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H* spaces of generalized half-planes
» 'by
STEPHEN VAGI (Chieago, IIL)*

. Abstract. New proofs are given of the following assertions about the Hardy *
space H? on Siegel domains of type II: H2 is a Hilbert space and has a reproduecing
kernel. Elements of H? have “L*-boundary values”, and admit a Paley-Wiener type
representation formula. '

1. Introduction. The basic elementary facts in the theory of H2
spaces are: (a) that these spaces are Hilbert spaces, (b) that H? funotions
have “I? boundary values”, (e) that a Paley—Wiener type representation
formula holds, and (d) that H* spaces have reproducing kernels. For tube
domains over regular comes these results were proved by 8. Bochner [21.
For Siegel domains of type IL they were obtained by 8. G. Gindikin [4].
Gindikin’s arguments, however, were not conclusive, and the first complete
derivation of his results was given —using methods different from his—by
A. Korényi and E. M. Stein [7]. The purpose.of this paper is.to Present,
for Siegel domains of type IT, a new and, maybe, simpler approach to
the proof of the four facts listed above.

2. Definjtions, notation, and statement of results. Let W and -V be
finite dimensional complex vector spaces of positive dimensions with dim W
=m and dim ¥V = %. Let U be a real form of W chosen once and for all.
Elements of U and W will be, usually, denoted by le. latin characters,
elements of V always by £ and . The conjugate of 2z € W relative to U
will be written as z. The value of an element A of the dual space U’ of U
at the vector a of U or W will be denoted by <4, a>. We select once and
for all Haar measures do and d¢ on the vector groups U and V. The Fourier
transform on I'(U) is defined by

J) = [exp(—2rida, 2))f(2)do.
U

The Haar measure dA on U’ is normalized so that the Fourier inversion

+ * Research on this paper was partially supported by N.8.F. GP-34486.
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formula reads

[ exp(@ri <3, 2))f(R)di.
!

fl@) =

A regular cone 2in U is an open convex cone with vertex at the origin
which contains no affine line. Let 2 denote the closure of . Tf 2 is regular,
then so is its dual cone Q' = {1 e U': {4, 9> > 0,y € 2—{0}}. A Hermitean
bilinear map @: V x VW is said to be Q-positive if for all £ e V, D(L, £)
€ Q, and if ®({, ) = 0 implies that { = 0. For 1€ Q' define a positive
definite Hermitean form on V x V by H({, w) = 4{4, (¢, »)), and set
o(4) = detH;.

The tubé domain over Q in W is T, = {# € W: Imz e Q}. The Siegel
domain of type L1 determined in W x V by Q and & is the set D = {(z, {)
e WxV: Ime—D(L, ¢) € 2}. The distinguished boundary of D is the sub-
set B = {(2,0): Imz—P(£, &) = 0} of the topological boundary of D.
The map (z, {)— (¢ +1iP(Z, ), £} is a homeomorphism of U x V onto B.
The topological and measure theoretical structures of B are those of UX V,
transferred to B by the above map. Now L” spaces for 1 < p < oo can be
defined on B. The L¥{B) norm of a measurable function on B is explicitly

Wiz = ( [ |flo+i®(E, o), 2)P dodt)™.
: Uxv
If F: D»C and te £, then the function F; DUB—C is defined by
Fy(2, ) = F(z+it, ). Finally, for 1< p < ‘o the space H” = H?(D) is
defined as the set of all holomorphm functions f: D—C such that

il =

SUP IF gl < oo.
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The function F + ||F|jgp is a norm on H”. By abuse of notation we shall -

write [|F;|pllLeg a8 | FyllLeg . General references about the facts reviewed
here are [5], [6], and [8]

‘We now introduce a function space which will play an important part
in our proofs. Consider the set of functions ﬁ‘ Q' % V—C subject to the
following two conditions:

(A) For every eV F (-, ¢) is a measurablée on Q.

(B) For every ie Q' ﬁ'(l, -) is & holomorphic entire function on V.

This set clearly forms a linear space. By a result of H. D. Ursell ([12],
Theorem 8), the following statement is true; ‘we record it for future refe-
rence as

Remark 1. A function f: Q' x V->C satlsfymg condmons (A) and
(B) is measurable on Q' x V.

