

H2 spaces of generalized half-planes

ъ

STEPHEN VAGI (Chicago, Ill.)*

Abstract. New proofs are given of the following assertions about the Hardy space H^2 on Siegel domains of type II: H^2 is a Hilbert space and has a reproducing kernel. Elements of H^2 have " L^2 -boundary values", and admit a Paley-Wiener type representation formula.

- 1. Introduction. The basic elementary facts in the theory of H^2 spaces are: (a) that these spaces are Hilbert spaces, (b) that H^2 functions have " L^2 boundary values", (c) that a Paley-Wiener type representation formula holds, and (d) that H^2 spaces have reproducing kernels. For tube domains over regular cones these results were proved by S. Bochner [2]. For Siegel domains of type II they were obtained by S. G. Gindikin [4]. Gindikin's arguments, however, were not conclusive, and the first complete derivation of his results was given—using methods different from his—by A. Korányi and E. M. Stein [7]. The purpose of this paper is to present, for Siegel domains of type II, a new and, maybe, simpler approach to the proof of the four facts listed above.
- 2. Definitions, notation, and statement of results. Let W and V be finite dimensional complex vector spaces of positive dimensions with dim W=m and dim V=n. Let U be a real form of W chosen once and for all. Elements of U and W will be, usually, denoted by l.c. latin characters, elements of V always by ζ and ω . The conjugate of $z \in W$ relative to U will be written as \overline{z} . The value of an element λ of the dual space U' of U at the vector a of U or W will be denoted by $\langle \lambda, a \rangle$. We select once and for all Haar measures dx and $d\zeta$ on the vector groups U and V. The Fourier transform on $L^1(U)$ is defined by

$$\hat{f}(\lambda) = \int\limits_{U} \exp\left(-2\pi i \langle \lambda, x \rangle\right) f(x) dx.$$

The Haar measure $d\lambda$ on U' is normalized so that the Fourier inversion

^{*} Research on this paper was partially supported by N.S.F. GP-34486.

^{2 —} Studia Mathematica LXII.1

formula reads

$$f(x) = \int\limits_{U'} \exp{(2\pi i \langle \lambda, x \rangle)} \hat{f}(\lambda) d\lambda.$$

A regular cone Ω in U is an open convex cone with vertex at the origin which contains no affine line. Let $\overline{\Omega}$ denote the closure of Ω . If Ω is regular, then so is its dual cone $\Omega' = \{\lambda \in U' : \langle \lambda, y \rangle > 0, y \in \overline{\Omega} - \{0\}\}$. A Hermitean bilinear map $\Phi \colon V \times V \to W$ is said to be Ω -positive if for all $\zeta \in V$, $\Phi(\zeta, \zeta) \in \overline{\Omega}$, and if $\Phi(\zeta, \zeta) = 0$ implies that $\zeta = 0$. For $\lambda \in \Omega'$ define a positive definite Hermitean form on $V \times V$ by $H_{\lambda}(\zeta, \omega) = 4\langle \lambda, \Phi(\zeta, \omega) \rangle$, and set $\varrho(\lambda) = \det H_{\lambda}$.

The tube domain over Ω in W is $T_{\Omega} = \{z \in W \colon \operatorname{Im} z \in \Omega\}$. The Siegel domain of type II determined in $W \times V$ by Ω and Φ is the set $D = \{(z,\zeta) \in W \times V \colon \operatorname{Im} z - \Phi(\zeta,\zeta) \in \Omega\}$. The distinguished boundary of D is the subset $B = \{(z,\zeta) \colon \operatorname{Im} z - \Phi(\zeta,\zeta) = 0\}$ of the topological boundary of D. The map $(x,\zeta) \mapsto (x+i\Phi(\zeta,\zeta),\zeta)$ is a homeomorphism of $U \times V$ onto B. The topological and measure theoretical structures of B are those of $U \times V$, transferred to B by the above map. Now L^p spaces for $1 \leqslant p < \infty$ can be defined on B. The $L^p(B)$ norm of a measurable function on B is explicitly

$$||f||_{L^{p}(B)} = \left(\int_{U \times V} |f(x+i\Phi(\zeta,\zeta),\zeta)|^{p} dx d\zeta\right)^{1/p}.$$

If $F: D \to C$ and $t \in \Omega$, then the function $F_t: D \cup B \to C$ is defined by $F_t(z,\zeta) = F(z+it,\zeta)$. Finally, for $1 \le p < \infty$ the space $H^p = H^p(D)$ is defined as the set of all holomorphic functions $f: D \to C$ such that

$$||F||_{H^p} = \sup_{t \in \Omega} ||F_t|_B||_{L^p(B)} < \infty.$$

The function $F \mapsto ||F||_{H^p}$ is a norm on H^p . By abuse of notation we shall write $||F_t||_B||_{L^p(B)}$ as $||F_t||_{L^p(B)}$. General references about the facts reviewed here are [5], [6], and [8].

