi-
tions on Y equivalent to s.f.p. for X. First we give two preliminary results.
Lemma 2.1 allows us to restrict attention to diagonal operators T;: X — X,
where A = (4,) is' a null sequence with 1 = 1;> 4,>...> 0. That is,
every compact operator X to X factors through a subspace of Y if and
only if each T',: X — X factors through a subspace of Y. (Lemma 2.1
is similar to Proposition 3.2 of [3], we give a proof of the Lemma for
completeness.)

Lemma 2.1. If U: Z - X is a compact operator between Banach spaces,
then there is & null sequence X = (,) with 1 = A, > A, > ... > 0 and & com-
pact operator V: Z — X such that U = T, V.

Proof. Since {E,} is a monotone £.d.d. for X, @,, the natural projec-
tion onto the lin span {#,, ..., ¥,}, has norm one. Let K be the closure
in X of the U-image of the unit ball of Z. Since K is compact, for each
& > 0, there is an m so that n>>m and z e K imply 0,2 —2|| < ¢ ([14],
P.12). Let n(0) = 0 and inductively choose n(k-+1)> n(k) so that j
Zn(k+1) and s eK imply |Q;o—a|<27% Define 4, =k for
n(k—1) <n<nk). Define V: Z+X by Vz= 21 (Q@n—Qp-) Uz
= 27‘7 Qn(k)_Qn(k—l)) Uz.

Suppose lell < 15 then [(Qnuy—Que) Uzl < U and, for &> 1,
1(@n) — @nge—ry) Uzl < 2“""‘2 Hence V]| < IiUn+Z702“"“< oo, and T,V

=D(2%? Qn 0-1)0) = 3(Q,~0Q,_1)U = U If V is not already
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compact, let u = (u,) be the sequence of positive reals with u = 2,.
Now T,V =T,(T,V) and T,V is compact. &

The following proposition is a preliminary version of Theorem 2.3,
but it is easier to give direct proof than to deduce it from the theorem.
Some partial converses of Proposition 2.2 are the subject of Section 3.

PRrOPOSITION 2.2. If XY has s.f.p. for X, then X is w.fr. in Y.

Proof. Let X, be the linear span of the first »n elements of the f.d.d.
{E,}. It suffices to show that there are subspaces ¥, < ¥ with d(X,, ¥,)
wmiformly bounded. We complete the proof by showing that we can make
a(X,, ¥,) tend to infinity as slow as we like.

Tet 2 = (4,) be any sequence with i, =1 and ;' monotonically
increasing to oco. Since T,: X — X iy compact, the hypothesis implies
that there is a subspace W of Y and operators U: X - Wand V: W+ X
with T, = VU. Let Y, = U(X,) = V"'(X,). Thus restricting to X,
or ¥,, we have U™ = T7'V. Thus d(X,, ¥,,) < |U|V|T;? restricted
to X, < 2| U]IVii;! by Fact 1.1. m .

DEFINITION OF FRAGMENTATION. Suppose that {¥,} is a sequence
of finite-dimensional subspaces of ¥ with ¥;n ¥, = {0},ifj s k. Define P;
to be the pm]ectlon from lin span {¥,}P° onto Y; given by P; (ka = &;

it ;e ¥y Suppose further that, for each j, ||P;l| << co. Then each P; has
a norm perserving extension o W = ¢l lin span {¥,}{°, which we w111 also
call P;. A triple ({X,}, {P,}, W) satisfying all the above conditions is
a fmgmmta,twn of ¥.

Let us make the followmg notations. Let 4 be the set of all sequences
(n(k)) of i ntegerswith 0= n(0) << n(l)< ... Let B be the set of all se-
quences of positive reals (sk) increasing to infinity with s; = 1. Since
X has a monotone f.d.d. {B,}, for each (n(k))eA we define Z,
= linspan{E, 141y -5 Bupy}: And, finally, for (s,) € B, we represent
the following statement by:

() For each (n(k)) A, there is a fragmentation ({X}, {P.}, W)
with max{d(Z,, X;), P} = O(sy).

TeEOREM 2.3. For X and Y Banach spaces, X with & f.d.d., the follo-
wing are equivalent:

i) Y has s.f.p. for X.

(ii) For each (s;) € B, (%) is true.

(iii) For some (s) € B, (%) is true.

