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Now a simple caloulation shows that UTy, ., is the function S, .
defined by (2), hence in view of the fact that U is unitary, (17) yields

Fw, w) = <~Fls(w,m)>HZ'

But this is equation (3) in assertion (iv) of the theorem whose proof is
now complete.
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On an integral representation of antisymmetric
operations in Hilbert spaces
I. Bounded operations
by
STANISEAW GOZDZ (Lublin)

Abstract. In this note we give the representation of the pounded and antysym-
metric operation A defined and valued in the Hilbert space H (real or complex) in
the following form:

B
Az =f&dQ,1ao,

where Q@ e I(H) = {@ e L(H): @ = —@ and @* = —@Q}.
Moreover, we give the properties of the operation of the class I (H) and some form
of the solution of the equation

d
'ﬁt—x(t) = Ax(t), where A is antisymmetric

with the initial condition %(0) = z,.

1. Introduction. In this paper we give the spectral representation
of bounded antisymmetric operations in Hilbert spaces; the case of nnbound-
ed operations will be presented in the next paper.

In our theory we formally give an effective solution of the equation

a
oY) 7 20 = Aa(1)

with the antisymmetric and bounded operation 4.

2. Class of operations I(H). Let H denote a Hilbert space and let
L(H) denote a linear space of all linear and bounded operations in H.
The class of operations I(H) is defined as follows:

(@) Qel(H)=QeL(H) and @ =-¢=¢,

where Q* denotes the conjugate operation with Q.
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‘We shall see later that the class I(H)is non-empty and non-trivial;
now we give a simple

Examprs 1.2. Let H denote the three-dimensional real Buclidean
space. It is easy to see that the operation ¢ given by the matrix

0 ab
(3) @Q={—a 0 c¢|, where a®4b%+c®=1,
~b —¢ 0

belongs to™I(H).
BEvery operation @ € I (H) has the following properties:
TaEOREM 1.2. If Q € I(H), then:

(i) —@*is a projection, i.e. (—Q°) = —@* and (- = —@*.
(i) 1@zl = 1@ '
(i) Q) =1 _

(iv) Q(H) = Q(H), where Q(H) ={Qu: zeH} and Q(H) denotes

o closure of Q(H)

Proof. (i) and (ii) are obvious.
TFrom (i) and (ii) we have

QI = sup{IQal: floll < 1} = sup{|—Q*xl: foll <1} =1,

which completes the proof of (iii).

It is enough to show that if © €@ (H), then @ (H). In fact, let xeQ (H).
Then there exists a sequence z, € H such that Qz,—x. Since —Q*(Q3,)
= "Qszn = sz 80 @ = —sz EQ(H)'

THEROREM 2.2. Let @, @, € I(H
if and only if Q,Q5 s a _project'ion

"Proof. Necessity. Let Qi,Q,cI(H), Q.Q: =
We have (@,+@.)® = —(Q;+¢s); hence

(a) 093010, = 0.
Multiplying both sides of equation (a) by Q., we obtain

Q%Q;‘ = 'QI Qz -

0201, @, +Qe I(H

Thus
(919.) = 93¢3

ie. @,Q, i8 a projection. -

= Qle: (Qng)* = QsQl = Qle,

) and Q;Q5 = @:Q.; then @1 +Q, € I(H)

icm

Integral represeniabion in Hilbert spaces I 29

Sufficiency. By using our assumptions and a definition of the class
I(H), it is easy to see that

Q149 = —(@1+Qx).
As a simple conclugion of Theorem 2.2 we gef
TaEOREM 3.2. Let Qr, Qs € I(H) and Q195 = Q:Qy; then Q,—Q, € I(H)
if and only if Q1Q. = .05 ‘
COROLLARY 1.2. If Qq, @, € I(H) and Q;Q, = @1, then Q,—Q, e I(H)

The proof results from Theorem 3.2.

DEFINITION 1.2. An operation ¢, el (H }is said to precede a.n operation
Q, € I(H) when Q1Q2 = @}, and we shall write

1 <Qs E Q9. = Q1.

TEEOREM 4.2. The class I(H) with the relation < is a paytly ordered set.