We now introduce a function space which will play an important part in our proofs. Consider the set of functions $\hat{F}\colon \Omega'\times V{\to}C$ subject to the following two conditions:

- (A) For every $\zeta \in V$ $\hat{F}(\cdot, \zeta)$ is a measurable on Ω' .
- (B) For every $\lambda \in \Omega'$ $\hat{F}(\lambda, \cdot)$ is a holomorphic entire function on V.

This set clearly forms a linear space. By a result of H. D. Ursell ([12], Theorem 8), the following statement is true; we record it for future reference as

Remark 1. A function $f \colon \varOmega' \times V \to C$ satisfying conditions (A) and (B) is measurable on $\varOmega' \times V$.

In view of the remark it is meaningful to impose the following, third

condition on our functions:

(C)
$$\|\hat{F}\|_{H^2}^2 = \int\limits_{\Omega \times Y} e^{-\pi H_{\lambda}^*(\zeta,\zeta)} |F(\lambda,\zeta)|^2 d\lambda d\zeta < \infty.$$

We define the space \hat{H}_0^2 to be the set $\{\hat{F}\colon \varOmega'\times V\to C\colon \hat{F} \text{ satisfies } (A), (B), (C)\}$. If \hat{F} and \hat{G} belong to \hat{H}_0^2 , we say that \hat{F} and \hat{G} are equivalent $(\hat{F}\sim\hat{G})$ if $\hat{F}(\lambda,\zeta)=\hat{G}(\zeta,\lambda)$ for almost all $(\lambda,\zeta)\in\varOmega'\times V$. In view of condition (C) we have

Remark 2. If $\hat{F}, \hat{G} \in \hat{H}_0^2$, then

$$\hat{F} \sim \hat{G} \Rightarrow \int\limits_{\Omega'} \exp\left(-\pi H_{\lambda}(\zeta,\zeta)\right) |\hat{F}(\lambda,\zeta) - \hat{G}(\lambda,\zeta)|^2 d\lambda = 0$$

for almost every $\zeta \in V$

$$\Rightarrow \int\limits_{V} \exp \left(-\pi H_{\lambda}(\zeta,\,\zeta) \right) |\hat{F}(\lambda,\,\zeta) - \hat{G}(\lambda,\,\zeta)|^{2} d\zeta = 0$$

for almost every $\lambda \in \Omega'$.

Now \hat{H}^2 is defined as the set of equivalence classes (relative to \sim) of elements of \hat{H}^2_0 . Clearly, \hat{H}^2 is an inner product space with the norm defined by (C). We can now state our results.

LEMMA 1. The space \hat{H}^2 is a Hilbert space.

THEOREM. (i) Let $\hat{F} \in \hat{H}_0^2$, and let $(z, \zeta) \in D$. Define $U\hat{F}(z, \zeta)$ by

(1)
$$U\hat{F}(z,\zeta) = \int_{B'} e^{2\pi i \langle \lambda,z\rangle} \hat{F}(\lambda,\zeta) d\lambda.$$

The integral in (1) is absolutely convergent, $U\hat{F}$ belongs to H^2 , and if $G \in \hat{H}_0^2$ is equivalent to \hat{F} , then $U\hat{F} = U\hat{G}$.

- (ii) The integral (1) defines a map, also denoted by U, from \hat{H}^2 into H^2 . It is a unitary map from \hat{H}^2 onto H^2 , and H^2 is a Hilbert space.
- (iii) If $F \in H^2$, then for $t \in \Omega$ tending to 0, $F_t|_B$ converges in the norm of $L^2(B)$ to an element \tilde{F} of $L^2(B)$, and $||F||_{H^2} = ||\tilde{F}||_{L^2(B)}$.
 - (iv) If (w,ω) , $(z,\zeta) \in D$, then the function $(z,\zeta) \mapsto S_{(w,\omega)}(z,\zeta)$ defined by

(2)
$$S_{(w,\omega)}(z,\zeta) = \int_{\Omega'} e^{2\pi i \langle \lambda, z - \overline{w} - 2\Phi(\zeta,\omega) \rangle} \varrho(\lambda) d\lambda$$

belongs to H^2 , and for every $F \in H^2$

(3)
$$F(w, \omega) = \langle F | S_{(w,\omega)} \rangle_{H^2},$$

where $\langle \cdot | \cdot \rangle_{H^2}$ denotes the inner product in H^2 .

Equation (3) states that $S_{(w,\omega)}$ is (a, and hence by general principles) the reproducing kernel of H^2 , the so called Szegő kernel of D.

21

3. Proof of Lemma 1. Fix $\lambda \in \Omega'$. Define $||f||_{*}$ for measurable functions on V by

$$||f||_{\lambda}^2 = \int\limits_V e^{-\pi H_{\lambda}(\zeta,\zeta)} |f(\zeta)|^2 d\zeta.$$

and define \mathcal{H}^{λ} to be the set of entire holomorphic functions on V for which $||f||_{\lambda}$ is finite. The space \mathcal{H}^{λ} is an inner product space which obviously contains all the constants, and it is easily checked that it contains all polynomials. The proof of Lemma 1 consists in showing that \mathcal{H}^{λ} is complete. and that \hat{H}^2 can be identified with the direct integral $\int\limits_{-\infty}^{\infty} \mathscr{H}^{\lambda} d\lambda$. The basic facts about #1, viz. the existence of a reproducing kernel and completeness are due to V. Bargmann [1]. For the sake of completeness, and also because some of the technical details of the proofs will be needed, we reprove these facts (with simplified proofs).

