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The trace of Sobolev and Besov spaces if 0< p < 1
by
BJORN JAWERTH (Lund)

Abstract. We determine the trace of Sobolev and Besov spaces if 0< p< 1
and s> 1/p+ (n—~1)(1/p —1).

0. Introduction. The trace of these spaces if 1 < p < oo has been
known to be a Besov space for a long time. (See the discussion in [5].)
The case p =1 has been covered by Strichartz [6]. The purpose of
this note is to extend these results to the case 0 < p<< 1. The only new
thing is that we have to impose the restriction s> 1/p -+ (n—1)(1/p —1)
rather than s > 1/p. Our method of proof, which works for the entire
range 0 < p << oo, seems to be new and is in a way simpler than those
previously known. For technical reasons we prefer to work with the
homogeneous spaces rather than with the inhomogeneous ones, but the
result is valid-in the latter case too.

Finally, T take this opportunity to express my deep gratitude to
Professor Jaak Peetre for proposing the problem and for his kind' interest
and advice.

1. Preliminaries. We hegin by defining the spaces to be studied.
Let {p,},.z be a sequence of testfunctions such that

Py € y(Rn) )

supp , = {271 < | < 2,
(1.1)
B, (9= 0,>0 if 2@—e) " <|E<2(2—0¢),
1 Dep, (8)] < O, |E71 for every multiindex a.

Z(R") is as usual the space of rapidly decreasing functions on R™ and
&'(R™) the dual space of tempered distributions.

DrrrNiTIoN 1.1. Let s bereal, 0 < p, ¢ < oo. The Besov space B;Q(R“)
is the space of all f € &' (R™) such that

I gy = 3 2"l am T < co.

5 — Studia Mathematica LXII.1


GUEST


icm

66 B. Jawerth.

DEFINITION 1.2. Let s be real, 0 <p< oo, and let I° = (—d4)"
The Riesz potential space Py(R") is the space of all fe % (R™ such that

I ”Pp(xﬂ) Il (B < 0.

(All properties of the Hardy space H,(R") we will use are given in Lemmas

1.1 and 1.2 below.)
‘We also need the following space:

DerrNITION 1.3. Let m be a positive integer, 0 < s << m, 0 < p, ¢ < oo.
. The space B(R") is the completion. of C® in the quasi-norm

n

I tany = ) ( T 01 4 g b 1)

=1 0
with the mth order differences
nd@ =X (~r{M)fla-tome), (o= (1,0, .., 0), o)
. »=0

Remark 1.1. E;"(R”) is independent of the sequence {p,},o5 chosen.
Remark 1.2. We emphasize that we in all these homogeneous

épa.ces work modulo polynomials.
Next we collect some properties of the spaces that will be called for

later. (Cf. [2] and [3].)
Lemma 1.1. .
) I g is real and 0<p,q< o, then 3"0 {fe&: 0 ¢suppf}

is dense in Ps and By,
(i) We hawo

_liz,p——g)f;;eég 'Lf 0<p<2,
Bj}—>_l£‘j,—>ﬁzp if 2<p< oo,
(iii) Concerning real interpolation we have
(Byo, Bk = B3,
(Bioqoi -é;lql)eq = E;qy
if 8 = (1—0)8o+ 08y (0 0< 158 #8q).
(iv) If s > max(0, n(l/p —1)) and 0 < p, ¢ < oo, then
l';;q - i};q
with equivalent quasi-norms.
Leb u(z,f) be a harmonic function in R7%'. Define the mawimal
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operator M, by
M,u(z) =sup sup |u(y,t)|, a>0.

>0 |z—y|<at

The following lemma is a result of Fefferman-Stein (see [1] or [3]).

Lemma 1.2. If feH,(R"),0<p< oo, and wu(x,t) is the Poisson
integral of f, then .

”Mau"Lp(R"l) ~ “f”Hp(Rn)
and
”-Mra(tma;nu)”Lp(R“) < G”f”Hp(R”) (F=1,...,m)

for a fized but arbitrary a> 0.

Here and in what follows 9; = 0/0w;.

2. The trace. Let us denote a point » € R* by z = {2, »,), where
o' € R*' and w, e R*. Identity R™' with the bhyperplane] s, =0 in R"
and consider the trace operator
Tr: &o(R")—F(R")
defined by
_ Trf(a') =f(@’, 0).
Our main regult is the following theorem:

THEOREM 2.1. Lot 0<p<< o0, 0< g co and s> 1/p+max(0,
(n—1)(1L/p—1)). Then the trace operator can be ewtended so that

2.1) Tr: BY(RY) B P4(R™Y),

(2.9) Tr: PS(R™)—BYe? (R,
Conversely, there is am operator Sr

2.3) Sr: BIUPa(RAY) s BIO(RY,

(2.4) Sr: BLUer (R Pi(R™),

. 80 that TroSr = Id.

Proof. The result is known if p>1 (see Introduction). Thus in
proving the theorem we shall, for simplicity only, assume that 0 < p < 1.
We also take g<< co. (The case ¢ = co can be handled dlrectly after-
wards. Just interpolate.)

In view of Lemma 1.1 (ii) and (iii), it is sufficient to prove (2.2) and
(2.3). Furthermore, in view of Lemma 1.1 (i), we may work in &, and then
extend the operators by continuity.
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Instead of (2.2) we shall prove the following stronger statement:

if ¢ > 1/p, then . )
Tr: B3 (R™) B P2 (R,
(That this is indeed sufficient follows by Lemma 1.1 (iv); the analogous
modification of (2.1) is also true,) Assume that f ePs (R™); then
fo'y ) =I""g(a", @),
where g € H,(R") and
If Hz'b;(mi) = H!]”HP(R“)-

Letb u(x, 1), t > 0, be the Poisson integral of g. Then as is easily veri-

fied ’

fl@) = f oy (g, ) db.

