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if D is strongly pseudoconvex. To show it, we first note that if f is bounded
holomorphic in D, then | T4 = ||fllw. In fact, let { € D. Then f({) € o(Ty):
the spectrum of 7}, since for any B e L(H*(D))

(T —F(2)BL = (f—f(£)} BL 1.
Hence f(D) < o(Ty) and so we have

1l = sup [f@) < sup{ial: 2eo(Lp)} < < 1 lloo

Hence the set o = {Tf feA(D)} is a commutative closed subalgebra
of L(H*(D)) which is isometrically isomorphic with 4 (D) and which
contains T,l, o, T, , and the identity operator. Therefore, by the argument
in the proof of the ‘theorem in [4], p. 240, we have for every ne ['():
the Shilov boundary for o/

(W(Tzl)’ ceey "](Tzn)) € U,,(Tzl, teey Tzn)
or equivalently for every feI'(A(D))
(*) ; (E(zl)’ tre E(zn))EGW(Tzl7"'7Tzn)'

However, it is known that I'(4(D)) = 0D if D is strongly pseudo-
convex ([1], Theorem 6.3). Hence we have 9D < ¢,, which proves the
Theorem. .

‘Remark. As the above proof shows, for every bounded domain D
in C", () is still valid for 4 (D) and also when one replaces 4 (D) by any
other closed subalgebra of H®(D): the Banach algebra of all bounded
holomorphic funetions in D, for example, P(D), B(D), or H(D): the seb

of all fe ¢ (D) which are apprommated uniformly on D by holomorphie
functions on D.
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Sobolev type inequalities for p > 0
by

ALBERTO P. CALDERON (Chicago, Ill) and
RIDGWAY SCOTT (Upton, N. Y.)*

Abstract. Sobolev type mequahhes for gen( ralized Peano derivatives with ex-
ponents p, p > 0, are obtained.

- Certain kinds of generalized Peano derivatives (see [1] and [2] and
Definition 2.2 below) have been shown to have many desirable properties
that the classical Peano derivatives lack. In this paper we continue the
study of such derivatives and establish Sobolev type inequalities between
them. The basic results here are the estimates for the distribution funetions
of the N7"(¥) in Section 5, from which the desired inequalities for exponents .
p which are merely positive follow.

1. Notation. By ,Y,2,..., we denote points in n-dimensional
Buclidean space R" The closed ball with center # and radius ¢ will be
written ag B(®, o). Given a set o, let d(w, o) =inf{lw—yl: y e S}
If o is (Lebesgue) measurable, let |o/| = [dx denote the measure of &/
(dr denotes Lebesgue measure). i

" We will deal with real or complex valued functions, and we will
refer to the corresponding field as “sealars”. The term “constant” will
be used to mean 4 positive real number. All functions are assumed to be
measurable.

For an open set 0, let (>(0) denote the linear space of functions
infinitely differentiable in 0, and let 0;°(0) be the subspace consisting
of functions with compact support. For a function F e 0*(0) and a point
red,

o1 a \%
(L.1) FO(z) = D*F(z) = ('a%:) (55;) F(a).

As usualy la| = ay+ ... +ay,.

* Work performed under the auspices of the ERDA.
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For any measurable set .# and any positive real number p, denote
by L, () the linear space of functions F such that

Bl = ( [1P@)P )" < oo,
M

and for p = oo, make the usual modification. When the .# is omitted,
+# = R"igimplied, e.g., |[F'l|, = [Fll, rn- Let ¢ be an open set. Then L, 1,,(0)
is defined to be the linear space of functions F such that ¢F € L,(0)
for all ¢ € C3°(0).

For F € Ly 1,,(0), we say that D, F exisis in 0 if there is a function
Ge Ly 100(0) such thatb :

[Fla)Dp(z)de = (—1)! [G(a)p(a)do
a @ :

for all ¢ € 0°(0). In this case, we define D, F = . Note that D* = Dg,
- on C%(0). .

Let m be a non-negative integer. For any notation of derivative
(including the one to be given in the next section), D™ F will denote the
vector (D°F: |a] =m), and the notation [D™F(z)| and |D™F|, will
have the usual meanings (D°F = F).

‘When m is an arbitrary real number, we denote by [m] thé largest
integer less than m.

For a function F and s> 0, define i(s) =|{|F| > s}|. The following
well-known facts will be frequently used (cf. [4]):

(L.2) U <sTIFE (0<p < ),
and ’

3
(1.3) j IF(@)[Pde < [ A(s)ds®.

{IF|<t}
The words “increasing” and “decreasing” will be used here in the
wider sense; for example, 1 is a deereasing function of s.
‘When the region of integration is left unspecified, the whole space
R" is implied, Te., [ = [. :
-
Let F € Iy,14,(R"). Define the Hardy-Littlewood maximal function.
MF(2) =sup|B(, o) [ |P(y)ldy.
e=>0 B(z,0)

It is well known [4] that for 1< p < =
(1.4) I ME, < 6| Flp,

where ¢, is a constant independent of F, but depending on p.
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9. Definitions and preliminary results.