For $\zeta \in V$, and $f \in \mathcal{H}^{\lambda}$ define $(A, f)(\omega)$ to be $\exp(\pi H_{\lambda}(\omega, \zeta) -\frac{1}{2}\pi H_{\lambda}(\zeta,\zeta)f(\omega-\zeta)$. Clearly, $\omega\mapsto (A_{\xi}f)(\omega)$ is an entire function on V. A simple calculation shows that for $f, g \in H^{\lambda}$ one has (writing the inner product in \mathcal{H}^{λ} as $\langle \cdot | \cdot \rangle_{\lambda}$

$$\langle A_{\varepsilon} f | A_{\varepsilon} g \rangle_{\lambda} = \langle f | g \rangle_{\lambda},$$

and that in particular for $f \in \mathcal{H}^{\lambda}$, $||A_{t}f||_{\lambda} = ||f||_{\lambda}$. Another easy calculation checks that $A_{-\xi}$ is the inverse of A_{ξ} . Therefore A_{ξ} is a unitary transformation of \mathcal{H}^{λ} onto itself. Let now $\theta \in \mathbf{R}$, for $f \in \mathcal{H}^{\lambda}$ define f_{θ} by $f_{\theta}(\zeta) = f(e^{i\theta}\zeta)$. Clearly, $f_{\theta} \in \mathcal{H}^{\lambda}$. The change of variable $\zeta \mapsto e^{i\theta} \zeta$ and the fact that $H_{\lambda}(e^{-i\theta}\zeta^{-i\theta}\zeta) = H_{\lambda}(\zeta,\zeta)$ show that $\langle f_{\theta}|1\rangle_{\lambda} = \langle f|1\rangle_{\lambda}$. Therefore, using first Fubini's and then Cauchy's theorem we have

(5)
$$\langle f|1\rangle_{\lambda} = \frac{1}{2\pi} \int_{0}^{2\pi} \langle f_{\theta}|1\rangle_{\lambda} d\theta = \left\langle \frac{1}{2\pi} \int_{0}^{2\pi} f_{\theta} d\theta |1\rangle_{\lambda} = f(0)\langle 1|1\rangle_{\lambda}.$$

By evaluating $\langle 1|1\rangle_i$ in a coordinate system in which H_i is diagonal, we find that $\langle 1|1\rangle_{\lambda} = \rho(\lambda)^{-1}$. Using this in (5) we have

(6)
$$f(0) = \varrho(\lambda) \langle f|1 \rangle_{\lambda}.$$

Since $f(\zeta) = \exp(\frac{1}{2}\pi H_{\lambda}(\zeta,\zeta))(A_{-\zeta}f)(0)$, we obtain from equality (6) $f(\zeta) = \rho(\lambda) \exp(\frac{1}{2}\pi H_{\lambda}(\zeta,\zeta)) \langle A_{-t}f|1\rangle_{\lambda}$. Applying (4) to the right-hand side of the last equality we have

(7)
$$f(\zeta) = \varrho(\lambda)e^{i\pi H_{\lambda}(\zeta,\zeta)}\langle f|A_{\zeta}1\rangle_{\lambda}.$$

Since $(A_{\ell}1)(\omega) = \exp(\pi H_{\ell}(\omega,\zeta) - \frac{1}{2}\pi H(\zeta,\zeta))$, we can rewrite (7) by setting $\varrho(\lambda)\exp(\pi H_{\lambda}(\omega,\zeta))=K_{\zeta}^{\lambda}(\omega)$ as

(8)
$$f(\zeta) = \langle f | K_{\zeta}^{\lambda} \rangle_{\lambda}.$$

(Note that since K_{ℓ}^{λ} is a numerical multiple of A_{ℓ} 1, it is an element of \mathcal{H}^{λ} .) We have proved that \mathcal{H}^{λ} has a reproducing kernel given by K_{ϵ}^{λ} . An easy calculation shows that $||K_{\xi}^{i}||_{\lambda} = \varrho(\lambda)^{1/2} \exp\left(\frac{1}{2}\pi H_{\lambda}(\zeta,\zeta)\right)$. Using this value of $||K_{\ell}^{2}||_{1}$ and applying Schwarz's inequality to (8), we get

$$|f(\zeta)| \leq \varrho(\lambda)^{1/2} e^{\frac{1}{2}\pi H_{\lambda}(\zeta,\zeta)} ||f||_{\lambda}.$$

If $K \subset V$ is compact and $C_K = \sup\{\exp\{\frac{1}{2}\pi H_{\lambda}(\zeta,\zeta)\}: \zeta \in K\}$, then for $\zeta \in K$ (9) yields $|f(\zeta)| \leq \varrho(\lambda)^{1/2} C_K ||f||_{\lambda}$. This inequality immediately implies the completeness of \mathcal{H}^{λ} .