Proof. Suppose first that (i) is true; then for each (s;) e B and
[n(®) e 4, define & = (4,) by 4, = sg* for n(k—1) <n< n(k). By the
hypothesis, the compact operator T;: X — X factors through W, a sub-
space of ¥, by operators U: X - W and V: W — X. We may and do

of ¥
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agsume that W = el U{X). Now let Y, =U(Z) =
tricting to Z;, or ¥, we have U™! = T;' V. Hence

W Zy, Y S 200NV Angy = 21TV I3y,

V~YZ,). Thus, res-

by Fact 1.1.

Again, let @, be the natural projection onto linspan{#,,..., B}
in X. Since P, = UT7 (Qnpy— @Qugr—y) V are the projections needed to
make ({¥.}, {Pi}, W) a fragmentation and

I1Pell < 41TV Azgy = 4TIV s

by Fact 1.1. We have shown (ii).
Now suppose that (iii) is true for the sequence (s;) € B. Let (4) t.e
a null sequence with 1 =4, > 1, ... > 0 and > #5,,,< co. To show (i),
k

by Lemma 2.1, it suffices to show that each diagonal compact operator
T,: X - X factors through a subspace of Y. Let 1 = (2,) be anull sequence
with L = 4; > 1, >...> 0 and let u = (u,) be the sequence such that
Uy > 0 and gl = 4,. Let 2(0) = 0 and inductively choose n(k-+1) > n(k)
so that j > n(k+1) implies u; <y,

By hypothesis, since (n(k)) € A, there is a constant M and a fragmen-
tation ({¥.}, {Pi}, W) with d(Z,, ¥;) < Ms, and [P < Ms,. Let Jy:
7, — ¥, be an isomorphism with |J;|| < Ms, and |J7 | < 1. Let Ty: Z, — Z;,
be the restriction of T, to Z,.

Define U: X—Wand V: W—X by U= ZJka Qi) — @rgo—yy) A
V= ZTLJ, P,. Now

1O1< ) Il 1Tl 1@y — @iy
]

< 2 (M3) Qltnge-y) (2) < AM D) 53651 < 00,
I

I71< 3 1L I
< 2 (2ptagey) (1) (M) < 2M 2 15 < 0.
And finally
VU = (ZTkJITl-Pk) (ZJ'Tj(Qn(J') _’Qn(j-—l)))
= ZTkJL JkTI ka Qn(fc— Z‘-['l\ ‘n(k) T

3. Uniform finite representability and factoring compact operators.
Theorem 3.1 is a partial converse to Proposition 2.2. First we need some
definitions we remind the reader that X has a monotone fd.d. {H,}.
Let ¥ and Z be Banach spaces.

Cng—n) = Ts. ™
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We say Y is finitely stable if there is a constant K with ¥ K-u.f.r.
in each subspace ¥, = ¥ with dim (Y /¥,) < oo. We say Z is stably finitely
representable in Y if there is a constant K with Z K-u.f.r. in each subspace
Y, « ¥ with dim(Y/¥,)<< oo. We say Y is locally square if Y X Y ig
ufr in ¥. *

TeeoreM 3.1. If X and Y are Banach spaces, X with o f.d.d. and X
is wfr in ¥, then each of the following is sufficient o imply ¥ has s.f.p.
for X.

() (XX XX ...)p is isomorphic o a subspace of X, for some p,
1<p < oo (BY p = oo we mean the gp-sum.)

(i1) X ds stably finitely representable in ¥.

(i) (¥ x ¥x ...)p is isomorphic to a subspace of ¥, for some p,
1<p< oo,

(iv) Y is finitely stable.

(V) Y XX is isomorphic to a subspace of ¥.

Proof. We will show (i) = (if), (iii) = (v), (iv) = (ii) and complete
the proof by showing that each of the conditions (ii) and (v) imply condition
(iii) of Theorem 2.3.

(iv) = (ii): ¥ X is K;-ufr. in ¥ and Y is Kyufr. in ¥,, then X
is Ky Ky-ufr. in ¥,.

(ili) = (v): Is obvious.