In view of the remark it is meaningful to impose.the following, third

¥
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condition on our funetions:

(©) Wiz = [ e ™TCIP G, atig < oo:

@XxV
‘We define the space H: to be the set {F: @' xV>C: F satisties

(A), (B) (G)} I Fand @ belong to HQ, We say that F and § are equivaleni

(FNG) ﬁF() {) = G(Z, 4) for almost all (2, ¢) € ' x V. In view of condi-
tion (C) we have

Remark 2. If F,@ eH?, then
F b [exp(—xH, (L, 0)1F(2, 0)—E, 0)2a1 = 0
2
for almost every eV

- fexp (—=HA(Z, D) IF (A, 0)—&(1, OFdL = 0

for almost _every 1e Q.

Now H? is defined a8 the set of equivalence classes (relative to ~) of

elements of H i- Clearly, H?is an inner product space with the norm defined
by (C). We can now state our results.

LeMMA 1. The space H® is a Hilbert space.
THEOREM. (i) Let FEH,, and let (2,%) e D. Defme UF(z '8} by

) UF(z,7) = j AR, fa.

The integral in (1) i8 absolutely conwergent, U@ belongs to H*, and if G € H’
8 equivalent to F then UF = UG,

(ii) The integral (1) defines @ map, also denoted by U, from H into HE.
It is a wnitary map from H? onto B, and H* is a Hilbert space.

(ifi) If 7 e H?, then for t € Q tending to 0, F, [B converges in the norm
of I*(B) to an elemmt F of I¥(B), and |Figp = |F| 225 -

(iv) If (w,0 ), (2, {) € D, then the fundtion (2, {) > By, ) (2, £) defined by
@ - Buee, 0) = [ @mihemu-206ady 3y g
&

balbﬂgs to H?, and for every F e H*
3) F(”’; ) = <F]S(w,w)>H27

where | >z denotes the inner product in H®.

Equation (3) states that 8w, 18 (a, and hence by general principles)
the reproducmg kernel of H®, the so called Szegd kernel of D.
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3. Proof of Lemma 1. Fix 1 € Q. Define {[f ||, for measurable functions
on V by

15 = f ol "lf(E)lde

and define #* to be the set of entire holomorphic functions on ¥V for
which ||f]}; is finite. The space #* is an inner product space which obviously
contains all the constants, and it is easily checked that it contains all poly-
nomials. The proof of Lemma 1 consists in showing tha.t #* is complete,

and that H* can be identified with the dlrect integral f A#*d3. The basie

facts about #7, viz. the existence of a reproducing kernel and completeness
are due to V. Bargmann [1]. For the sake of completeness, and also be-
cause some of the technical details of the proofs will be needed, we reprove
these facts (with gimplified proofs).

For (eV, and fes* define (4.f)(w) to be exp(nHy(w, ) —
—3nH (L, C))f(co—é‘). Clearly, w > (4.f){w) is an entire function on V.
A simple caleulation shows that for f, g € H* one has (writing the inner
product in #* as {-1-);)

“ (af\Ag3s = <Flod,

and that in particular for f e #*, |4;fl; = Ifl;. Another easy calculation
checks that A_, is the inverse of A,. Therefore A; is & unitary - transform-
ation of #* onto itself. Let iow 6 e R, for f e #* define f, by f,(¢) = F(€°C).
Clearly, f,e#*. The change of variable [ > ¢ and the fact that

H,(e7®c"%) = H,(Z, L) show that (f,|1), = (f|L);. Therefore, using
first Fubini’s and then Cauchy’s theorem we have :

27 o PPN
1 ) 1 '
O <= g [ it - = J fedall>i=f(0)<ll_l>z-
By evaluating (1]1); in a coordinate system inbwhich H, is diagonal, we
find that <1|1)>, = p(1)~". Using this in (5) we have
(6) F0) = o(A)<{f11D;. . ,
Since f({) =exp Hﬁ‘ﬂ-'Ha (4% 9] )(A )(0), we obtain from equality (6)

1(2) = e(Mexp(§=H,(E, ¢ £))<A_fI13:. Applying (4) to the right-hand
side of the last equality we have

! F(2) = oAt HHEA(f IA;1>;1

Since (4.1)(w) = exp(rHy(w, &) —inH(L, 1)), We can rewrite (7) by set-
ting o (A)exp(H,(w, ¢)) = Ki(w) as | |

@ £ .= FIED,.

icm

H? spaces of generaliced half-planes 21

(Note that since K} is a numerieal multiple of 4, 1, it is an element of )
‘We have proved that #* has a reproducing kernel given by K; An easy
calculation shows that {|KH, = p(A)"exp(InH, (L, {)). Using this value
of |E2, and applying Schwarz’s inequality to (8), we get

(&) IFO < o (A PeEA F1 ;.