Proof. Tt is éasy to see that Q < @ for each Q e I(H), and ¢ <@,
and @, < Q5 implies @, < Qs

We shall show that @, < @, and 0y < @, implies @, = Qs-

I Q,< @, and @, < ¢,, then 0 = @3 and (Q.— Q) =0Qi— —Q; = 02
and so we have }

0= ((Qz Rz, m) '—((Q2—Q1)295 m)
= ((Qz_Qﬂ;my —(@2— @1z ) = —(@:— Q) =I*

for each # € H, which means that Qo = @;.
THEOREM 5.2. I (H) is @ closed subset of L(H) in the sense of strong
convergency, i.e. if @,5—~Qu for each » € H and Q, cI(H), then Q € I(H).
Proof. Infact, for any sequence {¢,} of operations such that ¢, I(H)
and Q,z—>Qx we have

1% 2+ Qull < 1Q°2 — Q3 @zl + 19590 — @l +1Q50 + Qa0

Evidently, @* = —@.
LevmA 1.2. For Q,Q@scI(H) and @, <@, we have Qo] < 1@zl
for each % e H.

Proof. From Theorem 1.2 we have

= Q3] = 110:Q2ol < Q11 1Qall = 1@aell-

THEOREM 6.2. If ;< @< ... <Q,<... and Q, e I(H) ) for n =1,
2, ..., then there evists thnw = Qu for each © e H and @ € I(H).

if n—>oo.

) ”915"”
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Moreover, if {@,} is an arbitrary sequence of operations from I(H),
where 1imQ, x = Qu ewisis for any » ¢ H and Q, < Q' for all n, then Q < ¢'.

n—00

Proof. Let # e H; from Lemma 1.2 and Theorem 1.2 (iii) ‘we have

1922l < @112l < il

and so a sequence {|@,z|} is eonvergent for an arbitrary « EH Hence
we obtain .

"Qn-«-km - QMH”
Then we have

= {1@nsxl —Qual’—0  if

Ny k—>o0.

lim an = Qu

7—+00

- Likewise, from the Lemma 1.2 1f Q, <

and QeI(H).

Q', then
lim@, <@

3. Antisymmetric spectral family.

DEFINITION 1.3. Let us establish an abstract funetion R 1—-@Q,
€ I(H) (where R denotes the set of all real numbers) satisfying the follow-
ing conditions:

(i) It 2, <4y then Q; < Qu;
(ii) for each » € H and 1 € R we have
’ lim @, ,0=@, ;¢ and @<,

<50
The function thus defined we shall call the antisymmetric speciral
family.
TeEmOREM 1.3. If {@}ir i an antisymmetric spectral family, then
we have

Im Q2 =

A—>—00

ww and Hm Q2 =@, 2.
A>+4o00

Proof. It is clear tha.t a funetion ¢ (1) =
and bounded, and so we Have

lim ||Q,a|?
A>too

IQ:2l* is non-decreasing

for an arbitrary x e H. -

Hence we have
HQA;W—QHID!IZ =

for an arbitrary 2, < 2,.
Similarly, for A—>— oo.

1@, al* — 1QsalP >0 it

Ay Ay—>00

icm°®
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4. Antisymmetric spectral integral. Let {Q.},.z be an antisymmetric
spectral family and let {f(M)}icca,p be a real continuous function defined

" on an interval {a, ).

Let #: a = < 1y <...< A, =fbesn division of the {a, B>; denote
by s(=)x the sum

s(@)e = D' f(A) (@~ )®
T=1
for arbitrary x € H and write
A(m) =max {4 —24;_;1: 4 =1, 2,...,n}.

THEOREM 1.4. For an arbitrary antisymmetric spectral family {Q:}i.n
and for an arbitrary real continuous function {f(A\)}i.r and for an arbitrary
2 € H there exists an integral

8
[ fnaQw

understood as the bound of a sequence of sums $(m,)x, where {m,} is & sequence
of divisions such that A(m,)—0 and denotes a bounded and oniisymmetric
linear operation.

