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This is true because for every B € (0, =) there exists some b > 0 depending
on 8 so that there is an exterior cone of size K(f, b) at every point on dD.

It 8D is (2, then at every point 4 on 0D there is a ball of a fixed size
exterior to D and tangent to D at #. If v is a pogitive harmonic funetion
outside a ball and vanishes on the sphere, then the value of » at a point
near the sphere is proportional to the distance from that point to the ball.
Using this fact instead of Lemma 1 we may replace ¢ by 1 in Theorems 1, 2,
and 3. Thus condition (2.1) is weakened but the corresponding exceptional
seti is enlarged.

Suppose that D is a Liapunov or a Liapunov-Dini region [10]; by
an estimate of a harmonic function obtained in [10], we may also.replace p
by 1 in the above theorems.
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On extending and Lfting continuous linear mappings in
topological vector spaces

W. GEJLER (Saransk, U.S.8.R.)

Abstract. (1) Let 0 < p < 1. Then there is no non-zero topological vector space
which has the extension property for the class of all p-Banach spaces with separat-
ing continuous duals.

(2) If o is the clags of all Fréchet spaces (or of all sepa.rable Fréchet spaces,
or of all nuelear Fréchet spaces, or of all metric vector spaces) and a space P (P e ")
hasg the lifting property for o, then P is finite-dimensional.

Let o be any class of topological vector spaces(l) (briefly TVS’s),
and let B be any TVS. The space & is said to have the extension property
for & if for every X e A" and for every subspace ¥ < X, each mapping
(= linear continuous mapping) f: ¥ — F has an extension to a mapping
g: X — B. Dually, F is said to have the lifting property for 2" it for every
X e A" and for every closed subspace N < X, each mapping f: B — X [N

‘has a lifting to a mapping ¢g: F— X (ie. f = pog, where p is the quo-

tient mapping from X onto X/N). If B € A and F has the extension prop-
erty for " [E has ‘the lifting property for '], then E is called an injec-
tive [projective] space in A .

Let A be the class of all Banach spaces. Then (a) F is an injective
space in o iff B is a P,-space for some 1> 1; (b) F is a projective space
in " iff B is isomorphic to I, (I") for a certain set I" ([2], [10], [11], [13]).
Any product [countable product] of injective Banach spaces is an inject-
ive space in the class of .all locally convex spaces [of all Fréchet spaces]
(see [11]). From an argument of G. Kothe ([10], p. 182; see also S. Role-
wiez [12], p. 65) it follows that for each p & (0, 17 the spaces 1,(I") are pro-
jective in the class of all p-Banach spaces. The author proved in [3] that
in the class of all locally convex spaces a space F is projective iff # is
a direct sum of one-dimensional spaces. This result is also true for the
clags of all complete locally convex spaces [4]. Using the method of [3],
one can show that in the class of all TVS’s a space F is projective iff the
topology of E is the finest vector topology for the vector space F.

(1) we include the Hausdorff condition in the definition of TVS.
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We show in this paper that if a class o of TVS’s contains all p-Banach
spaces with separating continuous duals for:some p (0<p<<C1), then
there is no non-zero injective space in # (Theorem 1.5). The proof of
this theorem is a slight modification of N. J. Kalton’s idea ([7], proof of
Theorem 6.7). In § 2 we show that every projective space in the class of
all Fréchet spaces (or all separable Fréchet spaces, or all nuclear Fréchet
spaces, or all F-spaces(?)) is finite-dimensional. This answers a question
of L. Nachbin ([11], Problem (2)).

The author is grateful to Professors C. Bessaga and T. Figiel for
conversations in connection with the proof of Theorem 2.1, to the referee
for very many helpful suggestions and to Professor N. J. Kalton, who
made available to him a preprint of [T].