Tf K =V is compact and Cx = suplexp(3=H,(¢, £)): { € K}, then
for £ e K (9) yields |F(2)] < e(A)**Cxlifl;- This inequality immediately im-
plies the completeness of #*

‘We shall now derive another consequence of (9) which will be needed
in the proof of the theorem. Let ¥ e H2, then by condition (0) F(1; -)
belongs to 3#* for almost every i e Q. Tn view of (9) we then have

Remark 8. Tt F e HY, then for every £ e 7V, Z}—> o (A) Mg ImHALD
x P (4, £) belongs to Lz(.Q) 4

Let us also observe the following fac¢t: if {;,§ =1, 2,8, ... is a dense
sequence in ¥ and f e 5#* is such that (f| K> = 0for j =1,2,3, ..., then,
by (8),f = 0. Consequently, we have the following

Remark 4. I ¢;,j =1,2,3,
j =1,2,3,.

We now prove that H* is complete. Let § = [J{H*: 4 Q'}, and let
6 = {f: Q' xV—0: f satisfies (A), and for every Ae ', f(1,) e #"}.

Note first that  can be identified in an obvious way with a linear
subspace of §. Also note that for fixed { e V, (4, o) > K}(o) belongs to G.
‘We shall now verify that the Hilbert spaces #* form a measurable field
of Hilbert spaces ([3], page 142). To this end we must check three condi-
tions. ’

1) If fe®, then Aw>|f(4, ) is a measurable function on Q.

To prove this note that, by Remark 1, fis a measurable function on
Q' x V. Then approximate the lntegml giving ||f(4, )|} to within ¢/2 by an
integral over a large cube in V. Now apprommate the integral over the
cube to within ¢/2 by a Riemann sum. This Riemann sum is a measur-
able function of 1. Therefore ||f(4, -){|; is the pointwise limit of measurable
functions, and hence measurable.

(2) If geF is such that A {g|f>; is measurable for overy fe®,
then g e®.

Proof. g(A){{) =
Noéw use Remark 1.

(3) There is a sequence f; of glements of & such that for every A e fod
the sequence f; (1, -) is total in 2. .

Proof. Remark 4.

. is a dense sequence in V then K
. is a total sequence in .;f‘

(g1 K}y, is measurable for every ¢ € V because K} €G.
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The elements of G are called measurable vector fields. A measurable
vector field f is said to be square integrable if f Il f(l )I3dA is finite. Two

square integrable measurable vector fields f and g are equivalent if
If(4, ) —g(2, )32 = 0. The direct intogral f;fld}. is defined as the
get of equivalence classes of measurable, square integrable vector fields.
The norm of fef AR is (f £ (&, )G dAH2.

If fe® is square mtegra.ble, then, clearly, f belongs to ﬁﬁ. If g is
another square integrable element of ®, and g is equivalent to f, then
(Remark 2) fand g are also eqmvalentmﬂ" Thenorm of a square integrable

fe® equals its H’norm. So far we have shown that f #*d% can be
identified mth a subspace of . To prove that the subspace is actually all
of H? let F ¢ H* and select a representative F, of F in H;. The set of 1’s
in Q' for which . 1(2, +) does not belong to #* is of measure zero. Now define
F, as follows:
Folh, ) = Fy(2,0) it Fy(d,-) e #*, and F,(3,) = 0 otherwise.

By Remark 1, 13'2 belongs to ®, and hence to f’ﬁ, and by Remark 2, it is
equivalent to F;. This proves that H? can be identified with the direct

integral of the #"s. Since the direct integral of Hilbert spaces is a Hilberb
spaee; Lemma 1 is proved.

4. Proof of the Theorem. In addition to Lemma 1 and Remark 3
two technical results will be needed which we now list.

LEMMA 2. Let FeH?,1<p< oo. Let LeV, and 8e Q such that
8—D(, L) e Q. Then 2+ Fy(z, ) = F(z+i8, ) belongs to HP(T,).

Levma 3. Let ¢ > 0,0< a<< §, and lot Ay, Ay, ..., A4, be a basis of
U’ contained in Q' wMoh is compatible with the Haar measure d on U’. Then

@2, 0) = exp{—a2<
ous on D.

Lemma 2 is actually true for all positive p, but we only need it for
p =1, 2. Tt is due to E M. Stein [10]. Lemma 3 is a special case of Lemma
81 in [9].