Outline of the proof. From Theorem 4.4. V [1], to show the
8
existence of [ f(1)dQ, it is sufficient to prove that a variation of a function
L

# = @,z is bounded.
In faet,

varf(z,) = sup {”Z s,-(Q,_i—Qli_])w]‘[: Boa =R < A< e < Ay = ﬂ},
=1
where ;| =1,

I 2?7 2@ — Qo = S,’ W@y, —@s,_) 3l

il ) (@1, Yo' = 1(Qp—Qa)al < Il

where the last estimation follows from Theorem 1.2 (iii). Hence
varl(a;) < ||
]
and [f(1)dQ,» is an antisymmetric linear operation as a bound of a se-

quence of antisymmetric operations.
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Let
LB
Adw = [ f(2)aQ,x;

then

n

Mol = lim 3] 7 () (@s,— s, )l

()0 ;=

= lm ') 1(Qs,— Qs )2l < M alf,
cib o d(@)-0 353
wherg M = max{|f(A)]: 4 e<a, 3} s0 4 is a bounded operation.
Now we shall see that for an arbitrary bounded antisymmetric and
linear operation there exists an antisymmetric spectral family.

5. Representation of antisymmetric operations. We shall prove the
following o
THEOREM 1.5. For. each antisymmetric bounded operation A there
ewist two bounded operations V, B such that
@) VeI®E),
(i) B = B,
(iii) A = VB = BV, AB = BA. .
- Proof. Let-us consider two cases: there exists an 4%
. From Theorem 2.3 IV [2] for —A? there exists a symmetric and non-
decreasing operation B such that — A* = B? and there also exists a' B~
If B~ is bounded, then we put
v 4B,
It is obvious that 4 = VB and that Vel (H) (since V2 = —1I).
If B! is not bounded, we see that

R(B) = {Bw: e H} = H;

this follows directly from a decomposition H = N (A) ®R(A"), where
N4) ={wecH: 4z = 0}.
We put
Vg = AB s for =zeR(B)

(B~ is defined on a dense domain). We have _
1V'olf =(V'w, V'a) = (4B s, AB™ z) = |al’,

and so V' is an isometry.
. Let us extend by continuity the operation ¥V’ on the space H and
let us denote it by V. Evidently, V e I(H) and 4 = VB. -
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+ Now we shall prove that ¥’ is an antisymmetrie operation. Let x, Yy
€ B(B); then we have

(V'a,9)+(2, V'y) = (4B"'z, y)+ (@, AB"'y)
= (AB™'Bu, y)+(Bu, AB™'y) = (4u, y)+ (Bu, 4B 'y)
= (A%, y)+(u, Ay)= (v, —Ay)+(u, 4y) =0,
where » = Bu. Since ¥’ is an antisymmetric operation, it is also true for
V. If is easy to see that V eI(H), because V° — —7.

It remains to show that 4 = VB. Let # ¢ H, z,->2 and x, € R(B).
Then we have

Az — VBl < |4z — Aw,]| + |42, — VBa,|| + [V Bz, — V Bal|~0

if n—>o0.
Proof of Theorem 1.5. In view of Lemma 1.5 it ig enough to
consider the case where A is singular. Since 4 — — A%, we have H

= N(4)®DR(4). Obviously, A{R(4)) = B(4); let us pub

Or = Aoz  for zeR(A).

We note that the operation O satisfies the assumptions of Lemma 1.5.

There exist V', B’ such that Cz = V'B’z for » e R(4) and V* éI(.R(A)).
We put

Vo =V'z, where &=+, o, EN(A), x, e R(4)
and
Bx = B'x,.
Tt is easy to see that V e I(H), B — B* and 4 — VB.

6. Existence of an antisymmetric spectral family. Now we shall prove
THEOREM 1.6. For each antisymmeiric linear and bounded opergtion
A there ewists an antisymmeiric speciral family {@:}1cm such that

Az = fﬁMQAm.

Proof. By Theorem 1.5, for an arbitrary operation A satisfying the
assumptions of Theorem 1.6 there exist operations ¥V and B such that
A =TVB.

By Theorem 9.4 [1], for an operation B we have a_representation

B = fB AdH,,

3 — Studia Mathematica LXIL1
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where E, is a spectral family of B. Putting ‘ .

: det
Qi. = VEM
we see that.

s
A= j 2d0Q,.
d a
7. Equation —d?m( ) = Ax(t). One of the applications of an antisym-

metric spectral family is the equation (1'):

d
" —(it—w(t): Ax(t),
with the initial condition

%(0) =2, H,

where the operation 4 is antisymmetric and bounded.
As demonstrated in [3], for an arbitrary and bounded linear oper-
ation A there exists a semigroup

I;x = exp(id)o

such that »(f) = Iz, for any z, € H and »(t) satisfies the equation (1') with
the initial condition #(0) = z,.