§ 1. Spaces with the extension property. Let % be a class of TVS’s,
and suppose that F is a non-zero TVS which has the extension property
for . For every topological vector space (X, 7), let o(X) be the coarsest
vector topology on X which preserves the continuity of all mappings
from (X, 7) to E. It is clear that for each base of neighbourhoods of 0, U

n
in B all sets of the form. (N f;(V) (where V e U and f; are mappings
i=1

from (X, 7) to E) form the base of o(X)-neighbourhoods of 0.

LevmA 1.1. Suppose that X € & and let Y be a subspace of X. Then
o(X) induces the topology o(Y) on X.

Proof. Obvious.

Levma 1.2. Let (X,v)ed’. Then v and o(X) determine the same
classes of closed wector subspaces.

Proof. It is enough to show that each z-closed subspace X, <« X
is g(X)-closed. Suppose 6 € X\X, and let ¥ be the linear span of X,u {a}.
Then X, is a v-closed hypersubspace of Y; it follows that there exists
a 7-continuous one-dimensional mapping f: ¥ — F such that f(a) # 0,
X, =f71(0). Let g be an extension of f on X. Then X, < g~*(0) and g(a)
# 0. Since g 18 o(X)-continuous, ¢ does not belong to the g(X)-closure
of X,. Hence X, is p(X)-closed. .

COROLLARY 1.3. Let (X, 7) be an F-space belonging to A". Then =
has a base of o(X)-closed meighbourhoods.

Proof. The result follows from [6], Corollary 5.4.

LevvA 1.4, Suppose that (H,v) 48 a Hilbert space with an ortho-
normal basis (6g),eq such that Card(A) > Card(E). If A’ ¢ A and Card(4')
= Card (4), then 0 belongs to the o (H)-closure of the set {e,: aw e A’}

$

(%) An F-spacé is a metrizable complete TVS; a Fréchet space is a locally convex
F-gpace.
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Proof. It is enough to show that, for every mapping f: H -+ B,
we have Card({oed': f(e,) #0}) < Card(4’). We have the factori-
zation f = pof’ where p is an orthogonal projection from H on some
closed subspace G = H and f* is an injection from @ into . Let (g5)pem De an.
orthonormal basis in @. For each § € B we define A,={aecd'’: (€.lgs) # 0%
All the sets 4, are countable, and sinee f* is an injection, we have Card (B)
< Oard (B) < Card(4"). Hence Card( |J 45) < Card(A’) and the result
follows from the equality beB

AN U 4y ={aed’s flo,) = 0}.
BeB-

TemorEM L.5. Let " be any class of TVS's which includes oll p-Banach
spaces with separating continuous duals for certain p (0<p<<1). Then

there is mo non-zero topological vector space B having the ewtension property
for A,

Proof. Suppose E == {0} has the extension property for . Let
(H, 7) be any Hilbert space of Lemma 1.4. It is clear that (H ,T) A
Let 4" = AN\{y}, where y is a fixed element of 4. Denote by O the z-
closure of the absolutely p-convex hull of the set {e.+e,: ac A’} Let |-
be the Hilbert norm on H and denote by V the unit ball in (H,[]). For
each n > 1, let ||-|, be the p-norm on H whose unit ball is the 7-closure
of O+n~'V. Since ¢ is v-bounded, the p-norms |- |, define the topology =
on H. Let (X, ||-]) be the p-Banach space of all sequences (®p)nm1, Where
%, € H, such that [(,)[| = 3 [v,ll, < -+ oo; it is clear that the dual space X

& .
is point-separating. By Corollary 1.3, there exists a 6> 0 such that the
o(X)-closure of the unit ball {#eX: |u| <1} is contained in {we X:
0zl <1}. Let X, = {(w,) € X: @, = 0, n # k}; then X, iy isomorphic
to (H,|-|). By Lemma 1.4, the vector ¢, is in the g¢(H)-closure of C.
Hence, by Lemma, 1.1, we have ||8a,,]| < 1 for the elements a,, = (4,,, €nm1-

2
Thus |ide,ll, < 1, and hence de, € C+ RV for every m > 1. Since C is

7-closed, we have de, e 0. Thus, for every &> 0, there exist indices oil,
ooy 0, € A and scalaxs ¢y, ..., 4, such that

n

n
V]t,i|17,<\1 and ‘5ey—2ti(eq+e,,)i<s.