DEprNITION 2.1. Let ¢ be a real number such that 1< ¢< oo, and
let m be a non-negative real number. Suppose that F € Ly j(R™), and
define (with the usual modification when ¢ = o) :

NNF,0) = swp o (o [ 1F@)—P, WIdy"
e>0 Bz,0)
if there exists a polynomial P, of degree less than m such that the supre-
mum is finite (Ng(F,s) = -+ oo if not. If m = 0, then P, = 0 is under-
stood).

Remark. In [1], the éases ¢ =1 and oo are formally excluded,
and m is restricted to be a positive integer. However, all the results used
here concerning N7 are easily seen to be valid in these cases algso. The
cage m =0, ¢ =1, gives the ugual maximal function. We now collect
some simple facts about Ng'.

PROPOSITION 2.1.

() If P, ewists, it is unmigue.

(i) If ¢ is a scalar, then N7 (cF) = le| Ny (F).

(i) N(Fy+Fo) < N3 (Fo)+ Ny (F).

(iv) If g1 < gs, then Ng () < w@-alan N7 (F), where o is the measure
of the unit ball in R".

Proof. Assertion (i) ig simply [1], Lemma 4. Apgsertions (ii)—(iii)
are obvious in view of (i), and (iv) follows from Holder's inequality. m

PROPOSITION 2.2. Let m be a non-negative integer. Suppose that Ny (14?)
is Tocally integrable in an open sei 0. Then DF exists in O and ihf.we is
& constant ¢ depending only on m such that

|DF| < eNy(F) ae in 0.

Conwersely, suppose that 1. < p < © and that ¢ < p. Then. DT € L (R™)
implies that N7 (F) e L,(R"), amd.

(2.2) v (B, < ¢ 1D Fllp,

where o' is a constant independent of F.

u Proof. Thege results follow immediately from [1], Theorem 4, and

[1], Lemma 7, respectively, with obvious mpdifications when.m =0.m
The above results say that [Ny (F)l, gives 2 norm equivalent ’?o

the ugual Sobolev norm provided that ¢<p and 1< p< o (and, in

general, it gives a stronger norm). ‘We wish to (?onsi_der now the case p <1

and to give a Sobolev type inequality. To begin with, we must introduce

a new notion of derivative.
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DerINiTION 2.2. Let F be a measurable function, let » € R*, and
let & bfa a non-negative integer. Then F is said to be differentiable to’ord
k at & if there exists a function ¢ e C*°(R") such that @ =1 in a nei, hboef'
hood of &, pF € I 1,,(R"), and for some real number m > k, s

. NPMoF, o) < co.
In this case, we define

(2.3) D*F(z) = D"P,(a) for o<k,

where P, is the polynomial in Definition 2‘.1.

] ‘PROP(?SITION 2.3. The notion of derivative given in Definition 2.2
8 well deimed and, when it exists, coincides. with the usual definition (1.1)
Jor F' & 0%(0) for any neighborhood @ of . .

. Proof. Suppo&:e there exist @, and ¢,, and m, and My, such that
T, 1) < o0, & = 1,2. Let P; be the corresponding polynomial of
degree [m;]. It will be shown that %

(2.4) D*P;—Py)(w) =0 for o< min {{m,], [m,]}.

Let & = disb(a, {p; 1)), i =1,2, let g, —min{l, dy, dy, and let

v € 0 ({[2] < go}) be such th = ' :
giveso { o}) at [y(s)ds = 1. Then integration by parts

D*(P,~Py) () = lim g™ J 2P, —Py) (y) p((y— ) o) dy
= lim g™ (=1 [ (Pr—Po) (1) 9((y — ) o} dy.

I Jo—y| < g0, then (¢.F)(y) = (¢.F)(y), s0 for o< 1,
J =P )99 (y —a) o) ay

=2 (-1 [ @B ~P) )y ((y—a)/o)dy.