Let now FeH: and (2,0) eD, with 2z =z+it4-iD(L, ) where
te . In any coordinate system g (1) is a homogeneous polynomial of degree
n, and one can show readily that o (1) exp(—2= (1 ,1>) is square integrable
on £'. Therefore by Remark 3

, 2%} belongs to H* (D), and is bounded and continu-

;

(10) [ EmE0F (2, s = [ G gD IIEOR (3 1)
Q' Q2
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is absolutely convergent for every { € V. Choosing coordinates in W x V,
and applying Morera’s theorem in combination with Fubini’s theorem one
shows that UF is holomorphie in each coordinate of (2, £), and hence by
Hartogs’s theorem holomorphic in D. Since (1) exp{ —2= (4, t)) is a bound-
ed function of 1 on @', by Remark 3 one concludes that the guantity
multiplying exp(2mi{A, #>) in (10) is square integrable on Q'. Therefore,
by Plancherel’s theorem for every eV,

f [UF (o +it +i®(Z, £), 2)f'de = f rmﬁbrﬂzﬂ'ﬂ[ﬁ(z; B2 aa
U Q0

Integrating this equality on V, we get
(A1) WO = [ 606 TCNF(, ()P G < |Fipe.
Q'xy
From (11) we conclude that UF e H*. If 7, € 2 is a sequence tending to
0, then, by the dominated convergence theorem, we have that || UF), [121,2(3)

- eonverges to |[l3’|]2ﬁz and that therefore

(12) UF e = 1P
If GeH? and F ~ @, then (12) implies that nUF UGl = |F—@lge
= 0, i.e., that eqmvalent s give rise to the same UF. Therefore, U defines
a linear map from H* to H* which we continue to write U. The equation
(12) shows that U maps g isometrically into H*. Now let £, € Q be a se-
quence converging to 0, then (11) (with (UF),, — (UF), instead of (UF),)
and the dominated convergence theorem show that (UF) | i a Cauchy
sequence in I*(B). Therefore, (UF) |z converges in LZ(B) norm to an
element of I*(B). We omit the proof that the sequential limit ean be
replaced by ¢ € Q' tending to 0. We therefore have

Remark 5. Assertion (iii) of the theorem holds for every FeH®
which admits the representation (1).

By Lemma 3 and Schwarz’s inequality H>n H* # {0}. Let ¥ € H* n H',
and let ¢ e V be arbitrary but fixed. Set Q, = {6 e Q:86—P(L, (). 2}.
For 6 € Q; ¢ > Fy(2, £) belongs to (H*nH*)(T,) by Lemma 2. By the
theory of H? spaces on tube domains ([11], Chapter 3) the boundary
function of F,, viz. z > Fy(z, £) belongs to (I*nL')(U). We can therefore
define a function F,(1, [) by

(13) Fy(2,0) = [ 67 By(w, () do.
U

Remark 6. By the H® theory for tube domains, j‘.,(@, ¢) is supported
in Q'. Sinee Fy(+, &) e LN(T)NC®(U), Fy(-, £) is continuous and integrable.
Therefore Fourier inversion holds for every # ¢ U.
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If ¢ is another element of £, then, for e Q' by the H® theory
for tube éloma,ms,

Fryo (A, O) = exp(—2nh, 0)Fy (4, ) = exp(—2ma, 8)B,(4, ).

Therefore for 6 ¢ Q;, exp(2={A, 6))1%(1, {) is independet of §. Denote
this funetion by #(4, £). _

Now let 2z = @44y € W be such that (2,{) e D, ie., ye Q.. Note
that F(z, () = Fy(z,{). By Remark 6, we can apply Fourier inversion to
(13). If we now express F in terms of ¥ in the Fourier inversion formula,
we get :

14 Pz, ) = f e2m<“>1ﬂ(z C)

Since { was arbitrary, (14) holds for every (z, £) € D.

We now prove that 7 el'{2 Again fix {, eV, and a.lso l e It
0 € L, , then there is a polydise 4 = ¥ oentered at £, such that ¢ e 2, for

¢ e 4. Now by (13) and by the definition of ¥ we have for £ €4 that
(/1 C) £200> f P a;)I, (m C) de.

Exa.etly as before by eombmmg the theorems of Fubini, Morera and Hartogs,
we can show that ¢ H_F (4, ) is holomorphic in 4. Since £, was arbitrary
in ¥, it follows that F(A -) is an entire function. By Remark 6 we k_now

that F{-, £) is continuous for every e V, therefore, by Remark 1, 7is
mea.surable on Q'xV. Now let t € , then Plancherel’s theorem apphed
to (13) gives for every LeV .