£y
=] =1
Taking the inner products of (66, — 3 ti(eal.—{-ey)) and e,, 6, , ..., &, Succes

sively, we obtain

’6—2@

<e and Hi<e (i=1,...,n).
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Now
| S < 3w < maxir S o

thus 6 < e-+¢? and hence § < 0, which contradicts 6> 0. This com-
pletes the proof.

§ 2. Projective spaces in certain classes of F-spaces. Let X be a TVS;
by the density character of X (in symbols Dens(X)) we mean the minimal
cardinal number m such that X has a dense subspace ¥ < X with dim(Y)
=m (dim(¥) denotes the algebraic dimension of ¥).

TEEOREM 2.1. Suppose that m is a cardinal number and let A,
(¢ =1, ..., 6) bethe class: (1) of all Fréchet spaces; (2) of all Fréchet spaces X
with Dens (X) <m; (8) of all Fréchei-Montel spaces; (4) of all nuclear
Fréchet spaces; (5) of all F-spaces; (6) of all F-spaces X such that Dens(X)
<m, respectively. Then for each © =1, ...,6 every projective space P e A,
8 finite-dimensional.

Remark. Let # be any class of TVS’s, let A be the class of all spaces
which are the completions of spaces of #7; supose that A A Tt is
eagy to show that if P is a projective space in ", then the completion of P
is a projective space in Az Hence, for instance, every projective space in
the class of all metrizable TVS’s is finite-dimensional.

(I) We first describe the general construction to be applied in the
proof of Theorem 2.1.

Let A = (of);,., be any infinite numerical matrix such thatb
(@) Vi, n: 0<af? <of*™ 5 (b) Vjdn: of” > 0. We will denote by L(A)
the Kothe space of all sequences & = (&)j1 such that Van

Pu(@) = Za}")ls,.a< +oo.

The | space L(A) equipped with the sequence of the seminorms (p,,) is a Fré-
chet space ([9], p. 422). We will denote by e, the sequence (6,,)yz1; it
follows that z = Z‘EJe in L(4). In the sequel we will use the following

results (we assume 0/0 =0):
(M) L(A4) is Montel iff for every infinite subset K < N and evers Yy n>1
there exwists an m > n such that
inf{ef”/af™: je K} =0 (G. Kéthe [9], p. 424).

(N) L(A) is nuclear iff for every n>1 there ewists an m = n such
that 2 a”/af™ < + oo (A. Grothendieck [5], Chap. II, Prop. 8).
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Suppose we are given the matrix 4 and two mafmces (B, 20
(™) 51,4y Such thab
(@) Vi, m: 0< B < B
(i) Vom,n: limaf™ /g = 0;
(iii) V= 1,]¢> n: 1< o <ol
(V) V1,0 a1 ofd <A+,
Weputfori,j,n=1
(n) i 1
= ﬂ(n) alitn=1 lﬁ zj .
%M of if iz

Tt is clear that for every » > 1 we have y{P < y%+ for all but finite-

ly many pairs (4,4). Let L(I') (where I' = (y)) be the Fréchet-Kothe
space of all double sequences z = (£;) such that

Qn z) 27(")lClj| < o0,
equipped with the sequence of seminorms (g;,). For each z = (Cij)AEL(I‘)
and for each j>1, we have D |{;] < +oo. In fact, let us consider an
iz1

integer 7 such that af) > 0; then
D el ST D) ol 1Lyl < (617 D) 91241 < +oo.
izr i=r izl
LEMMA 2.2. The correspondence m: (Ly)ijm1 > ( D Lylis1 18 @ mapping
izl
from L(T') onto L(A). Hence L(A) =~ L(I') [~ (0).
Proof. Let z = ({;) e L(I") and % > 1. By (ii) there exists a j, such
_that if j> j, then of” < ™. Now