2
=1 B0

Since ¢ is bounded, say by e,
. 2
|[ ®1=P )99 (5~ fe)iy| <o 3 o Wpi(p, 7, ).
i=1 ‘

Lefting o0 proves (2:4), and shows that (2.3) is una,mbigﬁous. The fact
that (2.3) coincides with (1.1) for F e 0®(0) 18 just Taylor’s theorem. m
PR.OPOSIGTION 24 .Suppose that N7 (F) is finite a.e. in an open set
0 and that DLF emsts in O for some {a| < m. Then for almost all % @
b

(2.3) Dy F(2) = D°F(a).
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Proof. Let g e CP({lz| < 1}) be such that [¢(x)dws = 1. For almost
all €0,

(2.6) DR (@) = lim [ DLF(@)e((@—y) o) e dy,

pecause DLF € Ly 10.(0). We will now show that (2.5) holds for all #

such that N (F, x) is finite and (2.6) holds. Let  be such a point, and let

P, be the polynomial in Definition 1.1 such thab NP (F, ©) < co. Then
(DL F — D*F) ()| = |(D, F —D°P,)(w)|

: = |1im [ (D5, — D P W) (@) Ie) e

elo
= [Hm ()" [(F—P2) ()9 (o —p) fe) ™"y \

<1im09m—lnlN;n(F, z) =0. B
ey0

Remark. In view of Proposition 2.2, the hypotheses of Proposition
2.4 hold whenever N7 (F) is locally integrable in 0.

3. Main results. We now wish to prove a Sobolev type inequality
for N. However, the L, spaces are ill suited for measuring Ny (F). For
suppose F is not a polynomial of degree less than m. Then there is a ball
B = B(y, R) such that

inf [ — Pl = 60> 0,
where the infimum is over all polynomials P of degree less than m. There-
fore, for all # € R,
(3.1) N7(F, @) > 6(jo—y] +R) """
Thus NJ(F) is in L,(R") only if m+n/q>n/p. The spaces 12101—}—1}1[,2
discussed below are better suited for our purposes.

DEFINITION 3.1. Let p, and p, be positive real numbers. We say
that f e Ly + Ly, (R?) i there exist f; € L, (R"), i =1,2, guch that
f = fi+f.. For such f, define ‘ )

”f”pl;pz = inf{”f1”pl+ufa”p2: f=h+f 1 ELpi(Rn)i 4 =1,2}.

PropogITIoN 3.1. Let f, ¢ el}m—l-Lpz(R”) and let ¢ be a scalar. Then

(1) nof”;pl;p2 = lo| ”.f”pl;pz '
and

(1) 1+ 9lysp, < max {1, 20T TN (1 gy, + 19l

Proof. Part (i) is obvious, and part (i) follows from the inequality
If -+ gll, < max {1, 2623 (If |, + lgl,), > 0. For 1>p>0, this fol-
lows from the inequalities

BRSPS a?+b? and ' (a,,—]—b)”p < 2llp—1(allp -]—bl"”)


GUEST


80 A. P. Calderén and R. Scott
for @, 5> 0 and 0 < p < 1, namely,

W+ gl < ([ 171 + g1 20
<(fufir+ g7 aof™
< 2= 2(|If I, + ligl,). w

] From the definition of 0" llpy;pq» it 18 Obviously symmetric in p,, p,,
ie, If loyin, = If lpyp, - The following proposition says that ||f ”m:ég measu-

¢l

res f it Dygg(p, py (R"), where it is small and in Liontn (py,0) (R™), Where it
is large. e

]?ROPOSITION 3.2. Let fe Ly, +L, (R"). Let A(s) be the distribution
of f, d-e., Als) = |{If| > s}|, and let

1

I = [a(s)dsmxtedy [ j(s)ds™iotor o,
1

0

Then

I am=eem(f o, 122,

If lpyipy < IHP1+ M2,

Proof. For simplicity, let us assume that p; > p,. Define D, = {s:
[f(®)1 <1} and D, = D§.. An integration by parts shows that

32)  I=—[smdis)— [ sndi(s) = [fmde+ [ fiP2dm.
L0 1 Dy D,

Let &> 0 and f; e L, (R™), § =1, 2, be such that f — f, +f, and
Ifallpy + Wfallay < Ufllp sy +-
Define B, = {n: |fi(2)| > |fo(2)]} and B, = Ej. Then
[1fde<2® [ |fimdn < 271 (Ifl,, 4, + )
B By
and
[lfmad< 27 [ |fPdo < 22 (1f .y, + o).
By Eo )
Therefore

(3.3) E{ I de + Ef 1 a0 < 27 L1y + ) + (1 lpsp + 8]
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Since |f] < 1in Dy, |f| > 1in D,, and p, > p,, We have -

f\anz - [ Iffde and [ iffdez [,
EinDy EinDy ZiynDy EynDy
Therefore
1= [If"de+ [If™dw
. I Dy
= [ yPaet [ UM+ [P [ ifPd
EynDy EynD) EinDy EonDy
< [fMa+ [ P+ [ fMde+ [ (e
EjADy EynDy EjAD, EynD,

= [If"dw+ [If™ds.
By

oA

Combined with (3.3), this proves the first half of the proposition, since

© g> 0 was arbitrary.