- (i) = (ii): Let Y, be a finite-codimensional subspace of ¥. By hypo-
thesis, we may assume (X x X x «)p is K-ufr. in Y. Let § be a finite
rank projection with ¥, = kerS. Let & be an r-dimension subspace of X,
let m = dim(¥/Y,) and let F be the l,-sum of (mr+1)2 copies of E. Since
F o (XxXx..)p, there is a subspace Z = ¥ with a(Z, F)< K. Let P
be any projection from ¥ onto Z. By Lemma 4.1 of [8], there is a projec-
tion @ in ¥ with Q8 = 8¢ = 0 and d(Q(Y),E’) < K. Now 8Q = 0 implies
Q) < kerS = Y,; thus X is K-ufr. in ¥,. Therefore, (i) is true. We
observe that this proof also shows (iif) = (iv), and that (ii) is implied by
the following weaker condition:

(I') The sequence {X,(XxX)p,...,(Xx ... X X)p...} of Banach
Spaces are each K-u.f.r. in ¥, for some K and some P2, 1<p < oo

(ii) = Theorem 2.3, condition (ii): We actually show more, namely that
(82) can be a bounded sequence. Leb (n(k)) e 4 and {Z;} as in Theorem 2.3,
and suppose X°is K-ufr. in ¥. Inductively choose {¥;} and {W,} so that

1) &(¥X,,Z) < K,

(2) Xpyy = Wy,

B)YoW,oW,o...

(4) dim(¥\Wy) < oo,

?
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() The projection from Y.+ ... +¥,+W, onte Y,+... +X,
with kernel W, has norm <146, (JT(1+8;) < &)

We can choose Y, , satisfying (1) and (2) by hypothesis, where as
choosing Wi, can be modelled on the standard construction of a basic
sequence in any Banach space as in [14] (see p. 10). .

(v) = Theorem 2.3, condition (iii): The idea of this proof is fairly easy.
‘We construct a sequence {W,} of subspaces of Y, with each W, isomorphic
to Y. By picking ¥, = W, we will obtain a fragmentation of Y with the
desired properties. We obtain the {W,} by infinitely often injecting
Y x Y < Y into the second factor of ¥ x ¥ = Y. We pass to the details.

Let J: YxY— Y be an isomorphism of ¥ x ¥ onto a subspace-
of Y. Let Q;: YxY > ¥ xY be the projection onto the ith factor,
i =1,2. We may assume [|@;]| = 1. Let I,: ¥— ¥ x Y be the injection
of Y onto the ith factor, i =1, 2. Let M = [J]|[|J )\

We inductively define:

(1) Ji: Y- Y an isomorphism into a subspace of ¥, for ¢ =1,2
and k=1,2,...

(2) Wi =Ji(Y), fori =1,2and %k =1,2,...

(3). P a projection from Wi @ W} onto Wi, fori = 1, 2.

First let J} = JI, and P} = J@,;J*; we note that (W7, ¥) < fl{[ a)::éll
I\Pi|< M, for i =1,2. Define Ji,, = JidI, and P}, = J,iJQi(J)“ (J?;G)Jrl
for i =1,2. Now &(Wi.,, ¥)< Ma&(W:, ¥) < MF™ and [P, < M,
for i =1, 2. o

Let W, = linspan {W;};>, and let B, be the natural projection from W,
onto W. Now R, = PLP}_, ... PP} on W,and so [|R,| < M* - M*-... - M
< Mk(lc+1)‘ .

Now let (fn(k)) be a sequence in 4, and Z, as in Theorem 2.3. Since {
is K-ufr. in ¥, there is a subspace ¥, in W; with d(?k, Y,,)Q_KM .
Furthermore, the projections P;: linspan {¥,} onto ¥; are ]U.S“J the restric-
tion of R; to linspan {¥,}; hence [Pyl < M**+D. Letting W.= cllinspan {¥},
the fragmentation ({¥.}, {P,}, W) satisfies (+) for (s;) € B, Whe;e s =1
and s, = M) for E>1. m ‘ )

" Remarks. L. Sinece 1, satisfies condition (i), we obtain as_a co%*o]lary
Figiel’s Theorem 7.7 [8] that ¥ has the s.fp. for I, if and only if I, is u.fx
in Y.

2. We also obtain Figiel’s result [8], Theorem 6.1, tl}at every com.pa.ct
operator factors through a subspace of Y is and ‘only if ¢y is wir. 1..n‘Y
(i.e. ¥ ig universal for finite-dimensional spaces). Since such an Y satlsf.les
condition (iv).

3. It seems reasonable that Theorem 3.1 could be extended to cases
where
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(vi) X dis finitely stable and

(vii) Y is locally square.

I do notknow if this can be done, but methods used above, in particular
Lemma 4.1 of [8], require too much dependence on the dimensions of Z,.