We shall now derive another consequence of (9) which will be needed in the proof of the theorem. Let $\hat{F} \in \hat{H}_0^2$, then by condition (C) $\hat{F}(\lambda; \cdot)$ belongs to \mathcal{H}^{λ} for almost every $\lambda \in \Omega'$. In view of (9) we then have

Remark 3. If $\hat{F} \in \hat{H}_0^2$, then for every $\zeta \in V$, $\lambda \mapsto \rho(\lambda)^{-1/2} e^{-\frac{1}{2}\pi H_{\lambda}(\zeta,\zeta)} \times$ $\times \hat{F}(\lambda, \zeta)$ belongs to $L^2(\Omega')$.

Let us also observe the following fact: if ζ_j , j=1,2,3,... is a dense sequence in V and $f \in \mathcal{H}^{\lambda}$ is such that $\langle f | K_{\xi_i}^{\lambda} \rangle = 0$ for j = 1, 2, 3, ..., then, by (8), f = 0. Consequently, we have the following

Remark 4. If $\zeta_i, j = 1, 2, 3, \dots$ is a dense sequence in V, then $K_{\zeta_i}^{\lambda}$, i=1,2,3,... is a total sequence in \mathcal{H}^{λ} .

We now prove that \hat{H}^2 is complete. Let $\mathfrak{F} = \prod \{H^{\lambda}: \lambda \in \Omega'\}$, and let $\mathfrak{G} = \{f \colon \Omega' \times V \to C \colon f \text{ satisfies } (A), \text{ and for every } \lambda \in \Omega', f(\lambda, \cdot) \in \mathcal{H}^{\lambda}\}.$

Note first that 6 can be identified in an obvious way with a linear subspace of \Re . Also note that for fixed $\zeta \in V$, $(\lambda, \omega) \mapsto K_t^{\lambda}(\omega)$ belongs to \mathfrak{G} . We shall now verify that the Hilbert spaces \mathcal{H}^{λ} form a measurable field of Hilbert spaces ([3], page 142). To this end we must check three condi-

(1) If $f \in \mathfrak{G}$, then $\lambda \mapsto ||f(\lambda, \cdot)||_{\lambda}$ is a measurable function on Ω' .

To prove this note that, by Remark 1, f is a measurable function on $\Omega' \times V$. Then approximate the integral giving $||f(\lambda,\cdot)||_{\lambda}^2$ to within $\varepsilon/2$ by an integral over a large cube in V. Now approximate the integral over the cube to within $\varepsilon/2$ by a Riemann sum. This Riemann sum is a measurable function of λ . Therefore $||f(\lambda,\cdot)||_{\lambda}$ is the pointwise limit of measurable functions, and hence measurable.

(2) If $g \in \mathcal{F}$ is such that $\lambda \mapsto \langle g | f \rangle_{\lambda}$ is measurable for every $f \in \mathfrak{G}$, then $q \in \mathfrak{G}$.

Proof. $q(\lambda)(\zeta) = \langle q | K_{\ell}^{\lambda} \rangle_{i}$ is measurable for every $\zeta \in V$ because $K_{\ell}^{\lambda} \in \mathfrak{G}$. Nów use Remark 1.

(3) There is a sequence f_i of elements of \mathfrak{G} such that for every $\lambda \in \Omega'$ the sequence $f_i(\lambda, \cdot)$ is total in \mathcal{H}^{λ} .

Proof. Remark 4.

The elements of 6 are called measurable vector fields. A measurable vector field f is said to be square integrable if $\int\limits_{\Omega'} \|f(\lambda,\cdot)\|_{\lambda}^2 d\lambda$ is finite. Two square integrable measurable vector fields f and g are equivalent if $\int\limits_{\Omega'} \|f(\lambda,\cdot)-g(\lambda,\cdot)\|_{\lambda}^2 d\lambda = 0.$ The direct integral $\int\limits_{\Omega'} \mathcal{H}^{\lambda} d\lambda$ is defined as the set of equivalence classes of measurable, square integrable vector fields. The norm of $f \in \int\limits_{\Omega}^{\oplus} \mathcal{H}^{\lambda} d\lambda$ is $(\int\limits_{\Omega} \|f(\lambda,\cdot)\|_{\lambda}^2 d\lambda)^{1/2}$.