To prove the second inequality, define

fy, # If(@)<1,
Sfulw) = )
0, otherwise,
and let fy = f—f;. Then as in (3.2),
yp
iy = ( [ 1£720 ) <™
Dy
and
1/v:
Wl = ( [ 1f17a0) " <T™.
Dy
Consequently, ”

”f”mwz < ||f1|[1,1 -+ 1|f2||p2 < Il/m+111m, | ]

Remark. If Ny (F)e L, + Ly, (R") for p,, ;> 0, then N (F) is
finite a.e., and henco D*F is defined a.e. for k < m. This will be used im-
plicitly in the statement of the following theorems.

TugorEM L. Let m, 6, vy, vy, and ¢ be real numbers such that

Ho<agm,
() 0 < vy, v, < njmax{a, m—[m]} and

i) l<g<n if n>1 and ¢ =1 if n =1L

Let F e L, 10,(R") be such that Ny (F) GL,,1+L,,2(R”) and such that,
for i an integer loss than m and not less tham the integral part of m—a,
[{DIF| > )| < oo for all &> 0. Then N1~ (F)eLy, + Ly, (R"), where 1[w;
=1jo;—afn, ¢ =1,2, and there is a constant o independent of F such that

15 (B lhsgso, < O UV (F Mooy

§ — Studia Mathematica LXIL1
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The proof of Theorem I is given in Seetion 6, following some prelimi-
naries. The following is the main result of the paper.

TeEorEM II. Let m be a positive real number, let k be a non-negative
real number less than m, let v, and v, be real numbers such that 0 << vy, v,
< nl(m—Fk), and let q be in the range 1< g < co. Then there is a constant
o such that, if I € Ly 1o.(R") satisfies |{|D'F| > e}| < oo for all &> 0 and
all j in the range k< j<< m, then

ID* Fllupy oy < 6ING (Bl 5

where Ljw;, =1[/v;—(m—k)n,i =1, 2.

Theorem II follows immediately from Theorem I in the case w,,
w, 3> 1 (see Proposition 2.2), since then D*F coincides with DEF. However,
the general case requires a separate proof, given in Section 7.

The eondition |{ID'F| > s}{ < co in Theorems I and IT is clearly
necessary: let F be a polynomial of degree less than m; then N7 (F) = 0,
but N ’; (F) (vesp. D*F) need not be zero for any real number (resp. integer)
k< [m]. The condition is satisfied, e.g., if F has eompact support.

4. Results concerning N for 0 < m < 1. To study Ny for 0 < m <1,
we introduce a generalization of the function F* studied in [3].

DEFINITION 4.1. Let 0<<a<<1 and let F eL,,,(R"). For »eR",
define

F¥@) =supe™*™ [ |F(y)—m,ldy,
>0 B(z,0)

where m, is the average of ¥ overthe ball B(z, p):

m, = |B(z, o) [ F(y)dy.
Bz, 0)

In [3], the ease & = 0 was considered; a function F' iy said to have
bownded meam oscillation if ||FF|,, < co. We begin with some elementary
properties. In the following propositions, F € Ly 1,.(R™), B iz a bounded,
measurable subset of R", and mgz = my(F) denotes the average of F over
B: my = ]B|“1£F(y)dy.

ProrosItioN 4.1. For any scalar o,

1B f 1 (y)—mpldy <21BI™ [|Fiy)—cldy.

B B
Proof. Clearly.

B! [ 1F(y)—mpldy < |B7| [ 1F(y)—cldy+lmy—e].
B . B
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By the definition of mp,
ims—e) =B [ Fly)ay—o| = |BI™| [ (F(y)—clay|
B B

<|B7| [ |P(y)~cldy. m
B

COROLLARY. I < 2N%(F).

PROPOSITION 4.2. Suppose that B and B, are bounded measurable
subsets of R" such that B < By and 27" |B,| < |B| << co. Then

Bl [1F(y)—mg|dy <2 By [ |F(y)—mp,|dy.
B . B
Proof. By the previous proposition,
1Bt [ 1F(y)—mpldy <2(BI™ [ |F(y)—msp,|dy.
B B
Using the hypotheses on B and By,

Bl [ 1F(y)—mp, |dy < B [ |F(y)—mg,|dy
B B

< 2By [ |F(y)—myp,|dy. m
By

PROPOSITION 4.3. |Ff¥ < 2FF.
Proof. Proposition 4.1 implies that

1BI™ [|IF @) —mu(1F))| dy < 21BI™* [|IF(y)]— Ims(F)|dy
' B B

<21BI7 [ 1P (y)—mp(F)|dy.

B

PROPOSITION 4.4. (F,+Fo)¥ < (F)¥+(FF), and, for any scalar o,
(cB)¥ = |o| FF and (F+o)f = FF.

Proof. Obvious. m

PROPOSITION 4.5. Let F be real valued and let ¢ € R'. Define

(F'v ¢) () = max{F(z), ¢} (F A O)(x) = min{F(z), ¢}.

Then (Fv o)¥ <iF¥ and (Fro)¥ <iFF.