I'(s) ;

(Just take the Fourier transform of both sides.) We consequently have

A%, Trf(a) = T f t'”’AMi (@', 0,t)dt

1 1z”+1h,
_T“Zf AR u(@, 0,1)d8, (6 =1,...,n—1).
reZ 2%k )
Hence
(2.5) AR TxfIE nyy < O Y 277 sup |47 u(-5 0, 1), mn-,
: veZ wh<i<e’ 1z

where we have used.
(2.6) “ (z+9) <o +y”
when 0 < p < 1andm,y>0 Since’

m

sup |47, u(w 0,9 < Z(?)Mlu(w’-l—khei,?’h),

Phr<i<ertlip k=0
(2.6) also gives
@7 | sap |4 u( 0, D1IE @n—ry < CIMu () 2°R)E @n—y)-
Ph<t<e?tln
On the other hand, using the mean value theorem we see that
sup |45 u(a’, 0,%)] < O™ sup sup [07u(y’, 0,1)]
Pr<i<etin Pht<ar+Hlp 12—y |<hm

<027™ sup sup {07 u(y’, 0,1)

Pr<i<artly @ <im

< 02" M, . (07 u) (2’ , 2h)
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Thus
@8 I sup  |dRu(, 0, DE @y

2*h<t<a*Tip
< g2~ |[Mm+1(t’“6§”u)(', Z"h)llﬁp(nn—l) if »>0.

Combining (2.5), (2.7) and (2.8), we find that

<] -1 [-+)
f 5P | A7, Tr IR, gan—1) 8 < {Z‘ 2%p f L]Mlu( LI mn-1y @b+
0 1]

o+ 02 gepls—m) of 13 (7 O 0) (-5 27 BB, ) an}.
Tf we now change variable (2°% = =,) and use Lemma 1.2, we easily get

ITrfiis Bs——l/{p sty S C{ Z el 2 Zv(sbjlp’m)p} lgliE MUURS O g\

since 0 < s—1/p < m. This concludes the proof of (2.2).

To prove (2.3) we assume that f e BSUPL(RY™). Let {p;} and {p}
be sequences of testfunctions on R™' and R', respectively, satisfying
in addition to the analogues of (1.1) also

No=108 wl@) =2p@5), 0 =1
(8 is Dirac’s é-function.) Put
Stf(@, m) = 3 27 gxf(0)) @p,(@,) = ) Fo
»® s

We obviously have
‘ Srf(a’, 0) = f(a')
(i.e. TroSr = Id). To avoid some trivial technicalities we assume that
on Supp F,,, the testfunctions 4, on R® are of the form ¢,®y,. Observe
that suppF and suppg, overlap only if (z—v| < 2. To estimate p,*Sr, f we
have therefore to consider terms
0 =27 g g f @Y, %Y,
with |u—v| < 2. Since
Iy, *pulle,my < 0 t-1m),

we get ‘

llallz, ) < 027" lig, #flz mn—-
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Inserting this estimate in the definition of the quasi-norm in Bj,q gives
“Sl‘f”_éls’q(Rn) <'0|1f”3§’—1lp,q(nn~—l)‘

This completes the proof.

We conclude with the following remarks:

Remark 2.1. Our regults for the Besov spaces can be summarized
in the following diagram:

C Sr .
B;—l/];,g(Rn—l) poy B;,q(Rn)
Id Tr| s>i/p
Id .Y

¥
B;—l/p, ['4 ( R’n'— 1)

B.;—l]p,Q(Rn—l)

s>1/p+max(0,(n—1)(1/p—1))
‘We have an analogous diagram in the case of potential spaces.
Remark 2. 2 Peetre [4] has shown that a necessary condition for
the trace X of BS*“(R”) to exist as a distributions pace (i.e. LX)
is that s> 1/p —[—max (0, (n—1)(1/p —1)). Theorem 2.1 establishes that
s> 1/p-+max (0, (n—1)(1/p —1)} is sufficient (0 < g < oo). Tnecidentally,
we have proved that the trace also existsif 1/p <s<1/p-+(n—-1)(1/p —1)
0<p<1,0<g<< oo, but as a gpace of measurable functions:

0 % X < By ipa(RrY,

(N{)te- that it also follows that Lemma 1.1 (iv) is nearly best possible.)
This is also true if s = 1/p, 0 < p <1 and 0<C ¢ < p; it is then possible
to prove

0 = X < L,(R")..

Remark 2.3. If we are only interested in the result for Besov spaces
(viz. (2.1) and (2.3)), & direct proof of (2.1) runs as follows:

Take sequences of téstfunctions {p,} and {g,} on R™ and R"* respect-
ively with the properties (1.1} and furthermore 2@, = 6. Then

Trf*g, = 2 Tr(f*p,) xq),.

vEu-1

Now using the following two facts (see [3]) it is easy to complete the proot:
i) ¥ f has support in {|& <r} and 0< p < oo, then

”S;J-Pf (- ﬂ?n)"L SR=1) S Criiz [IFllz, AR -
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(ii) If fA,gA have support in {|{§/ <7} and 0 < p<<1, then

If«g I mm < T ”Lp(R”) 19 1z, -

((ii) also appears implieitly in the proof of (2.3) in Theorem 2.1.)
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