4. It is easy to see that each of conditions (i) through (vii) imply
that X x X is wir. in ¥. Figiel in [7], constructs examples of Banach
spaces X, for which X x X is not isomerphic to a subspace of X. Actualty,
he shows that X is not locally square nor finitely stable. We give another
proof in the next section. : .

5. A similar development shows that Theorem 3.1 remains true if
we drop the condition that X has an £.d.d. and weaken the conclusion to
every compact operator R: X — X, which is the uniform limit of finite
rank operators, factors through a subspace of Y. Hence Theorem 3.1
is true if X has the a.p. :

6. Condition (ii) implies that there is a subspace Y, of Y such that
each compact operator T: X - X factors through Y,. This subspace can
be constructed in a fashion similar to the spaces G, (see [8]). The sequence
{632, ([8], p. 194) are chosen to be dense in the finite-dimensional sub-
spaces of X, rather than in all Banach spaces as in [8]. The construction
Droceeds as in the proof of part (if) of the theoren. )

7. If Z@®Z is isomorphic to a complemented subspace of Z, and ¥
has the s.f.p. for Z, then there is a constant K such that for each compact
T: Z -+ Z, the factorization operators U and V can be chosen to satisty
IOV < KT} The proof combines the techniques of Theorem 3.1 (v)
and (i) = (ii) of Theorem 5.2 of [8]. Hence if such a Z has the b.a.p.
([14], p. 12), then Z is w.f.r. in each ¥ having the s.£.p. for Z.

4. Galactic Banach spaces. A Banach space Z will be called galactic
if for each separable Banach space Y, then ¥ ufr. in Z implies Y is iso-
morphie to a subspace of Z. Roughly speaking, a galactic space Z is sub-
Space universal for separable Banach spaces made out of Z’s universe
of {finite-dimensional subspaces. :

An- obvious example of a galactic space is Hilbert space and every
galactic space must contain a subspace isomorphic to l,. Other examples
inelude I, and ¢ [0,1] as well as L, [0, 1] (see remark after Lemma 4.2
below). In this section, we will construct other examples of galactic spaces
which have uneonditional basis and some of which are neither . finitely
stable nor locally square. For ¥ a galactic space and X with a f.d.d.,
dlearly Y has the s.f.p. if and only if X is nfr.in ¥. ) )

Let {E,} be a sequence of finite-dimensional Banach spaces with
the property, for each integer m and &> 0, there is N so that for each
m-dimensional subspace Y of some E, with n > N, we have a(ly, ¥)< L+e.

Examples of such sequences {E,}, include {I2i3) for any sequence of

° ©
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integers (d(n)) and any sequence of reals (p (n)) with limit two (Corollary 2.2
of [157). .
Let X = (Byx By % ...), and let X = X,. X satisfies:

(x#) for each integer m and e > 0, there is an N s 80 that for each m-dimensional
subspace Y of Xy, we have d(¥, 1) < 1 +e.

We obgerve that X has a complemented subspace isomorphic to I,,
hence by Pelezyiski’s decomposition method (see [14], p. 30) X is isomor-
phic to XP1,.

TreorEM 4.1. X is o galactic space.

Remark. Figicel has shown in [7] that it B, = lﬁ%, with p (n) strictly
decresing with limit two, then for some choices of d(n), X x X is not iso-
morphic to a subspace of X. By the theorem (or by inspecting Figiel’s
proof [7]), X is not locally square nor finitely stable. For other results
apout Figicl’s space see [4]. i :

We need some simple facts about non-standard norm spaces. Firgt
80 we may quote results, particularly of [10] and [11], we make the tech-
nical assumption that our nonstandard model is an enlargement which
is at least Ny-saturated. Tf ¥ is a Banach space, we ‘will write *¥ for the
non-standard Banach space. We note that ¥ is a subset of *Y and -]
is an extension to *¥ of the norm on Y.

Define fin = {x €*¥: |z is finite (ie. |zl is infinitesimally close
o a standard real number, |/j#|]])} and let w={me*Y: ||z is infinitg-
simal or equivalently |||z{|| = 0}. On the quotient vector space fin/uy = ¥
11} is & norm. In fact, (ff s 1111) is & standard Banach space called the
non-standard hull of (¥, ||-I). We now restate Theorem 2.3 of [10] as
Lemma 4.2.

Lemwa 4.2. If (Y, ||) is & Banach space, then its non-standard
il (7, ||I-1]) 4s galactic.