If $f \in \mathfrak{G}$ is square integrable, then, clearly, f belongs to \hat{H}_0^2 . If g is another square integrable element of \mathfrak{G} , and g is equivalent to f, then (Remark 2) f and g are also equivalent in \hat{H}_0^2 . The norm of a square integrable $f \in \mathfrak{G}$ equals its \hat{H}^2 -norm. So far we have shown that $\int_{-\infty}^{\infty} \mathcal{H}^2 d\lambda$ can be identified with a subspace of \hat{H}^2 . To prove that the subspace is actually all of \hat{H}^2 let $\hat{F} \in \hat{H}^2$ and select a representative \hat{F}_1 of \hat{F} in H_0^2 . The set of λ 's in Ω ' for which $\hat{F}_1(\lambda, \cdot)$ does not belong to \mathcal{H}^λ is of measure zero. Now define \hat{F}_0 as follows:

 $\hat{F}_2(\lambda,\zeta)=\hat{F}_1(\lambda,\zeta)$ if $\hat{F}_1(\lambda,\cdot)\in\mathscr{H}^{\lambda}$, and $\hat{F}_2(\lambda,\zeta)=0$ otherwise. By Remark 1, \hat{F}_2 belongs to 6, and hence to \hat{F}_0^2 , and by Remark 2, it is equivalent to \hat{F}_1 . This proves that \hat{H}^2 can be identified with the direct integral of the \mathscr{H}^{λ} 's. Since the direct integral of Hilbert spaces is a Hilbert space, Lemma 1 is proved.

4. Proof of the Theorem. In addition to Lemma 1 and Remark 3 two technical results will be needed which we now list.

LEMMA 2. Let $F \in H^p$, $1 \leq p < \infty$. Let $\zeta \in V$, and $\delta \in \Omega$ such that $\delta - \Phi(\zeta, \zeta) \in \Omega$. Then $z \mapsto F_{\delta}(z, \zeta) = F(z + i\delta, \zeta)$ belongs to $H^p(T_0)$.

LEMMA 3. Let $\varepsilon > 0$, $0 < \alpha < \frac{1}{2}$, and let $\lambda_1, \lambda_2, \ldots, \lambda_m$ be a basis of U' contained in Ω' which is compatible with the Haar measure $d\lambda$ on U'. Then $G^{\varepsilon}(z,\zeta) = \exp\{-\varepsilon \sum_{j=1}^{m} \langle \lambda_j, z \rangle^{\alpha}\}$ belongs to $H^2(D)$, and is bounded and continuous on \overline{D} .

Lemma 2 is actually true for all positive p, but we only need it for p=1,2. It is due to E. M. Stein [10]. Lemma 3 is a special case of Lemma 8.1 in [9].

Let now $\hat{F} \in \hat{H}_0^2$ and $(z,\zeta) \in D$, with $z = x + it + i\Phi(\zeta,\zeta)$ where $t \in \Omega$. In any coordinate system $\varrho(\lambda)$ is a homogeneous polynomial of degree n, and one can show readily that $\varrho(\lambda)^{1/2} \exp(-2\pi \langle \lambda, t \rangle)$ is square integrable on Ω' . Therefore by Remark 3

(10)
$$\int\limits_{\Omega'} e^{2\pi i \langle \lambda, z \rangle} \hat{F}(\lambda, \zeta) d\lambda = \int\limits_{\Omega'} e^{2\pi i \langle \lambda, z \rangle} e^{-2\pi \langle \lambda, t \rangle} e^{-i\pi H_A(t, \zeta)} \hat{F}(\lambda, \zeta) d\lambda$$

is absolutely convergent for every $\zeta \in V$. Choosing coordinates in $W \times V$, and applying Morera's theorem in combination with Fubini's theorem one shows that UF is holomorphic in each coordinate of (z, ζ) , and hence by Hartogs's theorem holomorphic in D. Since $\varrho(\lambda)^{1/2} \exp(-2\pi \langle \lambda, t \rangle)$ is a bounded function of λ on Q', by Remark 3 one concludes that the quantity multiplying $\exp(2\pi i \langle \lambda, x \rangle)$ in (10) is square integrable on Q'. Therefore, by Plancherel's theorem for every $\zeta \in V$.

$$\int\limits_{U} |U \hat{F} \big(x + it + i \varPhi(\zeta\,,\,\zeta),\,\zeta \big)|^2 \, dx \, = \, \int\limits_{\Omega'} e^{-4\pi \langle \lambda,t \rangle} e^{-\pi H_{\lambda}(\zeta,\zeta)} |\hat{F}(\lambda,\,\zeta)|^2 \, d\lambda \,.$$

Integrating this equality on V, we get

$$(11) \qquad \|(U\hat{F})_t\|_{L^2(B)}^2 = \int\limits_{\Omega' \times V} e^{-4\pi \langle \lambda, t \rangle} e^{-\pi H_{\lambda}(\xi, \xi)} |\hat{F}(\lambda, \zeta)|^2 d\lambda d\zeta \leqslant \|\hat{F}\|_{\dot{H}^2}^2.$$

From (11) we conclude that $U\hat{F} \in H^2$. If $t_k \in \Omega$ is a sequence tending to 0, then, by the dominated convergence theorem, we have that $\|(U\hat{F})_t\|_{L^2(B)}^2$ converges to $\|\hat{F}\|_{H^2}^2$ and that therefore