Proof. The previous two propositions suffice since

Fve=%$F+c)+%1F—cl ‘Fac=3%3TF+c)—3F—cl. m

PROPOSITION 4.6, Suppose that a<< n (since o<1 this is automatic
when n > 1), that p is in the range 1< p < nla and that Ty e L,(R").
Then Fff € L,(R") for 1jr = 1/p —a/n, and there is o constant v independent

and .

and
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of F such that
~ IEF, < ol FE -

Proof. Let x e R", 0> 0, and 2z € B(w,

o). Define m, = mp, , and
Proposition 4.2 implies that

'
’”lrg = mB(z’Qe) .

Bz, o)1 [ IF(y)—m,ldy < 2" B, 20) [ [ |F(y)—myldy.
Bz,0) B(z,20) )
Therefore
o [ 1) —m,ldy <
B(x,e)

artita o i (z)

Integrating over B(z, ¢) and using the fact tliat ¢ > |x—2| for 2 € B(z, o),
one obtains

wg" [ F(y)—mldy <2 [ jp—e* T P (2)d,
Bz, q) B(z,e) R
|B(0, 1)|. Since ¢ > 0 was arbitrary, it follows that
Ff (2) < oI*(FF) (2),

where I% is the Riesz potential of order a and ¢ is a constant. Using a well-
known inequality for Riesz potentials [4], the result follows. m

PrOPOSITION 4.7 (cf. [3]).” Assume that [{|F| > e}| < oo for all &> 0
and that FF e L,(R™ for p in the range 1< p < . Then F e L,(R"),
and there is a constant ¢ independent of F such that

1Fl, < ¢ |F,.

Proof. First assume that F is non-negative, bounded, and supported
on a set of finite measure.

LeMya 4.1. Given 6> 0, s > 0, and a ball B containing a point x,
such that MF(z,) < s, then, if o = |B(0,1)],

H{F > (L+2%)s}n {FF< 27" 6} Bl < 6|B| o™

Proof. Let B, be the ball with radins twice that of B and with center
%,. Then B < B, and [B,| = 2"|B], and since MF(z,) < s,

fF< fﬁ’<slB}

where o =

2" |B|.

That is, mB(F) < 2"s. Let E be the set given by
= {F> (14+2"s}n{FFf <27 '4s}nB.
Then since B < B and F > (1+2")s = s+myp(F) on B,

B! [ [E(y)—mgldy = (BI™ [ |F(y)—mpidy> |B|"s|B].
B E
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Let 2z € {Fff < 27" 16s}n B, and let B, be the ball with center z and with
radius twice that of B. Then Proposition 4.2 implies that -

|Bls|BI < 2" BT [ 1R (y)—my |dy < 2" Ff(s) < S50 . m
B,

LeMMA 4.2. For any 6> 0 and s> 0,
T > (L4+2™)s}n {FF < 2777108} < BP0 MF > s}|o™.

Proof. Let 4 be the class of all (clogsed) balls B such that the interior
of B is contained in {MF > s}, but the closure is not. Since {MF > s}
is an open set (the maximal function is lower semi-continuous), the union
of # contains {MF > s}. Since I is integrable, { MF' > s} has finite measure,
hence the radii of the balls in £ is bounded. Therefore, (cf. [4], p. 10)
we may take a disjoint subfamily {B;} of # such that, if B; is the ball
concentric to B; with five times its radius, then

{MF>s}< (B,
i

By changing F on a set of measure zero, we may assume that F< MF

cverywhere, so {F > s} = [J B; also. Let  be the set given by
= {F > 2" +1)s}n {FF < 2771 6s}.

Since B < U B;, we have B = {J E;, where H; = EnB;,. Every ball
B, contains a point not in {MF > s} because the closure of B; is contained
in B;. By the previous lemma,

IB;] = |Ea B < 8|Bjlo™' <
_f,‘ 1B < 65”;!B~;Iw“l <
Returning to the proof of Proposition 4.7, Lemma 4.2 shows that,
for-any s > 0 and for any 4 > 0,
41 [{F>@+2Ms< [{FF > 27" 85} + 570 [{MF > s},
Integrating with respect to ds” and applying (1.3) and (1.4) this gives
11y < 02(8) 17§, -+ 00 SIME, < 60 (8) | lly +- 048 (17

Thus (1 — e;6) 1B, < 6,(8)[F§|l,, and the result follows by taking ¢ suf-
ficiently small, provided that F is positive, bounded and supported in
a set of finite measure.

Now congider the case of general F. In view of Proposition 4.3,
it suffices to assume that F > 0. Define

F, = (Fvl/n)an—1|n.

85™| Bylo~2.