Remark. We now can give an easy proof that L,[0,1] is galactic.
Let ¥ = L,; then Y is isomorphic to an I, (u)-space by Corollary 2.5
of [11]. Furthermore any separable subspace of IL,(s) iy isomorphic
%o & subspace of I, [0, 1] ([14], p. 124). Of course, this result is well known,
for example, seo [14], p. 122, where a “similar” proof is given.

Proof of Theorem 4.1. Let X be as given. Since X is reﬂexAive,
by.[1], Theorem 3.1 and [2], Theoremn 4.1 the non-standard hull X is
Jdsomorphic to X@H , where H is defined below. Let ¢ be the quotient
operator: fin»»i’, and let P = {u efin: |f(x)| is infinitesimal for each
standard f in X'}, Then H = ¢(P). By the remark before Theorem 4.1,
it suffices to show that H is isomorphic to Hilbert; space. This will be
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done by showing each finite-dimensional subspace of H is close to Hilbert
space of the same dimension.

Let Y be a finite-dimensional subspace of H. Let ¥, be a subspace of
P < *X of the same dimension as ¥ and with ¢(¥;)= Y. Let m = dim ¥
= dim ¥, and let ¢ > 0; by (=), there is an N so that each m-dimen-
sional subspace of Xy is 1+ close to If*. The same statement is true for
m-dimensional subspaces of *X, <= *X. Let Py: X—X be natural

»

projection onto the linspan {Hj, ..., Hy}, we can write Py = } fi®@;,
M 1

and X = ker(I —Py). Now *Py = 3 f; ®®; = Py and 50 "Xy = ker(*I —
1

— Py). Letting ¥, = (I —Py)(Y,), and since ¥, = P, we have d(Y,, Y,)

is infinitesimally close to one. Now d{¥, i) < d(¥y, Vo) d( Xy, 1) < 1+s,-

since ¥, < *Xy. m

Remark. A modification of the proof of Theorem 4.1 yields that the
space Y@L, is- galactic, when ¥ = (ByxHyX ...)y, B, =14, limit
p(n) = gand 1< ¢< co. (Use Theorem A of [15].)

5. Schwartz spaces. In this section we explore interconnections be-
tween Banach spaces and Schwartz spaces, in particular, with respect to
the approximation property. We find it convenient to use the notions
of prevarieties. A collection of LCS’s is a prevariety [1] if it is closed with
respect to subspaces, products and isomorphic images. The collection &
of all Schwartz spaces is a prevariety (see [12], p. 275).

For a Banach space Y, let ¥ be the set of Schwartz spaces isomor-
phic to a subspace of a power of ¥ (i.e. Y* for some index set I). It is
easy to see that &y is a prevariety; in fact, it is the intersection of & with
ov(Y), thé smallest prevariety containing Y. If ¥ =1,, we will write
Py =y

Our first order of business is to construct some examples of spaces
in ¥, when X has & finite-dimensional decomposition {&,}.

ExavpLE 5.1. Let 4 = (4,) be a null sequence with 1 = 1, > 1,> ...
...> 0. Let T be the diagonal operator from X to X, corresponding to
4 = (p,), Where p, >0 and u2*= 1, for k =1,2,... Let X, be the pro-
jective limit of the sequenée:

Ty T Ty
i X, — X, —— X,

where each X;, = X. If we let §: X - X, be T}, then T,: X — X, is the
composition Ty T, ... Tj8,. Hence there is a natural continnous operator
T,: X+ X,, whose image in X, is the same as T;: X - X,. It is easy to
see that X; is a Schwartz—Fréchet space ([12], Proposition 9, p. 282)
in #y.

icm°®
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Before the next example, some definitions are in order. Let X have
a £.4.d." {#,} and let P, be the projection Yu,—m,. It &, = P, (X"),
. . <

then {&,} is said to be shrinking if {E,} is a £.d.d. for X’. Let ¥ be s Banach
space with norm topology & Then &g, the topology of uniform -conver-
gence on. Y'-norm null sequences, is the strongest Schwartz topology on ¥
weaker than & [1]. If (Z, n) is & norm subspace of (Y, &), then 7y is the
restriction of &g o Z. If 4 < Y, then