(12)
$$\|U\hat{F}\|_{\hat{H}^2}^2 = \|\hat{F}\|_{\hat{H}^2}^2.$$

If $\hat{G} \in H_0^2$ and $\hat{F} \sim \hat{G}$, then (12) implies that $\|U\hat{F} - U\hat{G}\|_{H^2} = \|\hat{F} - \hat{G}\|_{\hat{H}^2}$ = 0, i.e., that equivalent \hat{F} 's give rise to the same $U\hat{F}$. Therefore, U defines a linear map from \hat{H}^2 to H^2 which we continue to write U. The equation (12) shows that U maps \hat{H}^2 isometrically into H^2 . Now let $t_k \in \Omega$ be a sequence converging to 0, then (11) (with $(U\hat{F})_{t_k} - (U\hat{F})_{t_l}$ instead of $(U\hat{F})_{t_l}$ and the dominated convergence theorem show that $(UF)_{t_k|B}$ is a Cauchy sequence in $L^2(B)$. Therefore, $(U\hat{F})_{t_k|B}$ converges in $L^2(B)$ norm to an element of $L^2(B)$. We omit the proof that the sequential limit can be replaced by $t \in \Omega'$ tending to 0. We therefore have

Remark 5. Assertion (iii) of the theorem holds for every $F \in H^2$ which admits the representation (1).

By Lemma 3 and Schwarz's inequality $H^2 \cap H^1 \neq \{0\}$. Let $F \in H^2 \cap H^1$, and let $\zeta \in V$ be arbitrary but fixed. Set $\Omega_{\zeta} = \{\delta \in \Omega \colon \delta - \Phi(\zeta, \zeta) \in \Omega\}$. For $\delta \in \Omega_{\zeta} \ z \mapsto F_{\delta}(z, \zeta)$ belongs to $(H^2 \cap H^1)(T_{\Omega})$ by Lemma 2. By the theory of H^p spaces on tube domains ([11], Chapter 3) the boundary function of F_{δ} , viz. $x \mapsto F_{\delta}(x, \zeta)$ belongs to $(L^2 \cap L^1)(U)$. We can therefore define a function $\hat{F}_{\delta}(\lambda, \zeta)$ by

(13)
$$\hat{F}_{\delta}(\lambda,\zeta) = \int_{U} e^{-2\pi i \langle \lambda,x \rangle} F_{\delta}(x,\zeta) dx.$$

Remark 6. By the H^2 theory for tube domains, $\hat{F}_{\delta}(\cdot,\zeta)$ is supported in Ω' . Since $F_{\delta}(\cdot,\zeta) \in L^1(U) \cap C^{\infty}(U)$, $\hat{F}_{\delta}(\cdot,\zeta)$ is continuous and integrable. Therefore Fourier inversion holds for every $x \in U$.

If δ' is another element of Ω_{ζ} , then, for $\lambda \in \Omega'$ by the H^2 theory for tube domains,

$$\hat{F}_{\delta+\delta'}(\lambda,\zeta) = \exp(-2\pi\langle\lambda,\delta\rangle)\hat{F}_{\delta'}(\lambda,\zeta) = \exp(-2\pi\langle\lambda,\delta'\rangle)\hat{F}_{\delta}(\lambda,\zeta).$$

Therefore for $\delta \in \mathcal{Q}_{\zeta}$, $\exp(2\pi \langle \lambda, \delta \rangle) \hat{F}_{\delta}(\lambda, \zeta)$ is independent of δ . Denote this function by $\hat{F}(\lambda, \zeta)$.

Now let $z=x+iy\in W$ be such that $(z,\zeta)\in D$, i.e., $y\in \Omega_{\xi}$. Note that $F(z,\zeta)=F_y(x,\zeta)$. By Remark 6, we can apply Fourier inversion to (13). If we now express \hat{F}_y in terms of \hat{F} in the Fourier inversion formula, we get

(14)
$$F(z,\zeta) := \int_{\Omega'} e^{2\pi i \langle \lambda, z \rangle} \hat{F}(\lambda, \zeta) d\lambda.$$

Since ζ was arbitrary, (14) holds for every $(z, \zeta) \in D$.

We now prove that $\hat{F} \in \hat{H}^2$. Again fix $\zeta_0 \in V$, and also $\lambda \in \Omega'$. If $\delta \in \Omega_{\zeta_0}$, then there is a polydisc $\Delta \subset V$ centered at ζ_0 such that $\delta \in \Omega_{\zeta}$ for $\zeta \in \Delta$. Now by (13) and by the definition of \hat{F} we have for $\zeta \in \Delta$ that

$$\hat{F}(\lambda,\zeta) = e^{2\pi\langle\lambda,\delta\rangle} \int\limits_{U} e^{-2\pi i\langle\lambda,x\rangle} F_{\delta}(x,\zeta) dx.$$