Therefore, |H| < 85" {MF > s}w™". ®

Then {F, > 0} = {F > 1/n}, and so by our assumption on ¥, the support


GUEST


86 A. P. Calderén and R. Scott

of F, has finite measure. Since T, is bounded, the first part of the proof
yields
nFan<0H(Fn)4o*Hp fOI' a’ll n =172’ et

By Propositions 4.4 and 4.5, (F,)f < F§ . Therefore,

I1F 0, < ¢liFFll, for all n.

The conclusion follows from the monotone convergence theorem if we let
n tend to infinity. m

PROPOSITION 4.8. Let m and p be real numbers such that 0 <m <1
m<< n-and 1< p < nlm. Assums that F € Ly 100(R") is such that [{IF} > e}
< oo for all e>0 and such that NMF) e Ly(R"), L<p<nfm. Then
FeL (R" for 1jr = 1/p—m/n, and

120, < el (),

where ¢ 4s independent of F.

Proof. Apply Corollary to Proposition 4.1 ané Propositions 4.6
and 4.7.

5. Inequalities for the distribution function of N7'(F). The proof
of Theorem I is based on the following:

TemoreM ITL. Let m, o, p, and g be positive real mumbers such that
0< o< m—[m] and

(i) when n/(m—[m])>1,
< nf(m—[m]), and ¢<p, and

(ii) when n = m—[m] =1, then p =g =1.

Let F e Ly00(R") and suppose there is a set of with finife measure
such that N (F) € L, (°). Suppose that, for all e > 0, |{w € % (D™ F (w))
> &}| < oo. Define, for s >0, o .

Ms) = {NZ(F) > s}

then 1<g<ajim—[m]), 1<p<

and  p(s) = [{N"(F) > s}l

Then there are constants o, and ¢, , independent of F, such thas

(iii) when nja> 1, then, for all s>0 and t> 0,

. \
5(8) < AE) 0,8 A 4 oy ( [ o) daﬂ)“‘-”’.,
[}

where 1ju = 1[p—aln, and
(iv) when a =n =1 (and p =¢=1) then

11
4(s) S A +o s AW for s> eaf A(o)do.
?

icm
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Proof. In the following, ¢ will denote various constants independent
of F, not necessarily the same at cach occurrence. We begin by recalling
the following result ([1], Theorem 5). ‘

I{EMMA 51. Let m>0,1<q<p< oo, FeL,(R"), and suppose
there is a set o having finite ‘measure such that N7'(F) € L, (#°). Let t > 0
and define 0 = {Ny(F)>t}. Then 0 is open and has finite measure, and
T can be decomposed as F' = F,+F,, where

(i) Fy =0 in 0°,
(i) if o(y) = dist(y, ¢°), then [|Fy(x)?8(x)"™ds < ci?]0|, and
(iii) [N™(F,, @) dw < o(|0)®+ [ NMEF, o) du).

o

Using the splitting above, we first consider N7 “(F,).
supp F; < 0, part(i) of Proposition 2.1 implies that, for y e ¢°,

Ny (Fu,9) < {f 17y ()| | — |~ (o tmma) dw}llq.
o

Since

Integrating over ¢°, one obtaing from Fubini’s theorem that
[ ¥ @y, yyday <o [ |Fy(0)28(e) " da.
o @
For each € 0, the set ¢ containg a ball of radius é(x) with center x, hence
{0] = ¢d(2)". Thus part (ii) of Lemma 5.1 implies that
[ Ny, y)idy < 001" [ |y (2)128(2) ™ do < o [0+l
oc

Recalling that |¢] = A(?) and using (1.2), we have
(51) (V=2 (Fy) > /23] < 10]+ (N7~ (Fy) > 5/2} 0 0"
< AD) + 0y s~ HEA() T
Now consider Ny~ *(F,). We begin by estimating N, 1 ().
TEMMA 5.2. Let a be o multi-index such that |a| = [m]. Then
\D"F(2) —D*F(y)| < o (N, o) + N (F, 9)) lo—y ™™,
where ¢ is & constant independent of F, x, and y.

Proof. Apply [1], Lemma 5, with B = {z, y}. m
Applying Lemma 5.2. to F, and integrating yields

[ DBy (@) — D Fy(y)|dy < 6g™ "™ (N7 (s, ) + MNY (75) (@)
B(z,e)

Dividing by g™ ™*" and taking the supremum over g, we find that

NP-U(De Ry, o) < o (N7 (Fy, @) +UN (Fy) ().