A® (the absolute polar) = {y € ¥: <y, ad| <1 for a e 4},

Exawpir 5.2. Suppose that X has a shrinking f£d.d. {B,}; then
(X, &) eFx. To see this, let K = {»]} be a norm null sequence in X".
Since {#,} is shrinking, Lemma 2.1 applies to X’. Thus there is a null
sequence A = (4,) with 1 =4 >2,>...> 0, and if U’ is the unit ball
of X', then T;: X' — X’ maps some multiple of U’ onto a superset of K.
We may assume T5(TU’) > K. Since T, is the transpose of T,: X - X,
and by Lemma 6, p. 39 of [18], (T;(U"))° = T7((U')) = T7Y(U), where U
is the unit ball of X. But K < T;(U’), so that K° > T7Y(U). We have
shown that for each Egneighborhood V = E°, of the origin, there is
a Egneighborhood W = T7Y(U), with W < V and X isomorphic to
(X, €). (By Fact 5.3 below.) Hence (X, &) € #x.

Applying our earlier results to the prevarieties of the form &y,
we obtain Theorem 5.4. We need the following fact whose proof is easy

- and will not be given.

Faor 5.3. Let (B, &) be o LOS, Y @ Banach space with unit ball T,
and S: B — Y be an operator. Then W = 871 (U) is a -neighborhood with By
isomorphic to a subspace of Y.

ToEOREM 5.4. If X has f.d.d. and if ¥ x Y is isomorphic to & subspace

. of X. Then &y = & if and only if X is w.fr. in Y.

Proof. Suppose ¥y < #y; by the proof of Proposition 2.2, X will
be wir. in ¥ if each T,: X - X factors through a subspace of Y. By
Bxample 5.1, X, e %y = %y, hence X, is isomorphic to a subspace of
a power of Y. In the notation of Bxample 5.1, let U, be the unit ball of X.
Then there is a X,-neighborhood V and k> 1, with U, ¢ V < U, and
(X3)p isomorphic to a subspace of Y?, a product of a finite number of
copies of Y. Thus, by Example 5.1 and by hypothesis, T;: X — X factors
through a subspace of ¥. Therefore, Proposition 2.2 implies X is w.f.r.
in X.

Conversely, suppose that X is wifr. in ¥. Since ¥ x ¥ ig isomorphic
o a subspace of ¥, X" is uf.r. in ¥. Now X" has a £.d.d., so Theorem 3.1
implies that ¥ has the s.f.p. for X™. o

Now let B be a LCS in 5. Thus for every neighborhood U of the
origin in F, there are neighborhoods V and W with V <« W < U, Hy - Ep
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compact and Hy, isomorphic to a subspace of X™. By considering H,, — B,
as a compact operator B —> X" and applying Lemma 2.1, we have a fac-
torization B, — X"~ X" Now the latter operator factors through a sub-
space of Y. Fact 5.3 yields a neighborhood ¢ with ¥V =« @ = W and Eq
isomorphic to a subspace of Y. Hence F ey, m

Remark. We can now give a complete description of the inclusion
relations among the prevarieties &,, for 1< p < oo:

(i) Ly © Fp, for 1< p< oo

(i) #p cFPp =, for 1<p < .

(ii) &, =« &, for 1< g<p<2.

(iv) #, ¢ &,, otherwise.

These inclusions are familiar, since &, &, if and only if 1, is iso-
morphic to a subspace of L,. This follows since I, and I, generate the
same Schwartz prevariety &y, L, is a galactic space, and by Theorem 5.4.
(See [14] for which 1, are subspaces of L,.)

A universal generator for the prevariety &, is a LOS E e &y, such
that each F e &y is isomorphic to a subspace of power of E. The following
proposition has been proved for some special cases [13], [16], [17], and [3].

PropositionN 5.5. If Y is o Banach space with ¥ x ¥ isomorphic to
o subspace Y, then each B'e ¥y is isomorphic to a subspace of a power of
(¥, &). Thus if (Y, &) € Py, then (T, &) is & universal generator for ¥y .

Proof. By hypothesis, each B e &y has a neighborhood basis % such
that U e % implies By, is isomorphic to a subspace of ¥. Thus there is
a natural isomorphism ¥ into ¥%:

B [ By~ ¥* (T, &),

Uew

Sinece the latter operator is continuous, the proof will be complete if the
composition B — (¥, &) is open.