Exactly as before by combining the theorems of Fubini, Morera and Hartogs, we can show that $\zeta \mapsto \hat{F}(\lambda, \zeta)$ is holomorphic in Δ . Since ζ_0 was arbitrary in V, it follows that $\hat{F}(\lambda, \cdot)$ is an entire function. By Remark 6 we know that $F(\cdot, \zeta)$ is continuous for every $\zeta \in V$, therefore, by Remark 1, \hat{F} is measurable on $\Omega' \times V$. Now let $t \in \Omega$, then Plancherel's theorem applied to (13) gives for every $\zeta \in V$

$$\int\limits_{U} \big| F \big(x + it + \varPhi(\zeta, \zeta), \zeta \big) \big|^2 dx = \int\limits_{\varOmega'} e^{-4\pi \langle \lambda, t + \varPhi(\zeta, \zeta) \rangle} |\hat{F}(\lambda, \zeta)|^2 d\lambda.$$

Integrating this equality on V we have

$$\|F_t\|_{L^2(B)}^2 = \int\limits_{\Omega'\times V} e^{-4\pi \langle \lambda,t\rangle} e^{-\pi H_\lambda(\zeta,\zeta)} |\hat{F}(\lambda,\,\zeta)|^2 d\lambda d\zeta \leqslant \|F\|_{H^2}^2.$$

By Fatou's lemma it follows that $\hat{F} \in \hat{H}^2$. Taking the supremum over Ω we see that $\|\hat{F}\|_{H^2} = \|\hat{F}\|_{\hat{H}^2}$. We conclude that the map $F \mapsto \hat{F}$ maps the subspace $H^2 \cap H^1$ of H^2 isometrically into \hat{H}^2 . By Lemma 1, the range of this map is contained in a complete space, and therefore, if we denote by M the closure in H^2 of $H^2 \cap H^1$, it extends uniquely to an isometry V of M into \hat{H}^2 . Now for $F \in H^2 \cap H^1$ (14) holds, and therefore for such F, UVF = F, i.e., UV is the identity of $H^2 \cap H^1$. By continuity, it follows that UV is the identity on all of M, and hence if $F \in M$, then F = U(VF).

i.e., U maps \hat{H}^2 isometrically onto M: M is a Hilbert space, and the unitary maps U and V are inverses of each other. By Remark 5 it follows that assertion (iii) holds for every $F \in M$.

We now prove that $M=H^2$. Let $F\in H^2$, and let G^* be the function introduced in Lemma 3. By that lemma and Schwarz's inequality $G^*F\in H^2\cap H^1$. Since assertion (iii) of the theorem holds in M, there exists an element $(G^*F)^\sim$ of $L^2(B)$ such that $(G^*F)_{l|B}$ tends to $(G^*F)^\sim$ in $L^2(B)$ as $t\in \Omega$ tends to zero. Consider first the case $\varepsilon=1$. For some sequence $t_k\in \Omega, t_k\to 0$ (fixed once and for all in this proof), $(G^1F)_{t_k|B}\to (G^1F)^\sim$ almost everywhere on B. Since $G^1_{t_k|B}\to G^1_{|B}=\tilde{G}^1$ everywhere on B, and \tilde{G}^1 does not vanish anywhere, we can conclude that $F_{t_k|B}$ converges almost everywhere on B to a limit \tilde{F} . Since $\|F^1_{t_k}\|_{L^2}\leqslant \|F\|_{H^2}$, it follows form Fatou's lemma that $\tilde{F}\in L^2(B)$. Now let ε be arbitrary positive. Since $(G^*F)_{t_k|B}=G^*_{t_k|B}F_{t_k|B}\to \tilde{G}^*\tilde{F}$ almost everywhere, and $(G^*F)_{t_k|B}\to (G^*F)^\sim$ in $L^2(B)$, it follows that $(G^*F)^\sim=\tilde{G}^*\tilde{F}$ almost everywhere on B. Now let $\varepsilon_*\to 0$, then

$$\|G^{\epsilon_{\pmb{\nu}}}F-G^{\epsilon_{\pmb{\mu}}}F\|_{H^2}^2=\int\limits_{U imes V}|G^{\epsilon_{\pmb{\nu}}}-G^{\epsilon_{\pmb{\mu}}}|^2|\tilde{F}|^2dxd\zeta$$

because (iii) holds in M. Since $G^{\epsilon_p}-G^{\epsilon_p}$ tends to zero boundedly, we have that $G^{\epsilon_p}F$ is a Cauchy sequence in the complete space M, and therefore it tends in H^2 to an element H of M. Now let $t\in \mathcal{Q}$ be arbitrary but fixed, then $\|(G^{\epsilon_p}F)_t-H_t\|_{L^2(B)}\leqslant \|G^{\epsilon_p}F-H\|_{H^2}$ and therefore $(G^{\epsilon_p}F)_t\|_{B}\mapsto H_t\|_{B}$ in $L^2(B)$ norm. On the other hand, $G^{\epsilon_p}_t\|_{B}\to 1$ everywhere on B. Consequently, $F_t\|_B=H_t\|_B$ because both functions are continuous. Since $t\in \mathcal{Q}$ was arbitrary, it follows that F=H, and hence, that $M=H^2$.