J 1P loru+0,0, P2 = [t i, ota.
Integrating this equality on V we have

ey = f e BOg IR (1, 8P ardL < HFH;'}E :
XXV
By Fatou’s lemma it follows that Fel Taking the supremum - over
0 we see that || ]FI[H: = HF lla2. We conclude that the map F .y maps
the subspace H*nH* of H? isomettically into A2, By Lemma 1, the range
of this map is contained in a complete space, and therefore, if we denote
by M the closure in H* of H’nH, it extends uniquely to an isometry
Vot M into {H% Now for F e H*nH* (14) holds, and therefore for such
F,.UVF = F,ie., UV'is the identity of H*nH* By continuity, it follows
that UV is the identity on all of M, and hence if F € M, then F = U(VF),
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ie., U maps bis isometrically onto M : M is a Hilbert space, and the unitary
maps U-and V are inverses of each other. By Remark 5 it follows that.
assertion (iii) holds for every F e M.

We now prove that ¥ = H*. Let F e H? and let G be the fu.nctlon
introduced. in Lemma 3. By that lemma and Schwarz’s inequality G°F
e H*nH'. Since assertion (iii) of the theorem holds in M, there exists an
element (G°F)” of I?(B) such that (G°F)p tends to (°F)” in I? (B)
a8 ¢ € £ tends to zero. Consider first the case : = 1. For some sequence
e Q,%—0 (fixed once and for all in this proof), (G F),|z—~(G'F)~
a,lmost everywhere on B. Since GJL lg=>Glp =G everywhere on B,
and G* does not vanish anywhere, we can conclide that Fy, |5 converges
almost everywhere on B to a limit #. Since HFtk”Lﬂ < |7} lH" it follows
form Faton’s lemmsa that # eL‘(B) Now, let & be arbitrary positive.
Since (GKF)%I g =0flp Ty 5= G°F almost everywhere; and (@F)y, 5
~(6°F)” in L*(B), it follows that (@ F)” = GF almost everywhere on B

Now let &,—0, then )

16" F -G Flie = [ 16" —@* 1B dwdc
uxv

because (iii) holds in M. Since ¢ —G* tends to zero boundedly, we have
that G”F is a Cauchy sequence in the complete space M, and therefore it
tends in H? to an element H of M. Now let ¢ €0 be Mblh'ary but fixed,
then (G F),— Hillpam < ¢ F— H[in and therefore (G” " FYlp>H,ly
in I (B) norm. On the other hand, 67|51 everywhere on B. Consequently,
F,|p = H,|p because both functions are continuous. Since € Q was arbi-
frary, it follows that F = H, and hence, that M — H>

To prove (iv) let (w, w) e D and F e H>. By the assertions of the
theorem already proved, we have

as) . . Pw,w) = f R (7, w)dz

where F = U‘117’EH~ Since F (4, ) € #* for almost every ie Q', we

have F(A w) = (F(l K>, for almost every ie Q. Introducing this
into (15) and rewriting the integral as a double integral, we have (only
formally, so far)

(16)  Plw,0) = [ e EIF(L, g) (70D B, )y aidc .
2'xV
Denote the gquantity in curly brackets by T(w,a,)(l {). A straightforward

check verifies that (1, ) 5T, (4, £) belongs to H2 Therefore, the double
integral in (16) is absolutely convergent (this justifies the passage from

(15) to (16)) and equal to <1}']T(w’w)>f12. Consequently,
(17 F(0, 0) = BT mdse-
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Now a simple caloulation shows that UTy, ., is the function S, .
defined by (2), hence in view of the fact that U is unitary, (17) yields

Fw, w) = <~Fls(w,m)>HZ'

But this is equation (3) in assertion (iv) of the theorem whose proof is
now complete.
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On an integral representation of antisymmetric
operations in Hilbert spaces
I. Bounded operations
by
STANISEAW GOZDZ (Lublin)

Abstract. In this note we give the representation of the pounded and antysym-
metric operation A defined and valued in the Hilbert space H (real or complex) in
the following form:

B
Az =f&dQ,1ao,

where Q@ e I(H) = {@ e L(H): @ = —@ and @* = —@Q}.
Moreover, we give the properties of the operation of the class I (H) and some form
of the solution of the equation

d
'ﬁt—x(t) = Ax(t), where A is antisymmetric

with the initial condition %(0) = z,.

1. Introduction. In this paper we give the spectral representation
of bounded antisymmetric operations in Hilbert spaces; the case of nnbound-
ed operations will be presented in the next paper.

In our theory we formally give an effective solution of the equation

a
oY) 7 20 = Aa(1)

with the antisymmetric and bounded operation 4.

2. Class of operations I(H). Let H denote a Hilbert space and let
L(H) denote a linear space of all linear and bounded operations in H.
The class of operations I(H) is defined as follows:

(@) Qel(H)=QeL(H) and @ =-¢=¢,

where Q* denotes the conjugate operation with Q.
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