Pu(n@) = X af?| ¥y

=1
< }j Dyl 3 Y gl > Yyl
J<in i<n J>J'n i<n izl izn
< 3 Safiggl+ 3 3 B+ D) 3 A e g
J<ip i<n =1 i<n i=l izn
= g()+ > > iyl
J<iy i<n

Hence n(z) e L(4) and =: L(I")— L(4) is continuous. It remains to
show that the conjugate mapping =': L(4) — L(I') is an injection and -
a’ (L{A)) is weakly closed in L(I) ([1], p. 106). It is known (see [9],
p. 422) that L(A) is the space of all sequences () such that [n;] < ca{
for some ¢>>0 and some of (analogously, L(I')). It is clear that =’ 1s
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injective and it is easy to show that =’ (L(A)’) consists of all double sequen-
ces ;) such that for each i, j we have n;; = 7,;. Thus ' (L(A4)’) is weakly
closed.

COROLLARY 2.3. Hwvery separable Fréchet space is a quotient of o Montel-
Kdathe spdce.

Proof. Let X be a separable Fréchet space, let (p,) be an inereasing
sequence of seminorms which defines the topology in X, and let (#;) be
a dense sequence in X\{0}. Put o{” = p,(2,) and define o: L(4)> X

by
o( ) &e)) = 251”1-
izl i=

Then o is a mapping from L(4) onto X. Let f® = j*(af® +1), » = i#;
then theorem (M) implies that L(I") is & Montel space. By Lemma 2.2, X
is isomorphic to a quotient of L{I").

(IT) Now let L(A) be a Montel space; we may assume that the sets
{@eL(4): p,(0) <1} form a base of zero neighbourhoods. If L(4) is
nuclear, we shall assume also that 2 af Jof"*D < 1 for each n>1. Let P

be an infinite-dimensional subapwce of L(4) such that the restriction of Py
on P is a norm on P. We define by induction a sequence of elements
o= (M eP (k=1) zmd a sequence of natural numbers #, (k3> 0)
such that
()L =ty << e < B << v
(1) pi(e) =1 (B =1);
(ili) @, hag the form 3 &Me;;

=ty

(iv) (jZ o)< 1/2.

We write y, = Y &M, (in general, y, ¢ P). For each g >1, we

p—1<i<iy
denote by %(j) the mtural number k such that 1, _, < j < .
Now we put

. »
o j(a§”+1+——ﬁj§((k§§ﬂ)) it ) =0
i) F)
J(a 1) it O =0
=max{o, : k<j}.

Let f{» = }"‘ Y =P (j,n=1, i>n). Then we have
(v)if§=n>1, m>1 then 5(m)/a(") = i
(vi) ifj=>n>1, m>1 and & 20, then

[EFO B > M (w5 -
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By the definition of ", »{™ and by (v), the econditions (i)~(iv) of (I)
are satisfied. Let I" be the matrix from. (I); then it is easy to show that

Y g < i i<n,
— ,['—Z(agi+n——l)/aj(.i+n)) if i> ",
= prjHe it i=mn,j>=m—-1.

Thus, using theorems (M) and (N), we show that L(I") is & Montel
space, and if L(4)is a nuclear space, then L(I") is also nuclear. Let z: L(I)
— L(A) be the mapping from (I).

LEnMa 2.4. There is no mapping o: P—> L(T') such that m{o(x)) = @
for each »eP.

Proof. Suppose that such a mapping exists. Then there exists an
increasing sequence (my),s; of natural numbers such that for each x e P
we have

(%) 54, (0(#)) < P, (@)

Let o(@y) = (£¥); then 3 ({# = &, and therefore
i=1

D 1P 1801

=1
Now we put

inax{'reN: 2 [C%‘U))]"g%[g]("ﬂ(ﬂ')).l}‘ if Ejgk(i)) £0,

r(j)= 1<0<r
it k) —
+oo ’ it g ) = 0.