To prove (iv) let $(w,\omega)\in D$ and $F\in H^2.$ By the assertions of the theorem already proved, we have

(15)
$$F(w,\omega) = \int\limits_{\Omega'} e^{2\pi i \langle \lambda_i w \rangle} \hat{F}(\lambda,\omega) d\lambda$$

where $\hat{F} = U^{-1}F \in \hat{H}^2$. Since $F(\lambda, \cdot) \in \mathcal{H}^{\lambda}$ for almost every $\lambda \in \Omega'$, we have $\hat{F}(\lambda, \omega) = \langle \hat{F}(\lambda, \cdot) | K_{\omega}^{\lambda} \rangle_{\lambda}$ for almost every $\lambda \in \Omega'$. Introducing this into (15) and rewriting the integral as a double integral, we have (only formally, so far)

$$(16) \qquad F(w,\,\omega) = \int\limits_{\Omega'\times V} e^{-\pi H_{\lambda}(\zeta,\,\zeta)} \hat{F}(\lambda,\,\zeta) \, \{ \overline{e^{-2\pi i \langle\,\lambda,\,\overline{w}\rangle}} e^{\pi H_{\lambda}(\zeta,\,\omega)} \varrho(\lambda) \} \, d\lambda d\zeta \, .$$

Denote the quantity in curly brackets by $T_{(w,\omega)}(\lambda,\zeta)$. A straightforward check verifies that $(\lambda,\zeta)\mapsto T_{(w,\omega)}(\lambda,\zeta)$ belongs to \hat{H}^2 . Therefore, the double integral in (16) is absolutely convergent (this justifies the passage from (15) to (16)) and equal to $\langle \hat{F} | T_{(w,\omega)} \rangle_{\hat{H}^2}$. Consequently,

(17)
$$F(w, \omega) = \langle \hat{F} | T_{(w,\omega)} \rangle_{\hat{H}^2}.$$

Now a simple calculation shows that $UT_{(w,\omega)}$ is the function $S_{(w,\omega)}$ defined by (2), hence in view of the fact that U is unitary, (17) yields

$$F(w, \omega) = \langle F | S_{(w,\omega)} \rangle_{H^2}.$$

But this is equation (3) in assertion (iv) of the theorem whose proof is now complete.

References

- V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, I, Comm. Pure Appl. Math. 14 (1961), pp. 187-214.
- [2] S. Bochner, Group invariance of Cauchy's formula in several variables, Ann. of Math. 45 (1944), pp. 686-707.
- [3] J. Dixmier, Les algèbres d'opérateurs dan l'espace Hilbertien, 2nd ed., Gauthier-Villars, Paris 1969.
- [4] S. G. Gindikin, Analysis in homogeneous domains, Uspekhi Mat. Nauk 19 (1964), pp. 3-92 (in Russian).
- [5] A. Korányi, Holomorphic and harmonic functions on bounded symmetric domains, (C.I.M.E., Summer course on bounded homogeneous domains) Cremonese. Roma 1968.
- [6] The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math. 82 (1965), pp. 332-350.
- [7] A. Korányi and E. M. Stein, H² spaces of generalized half-planes, Studia Math. 44 (1972), pp. 3793-88.
- [8] S. Murakami, On automorphisms of Siegel domains, Lectures Notes in Mathematics 286, Springer, Berlin 1972.
- [9] R. D. Ogden and S. Vági, Harmonic analysis of a nilpotent group and function theory on Siegel domains, to appear.
- [10] E. M. Stein, Note on the boundary values of holomorphic functions, Ann. of Math. 82 (1965), pp. 351-353.
- [11] E. M. Stein and G. Weiss, Introduction to Fourier analysis in Euclidean spaces, Princeton University Press, Princeton 1971.
- [12] H. D. Ursell, Some methods of proving measurability. Fund. Math. 32 (1939), pp. 311-330.

Received August 20, 1975
Revised version April 29, 1976 (1059)

On an integral representation of antisymmetric operations in Hilbert spaces

I. Bounded operations

by

STANISŁAW GÓŹDŹ (Lublin)

Abstract. In this note we give the representation of the bounded and antysymmetric operation A defined and valued in the Hilbert space H (real or complex) in the following form:

$$Ax = \int_{a}^{\beta} \lambda dQ_{\lambda}x,$$

where $Q \in I(H) = \{Q \in L(H): Q^3 = -Q \text{ and } Q^* = -Q\}.$

Moreover, we give the properties of the operation of the class I(H) and some form of the solution of the equation

$$\frac{d}{dt}x(t) = Ax(t)$$
, where A is antisymmetric

with the initial condition $x(0) = x_0$.

1. Introduction. In this paper we give the spectral representation of bounded antisymmetric operations in Hilbert spaces; the case of unbounded operations will be presented in the next paper.

In our theory we formally give an effective solution of the equation

$$\frac{d}{dt}x(t) = Ax(t)$$

with the antisymmetric and bounded operation A.

2. Class of operations I(H)**.** Let H denote a Hilbert space and let L(H) denote a linear space of all linear and bounded operations in H. The class of operations I(H) is defined as follows:

(2)
$$Q \in I(H) \equiv Q \in L(H)$$
 and $Q^3 = -Q = Q^*$,

where Q^* denotes the conjugate operation with Q.