@
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Let us now assume that n/ (m—m]) > 1. Then Propomtlon 4.8 and (1. 4)
imply that

(5.2) o ID"Fill < eINg (Fa)lly,
where 1/ =1/p—(m—[m])/n. ‘

In view of part (ili) of Lemma 5.1 and Proposition 2.4, D“l’ = D; T,,
and since ¢ was arbitrary, Proposition 2.2 lmphes that

(5.3) A ¥ (B )l < o[V,

PROPOSITION B.1. Let m >0, 0< 0<1, and k = Om+(L—06)[m].
There is o constant ¢ depending only on [m] and n such that

NE(F) < N (1) (NPU(EF) +o| DM

Proof. Let # € R* and let P be the pelynomial of degree [m] in
the definition of N™(F, #) and N%(F, #) (same polynomial for both). Let
P be the polynomial of degree [m]—1 such that PP i homogeneous
of degree [m]. Then, for ¢ > 0,

Q—E{Q—n f lF—qu}llq. — (Qﬂm{' . .})B'(g—[m] { . ‘}‘)1—0
B(,0) . .

The first term is <'¥, M(F @), and the second is estimated as follows:

gt { f P~ qu}”q

B(z,0) : S

< g—[m] {Q—n f |7 _P]Q}”q 4 Q—[m] {g—n j |P MP]Q}"“
B(z,0) ' B(z.e)

S NPT, 2)+e|DMF ().

Setting & = m—a, we obtain N7 U(F,) < N2™(F,)' N (F,)°% and
estimates (5.2) and (5.3) combine with Proposition 5.1 to yield

G4 NPT AN F)

in view of Holder’s inequality. Now pa.rt (i) of Lemma 5.1 and (1.3)
imply that ' ' ’

WP (Fa)lh < ojo1e + [ Np(mye)
. . ac
13
<20+ [ Ao)do)”.
X 2 .
Since 1 is decrea,sing,

i t
AP =20) { do” < [ A(o)do”.
0 0
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Therefore (1.2) implies that
1
(5.5) MV “(Fa) > 52} < eas™( [ 2(0)do?)"™.
0

In view of part (iii) of Proposition 2.1, (5.1) and (5.5) suffice to prove
the theorem in the case n/(m —[m]) > 1.

‘When #» = m—[m] =1, we may use the elementary Sobolev in-
equality D" Fyll, < /D™ Fy|l, together -with Proposition 2.2 to get

(5.6) IV (F)l|, < CINT (F)lh-

For the case a <1, the proof follows the previous lines, with (5.3)
replaced by (5.6), and completes the proof of conclusion (iii) of the theorem.
When a = 1, the steps leading to (5.5) show that

i
IV Fle < 6 [ A(0)do.
0

Rinee |{f > 6}| = 0if ¢ > ||f|l., Part (iv) of the theorem follows from (5.1). m

6. Proof of Theorem I. It suffices to assume that 0 < &< m—[m],
as the general case follows by repeated application of this case. Define,
for s> 0,

AMs) = [{NFP)> s} and u(s) = |{Ny *(F) > s}.

We shall assume that v, < v,. In view of Proposition 3.2, it suffices to
show that there is a congtant ¢ such that,
if f As)ds’1< 1, then f n(s)dsi<e.
0

(Here and below, the expression s means s™ when s<{1 and s™ when
s>=1, and o™, 1", etc., are similarly defined.) To apply Theorem ITT,
let of = {NZ”(F) > 1} and let p be chosen so that, when n > 1, max (g, v;)
<p<n/im—[m]), and, when » =1, p = 1. Since 1 is decreasing and
integrable with respect to ds%, |&f| = A(1) < oco; since p > v,

1 !
fN;"(F,m)pdmgf z(s)dsﬂgﬂf As)ds™ < oo
2 0 Uy

Thus Theorem IIT may be applied, and in the case n/a > 1, conclusion
(iii) of Theorem ITI is

1
(6.1) B(8) < A() + 0,8~ B A (1) + 0,574 ([ 2(0)do”)™”
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for any s, > 0. Since [A(s)ds"
clude that A(s) <

< 1, A is decreasing, and v, = v,, We con-

0
§7%. Thus (6.1) becomes

. i
#(8) < AL+ 0y (578 + 0,57 ([ 2(0)do?)"™

For each s> 0, let ¢ = s¥/%; then s~'¢"~* = 1. Therefore, as w; < u,

[ u(e)ds™ < (L+0y) [ A(s™)ds i+
0 0

0 swilug

+eamex o/ (w—w)} [ ([ A()do?|"" A(—5"7Y).
i=1,2 HIRH ,
For the first term, the change of variables ¢% = s*i yields
o 1]
[ A(s=iyasss = [ io)do™ < 1.
0 [
For the second, we apply the following:

LeMMA 6.1. Let f be o non-negative, increasing funmction on 10, oof
and let g be a continuous, decreasing function on 10, oo such that hm g( )= 0.