Then: : :

IR
i<r(f)+1

and .
DRSNS RIESW RS T
Cizr()41 i>1 i<r(h)

(Clearly these inequalities make sense if #(j) = oo, to0. )
Now let us consider two cases.

(a) Theré exists a subsequence j;<j,<<...<j,< ... such that
supr(fo) < Mg < -+ oo Then .
s

G2 0 mk(]s)) - Z‘ y(n"“)ffsk(js))l

59zl
> 2 ZV(nOMIZ Kia)| > Z V("ovfl) |§(§f£fa))|
i<ng =1 i<ny

- ﬂ(ng+l) Z it k“x))l >1 5(no+1) 1 k(1s))1

i<ng
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. )It' s is sufficiently !a.rge, then j, > my, ;. Since 7(J5) < -+ o0, we have
Egs ig) == (. Hence by (vi) we have
1 glng+1) | £k, 2
2 ﬁ],o If]s :"9))1 = é]spmn0+1 (wk(js)) > 2pmno+1 (mlf(jx)) -

This inequality contradicts (+) since P, @) = py(m) > 0.
(b) Let }imr(j) = 4co. Let j° and &k be so chosen that k>m,,

Jroo
t,_,>j' and, for each j> j', r(j) > m,. Then

wle@)= X wu@i= 3 3 A

0751 iSmy b i<i<ty

. . (3

> 3 3 iz Y i = i, ().
b1 SI<i t2r(l)+1 17 <y '

But

Doy (Y1) 2 Doy (1) — Doy (B —Yie) = Dy (01) — Py (0 — Yi) 2 Do, (%) — %

>
see (iv)). Furth i), %
ihem(f Or)g er, by (i), §< §Pm, (2). Hence py, (¥2) > $Pm, (@), and

(ll(@ (mk)) = % Py () > %.’Pml () «

This inequality eontradicts (*). The lemma is proved.

(III.) Lemuma 2.5. Let P be a projective space in the class A~ (1=1, 2,3, 4)
Then P is @ Montel space which admits a continuous norm. ’

Proof. See [4].

(IV). Proof of Theorem 2.1.

(a? Case ¢ = 1, 2, 3. In this case P is a Montel space which admits
a continuous norn} (Lemma 2.5). Thus there exist a Montel-Kéthe space
.L(A.) and a mapping ¢ ‘from L(A) onto P (Corollary 2.3). Since P is a pro-
%;s:cmve ;paee, there exists a mapping y: P+ L(4) such that goy =1,

ence P is isomorphic to some subspace of L(4). By L mot

be infinite-dimensional. W), By Femmia 3.4 F csanot
o (b) Czlnlse % = 4, By a theorem of T. Komura and Y. Komura [8], P
is isomorphic to some subspace of the nuclear Kothe s v ,
apply Lemmas 2.4 and 2.5. pice (o)’ Hurther,

(¢) Case ¢ =5, 6. Let p be any F-norm which defi

efines the topolo
of P ([12], p. 14). Let (2,)..4 be a dense family of elements of P\ {(?} sugcirl
that Card (4) = Dens(P). For each « € A we define the functionf,: R, — R
by the equality f,(?) = p(fz,). Let- M (A) be the F-space of ;11 Ex.milieg
of numbers & =(£)uy Such. that ¢(&) = } f,(&)< oo, equipped
aed

with the F-norm g¢. Then the mapping =: M(4)—»
Wi : 0 : P such that
= ;’ &£,m, is onto ([14], 0.3.11). Since M (A) e o;, there exists an iso:n()i

i ©
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phic embedding P> M(A). It is clear that the dual space M{A) is point-
separating, and hence P’ ig point-separating. Therefore, the topology in P,
generated by the convex hulls of zero neighbourhoods in P, is Hausdorff.
Let P, be the vector space P equipped with this locally convex topology.

Then fhe completion of P, say 13, belongs to A;_, and is a projective

space in ;. Thus, by (a), P is finite-dimensional. The proof is complete.
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