Let Ue and let V e% so that V < U and By — By is compact.
The transpose (Hy) — (Ep) is also compact, Let K < (Hy) be the image
of U° by the transpose. There is a norm null sequence {#,} in (By) with K
contained in the closed absolutely convex hull of {w} ([21], p. 111). Con-
sidering By as a subspace of ¥, use the Hahn-Banach Theorem, to extend
{#,} to {&,} a null sequence in Y’. Now W = {&,)° is a &gneighborhood
of Y. WnBy < {#,}° = K° = §7(U), where §: B, - E, is the natural
operator (the last equality is Lemma 6, p. 39 [18]). Thus B (¥, £)*
is an - isomorphism. m '

COROLLARY 5.6. (X, &) is @ universal generator for &5 if X has a shrink-
ing f.d.d. and X x X is isomorphic to a subspace of X.

* ©
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Remark. Bince I,, 1 < p < oo, and ¢, satisfy these conditions, (Y
iy o universal generator for &, and (q,, &) is a universal generator for &.

The LOS B has the approzimation property if the identity operator
B — B is in the closure of the set of finite rank operators when the space
of operators: B - F is given the precompact-open topology [21]. It is
known that if there is an F € &, without the a.p., then there is a subspace
of ¥" without the a.p. ([21, p. 109). Proposition 5.7 provides a converse
to this result if ¥ has a shrinking f.d.d. (apply Example 5.2 and [21],
p. 113). As a corollary, each of &#,, 2 < p < oo, has a LCS without the
a.p. in light of [6] and [5].*

PROPOSITION 5.7. Let ¥ be a Banach space with dual ¥'. Then (¥, &g)
has the a.p. implies that Y’ has the a.p., and conversely if Y is reflexive.

Proof. Now (Y, &) has the a.p. if and only if, for each precompact
set K and open set U, there is a finite rank operator F with (I — F)(K) < U.
Since &g 'is a Schwartz topology of the dual pair (¥, ¥’) and bounded
gets are precompact in'a Schwartz space, we may assume that X runs over
the scalar multiples of the unit ball of ¥. By the definition of &, U may
be assumed to be the polar of a norm null sequence of ¥'. By Lemma 6,
p. 39 of [18],

(IT=F)E)) = (I-F))(E).

Thus (I —F)(K) < U if and only if (I-F)"(U°) < KE°. Now as U runs
over the open sets of &g, U° iz running over the compact sets of ¥’, and
as K runs over the precompact sebs of &g, K° is running over the open
sets of Y'. Thus (¥, &) has the a.p. implies ¥’ has the a.p.

For the converse implication, we observe that the above proof is
reversible if in ¥’ we can choose the finite rank operator to be the trans-
pose of a finite rank operator on Y. That this is the case is an easy conse-
quence of reflexivity. m
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Boundary limits of Green’s potentials along curves II
Lipschitz domains

by

JANG-MEI G. WU (W. Lafayette, Ind.)*

Abstract. On a Lipschitz domain D in space, let x be a mass distribution and «
the Green potential of u. Conditions on p are given so that 4 # + co; under the
same condition we show that the boundary limits of % along curves with certain
differentiability properties are zero almost everywhere.

Green’s potential occurs in the study of subharmonic and superhar-
monic funetions via Riesz decomposition theorem ([5], p. 116). Let D
be an open subset of R™ having a Green’s funéetion @; Gleen § potential w
given by a mass distribution u is defined to be

(0.1) = [G(a, y)au(y)
3 4

for every % € D. When D ig the unit disk in the plane, the necessary and
sufficient condition for w % -+ ocois

[a—lhauy) < + oo
D

under this condition % has radial limit zero at almost every point on the
unit circle, see Littlewood [6]. Later in 1938, Privalov [7] proved the
similar result for Green’s potentials on the unit ball in R". The nontan-
gential limit of Green’s potential need not exist at any point on the
boundary, as pointed out by Zygmund, [9], pp. 644-645.

The purpose of this paper is to study the boundary limits of Green’s
potentials in a Lipschitz domain D in R*, n > 3 along curves with certain
differentiability properties. The problem for # = 2 was studied in [11],
where, with the aid of conformal mapping, we need only o study the
limit of Green’s potentials on |2| < 1 along curves with the same differen-
tiability properties. When n > 3 the conformal mapping technique does
not apply and it is not even obvious for which x the Green’s pofential
of u is not identically +oo. Our main tool is an estimate on a certain
harmonie function in a cone derived from a series representation of that

* Current address: Purdue University, West Lafayette, Indiana.
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