Then, for any y such that 0 <y << 1,

[ rmac- ( [ sorac-e)™.
0
wt/vi

~ Apply this with f(s) = ( f Mo)da®| ", g(s) = §“i"¥, and y = plu.
Then, with the aid of Fubini’s themem,

- wgy “’:/”1.’

it_[fj Ao)do? d( — st~ )(zzlu))]u/p
P

J([ sy aae
_ I— J‘ ( f a(— S}uq—u)(p/#))) (o) do-p]u/p

Sl
ulp
o) dc"ﬁ]

3

1 o

[—f:fl(a)dcr”l+ "f%-f A

0

I
SRR

< [p max {o} '}1¥".

i=1,2

icm

. Again, A(t) <t
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Thus in the cage /a > 1, Theorem I is proved, with

¢ =1+ 01+cg [pmax{v"l}]“lpma,x{wi/ % —~w;)}.

i=1,2

Now suppose that n = a
that

= 1. Conclusion (iv) of Theorem III is

2
#E) AW +esTHAGE  for  s>e [ A(o)do
0

%, 50 that

() <AL Aes™7%)  for 83 6p00 %/ (1—wy)

{recall that condition (ii) of Theorem 1 guairantees that 1 > v, in this case).
Let 63 = max{l, ¢;/(L—v,)} and define ¢ by the eqnafnmn § = cyf'™"
= ¢,1%/%, Then

oo

[ wls)dsmi<

[

Note that (s/e,) i/ = (s¥if%) jg,®il%, Dut

(L+a1) [ 2((s o5y dss.

fl ((s fe5)'vs) ds®e

1]
1 [ 00
= [ A{(s/es)*) ds™s +- f A(sfesy ) ds¥s + [ A((s/os)/%) ds®2
0 3

3
< [ A{(sfesyri) ds 4 f A((8]05)P2/"2) ds™2

0 3
=cglfl(a)do"’1+c 2 f Mo)do™ < ¢1.
Thus the theorem is complete, with ¢ = (1+01)max{og’} in the case

that ¢ =n =1, m
Proof of Lemma 6.1. It suffices to consider the case when

I=(f fleya(—g"*
0
is finite. Then for any ¢> 0,

> [ fsya(~g) = fO) [ a(—g") = (fit)g ).
¢ H
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Therefore f(t) < I/g(t) for any ¢ > 0. Integrating, we get

[ fmac—g) = [ Feyf@y'—"d(—g)
0 0

0

< [ farrrgya—g)

— 12 [ fopa—g) = 1w
Y Y

7. Proof of Theorem II. In view of part (iv) of Proposition 2.1,
it suffices to assume that ¢ = 1, and in view of Theorem I, it suffices o
agsume that m = k-+e¢, ¢ > 0. The proof follows that of Theorem I with
minor modifications. Define

As) = [{V(F) >} and  u(s) = |{|D"F|> s}l
Ag in Lemma 5.1, deeompose F = F,+F,; since F, =0 in ¢,
(8) < 101+ |{| DEFy| > s}
From (5.2), it follows that
[{IDFFol > 83| < 057 |1V (Fa)llp,
so that Lemma 5.1 yields )

11
() < A(t) 057 ([ A()do]”
0

1

TUsing this replacement for Theorem ITT, the result now follows as in the
proof of Theorem I.
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A characterization of H?(R") in terms of atoms

by
ROBERT H. LATTER (Los Angeles, Calif.)

Abstract. Distributions in HP (R"") where < 1, are repr a8 we:
(3
> P epresented as lghted

§ 1. Introduction. Let H‘1 (R") denote the space of functions u, har-
monic in the upper half-space B = {(=, y) (Bry evy By, ) y > 0},
whose mnon-tangential maximal fﬂnetmn u*(z,) = sup |4 (2, y)| is in

o

the Lebesgue space I?(R"). Give H?(R™ the “norm”<”ullﬂp {78
C: Fefferman and E. M. Stein [4] have shown that if « € H?(R"), then
hmu( , 1) = f exists in the sense of tempered distributions and that

u 1s uniquely determined by f. We will denote also by H? (R") the space
of boundary distributions of functions in H?(R"™). R. Coifman [2] has
exhibited an explicit representation for f e H?(R'), 0 < P <1, by means
of a purely real variables construction. Here we modify Coifman’s con-
struction in order to obtain such a representation for H?(R"), n > 1.

) Let 0 < p <1 and define a p-atom to be a function b on R® which
iy 1is.ugported on a cube @ in R" with sides parallel to the axes and which
satisties '

. (i) 12(#)] < 1Q7*2, where |Q][ is the volume of @
an

(i) [b(x)a® dw = 0, where o is a multi-index of order o] <N
= [n(1/p —1)], the integer part of n(1/p —1). We then have:

THEOREM. A distribution f is in HP(R™), 0<p <1, if and only if
there exist a sequence of p-atoms b, and o sequence of non-negative real num-
bers A, such that

(L1) f=2 kb,
=0
in the semse of distributions and
(1.2) AUt < 3 2 < Biflfo,

1:0

where A, B are constants which depend only on n and p.
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