‘We know that if A is an antisymmetric operation, then I, is an iso-
metry for any .

Preserving the notations of Section 6, we shall prove

THEOREM 1.7. If A is an antisymmetric and bounded linear operation,
then an analytic semigroup I, for which the operation A is an infinitesimal
generator is expressed by the formula

B : 8
(@) Lo =1+ V2=V [ costtdB,+V | sinltdE,l]w
It determines the solution x(%) = Iz, of equation (1) satisfying the initial
8

condition £(0) = x, € H, where A = VB and B = f}.dEl.

Proof. We shall prove that the solution of equation (1') is given
by the integral

3’y Lo = f exp(AV)dE, 2,

which is the hm_lt of sums

) ¢ Bym)w = ) exp (i V) By~ By, )o

i=1
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of divisions z: a = Ay<< < ...<<A, = f of the imterval
= h
A(z)—0 with respect to a norm. {a, 8>, where

Let us note that

exp(iAV) — y%(ﬁV)"
n=0 °

D TR | '
=JTLtAV +-9‘—Z'/.‘T/‘—~§TZ3J.3V~11‘-#/‘#V2+

=I— —1+1—-——.2.‘t2~——24t4 : _ L

( AV (M 3!11;3—1-... 14
=TI —(—14cos2) V*+ (sinit) V

Henee we obtain

(5" exp(tAV) = I+ V*—cos 4 V:+sin it V.

Putting (5) into (4'), we get

7 3 cortes) s~ By ot

i=1

(6)  Sw)r =2+ Via—

+7 ) (sin2y 1) (By,—B,_)a.
d=1
Operations

Bi(m)z = 2 (cosd;_y2) (B, — Eli ),
(7:) . i=1

G = 3 (i 0(, ~B,_)o

i= 1

are partial sums of integrals
, 8 I3
(89 Bw = [ sinitdBw, Cuo = [ cosit dBa;

their existence follows from 9.7 IX of [1].
From (6') we obtain

, . 4 - B
(99 41(31_1)0 Sz = o+ V- Vﬂaf cosit B+ V [ sinit dBja;
thus integral (3') exists and

(10%)

] B
Lo = fexp(tZV)dEm = [I—l— vi—_p? f cosit dB,+V fﬁsinlt dE,l] 2.
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Moreover; the operation I, is an isometry for any #; it iy easy to see
that ) (w)#|f = |#[F. BEquation (10) with respect to Theorem 9.7 IX [1]
takes the form
(11"
where A = VB.

L = [I+V*—V?costB+ VsintBla,

T H is a finitely-dimensional space with even dimension, then (117)’

takes the form

12" I,z = costBz -+ VsiniBz.

Now, we shall see that the function #(f) = Iz, is the solution of

equation (1').
Let us consider a differential quotient

1 1 1
=z [w(t+e)—w(t)] = = [y atbg—Tymy] = It‘s‘ [E.2y—m,]-
It is enough to show that

lim-]i [,y —z0] = A,

>0

for any s, e H.

From (10) we have

. ] 1 2 g 1 d 1 3

(8") = Lao—u,] = T f = [ —cos M]dB,z,+ V f = sinle dB,a,
& . & -1

and at the same time wmniform convergence of functions takes place:
1 1
@. () == [1—ecosAt]=X0 and (1) =—sindeTA.
e

From 9.2 IX [1] and (13") we obtain

&0

8 J3
1
lim— [Z,3,—a0] = V* f 0 dB,0,+V f 14B,,,
which gives

]Jm—i— [I,2,—a,] = Az, for any z,eH.
>0

Thus from the theorem about the equivalence of solutions of equation
{1), 2() = Lz, is a solution of equation (1’) with the initial condition
2(0) = @,.

Let us consider the case where the operation —A® has a discrete
spectrum; then there exist an orthonormal and complete basis (;);_;,,..,
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of its own vectors and a sequence {i;};_;. . of its eigenvalues such that

o]
— A’y = 2 2i(z, &) e;.
i=1
We put
wo = (o, 0)e;

then formula (10’) hag the following form:
Iy = [I+ 7 — WZcostVZPi—i— VZ sintV’LPi] 2.
i=1 i=1

These formulas are also true for an inifinetely-dimensional space.
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