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Interpolating bases for spaces of differentiable functions
. o by
JERZY RYLL (Warszawa)

Abstract. The paper contains: (a) A construction of an extension operator into
the space C?(I%); (b) A construction of an interpolating basis for the space 02 (Id);
(c) A characterization of Hoélder continuous functions in terms of their coefficients in
the decomposition with respect to the basis.

0. Introduction. The purpose of this paper is to give a new con-
struction of a Schauder basis in the space OF(I%) of p-times continmously
differentiable functions on the d-dimensional cube I%

The problem of the existence of a basis in the space ¢*(I% goes back
to Banach [1]. Tt was solved by Z. Ciesielski {2] and 8. Schonefeld {10]
independently. Z. Ciesielski.and J. Domsta [4] constructed a basis in
the space C?(I%) for an arbitrary p. 8. Schonefeld [117] constructed another
basis in 0P(I%) (for p = 0, ..., 4 only) and in C¥(T?%) (where T is a one-
dimensional torus). The relation between the Schonefeld bases and the
Ciesielski-Domsta bases is akin to the relation between the Schauder
bagis and the Franklin basis in C(I): the Schonefeld basis is interpolating
while the Ciesielski~Domsta basis is an orthogonal system.

The basis (@)5—, constructed in this paper (Theorem 3.2.1) has the
following properties:

(i) It is an interpolating basis in C(I%).

(ii) Tt is a basis in each space 0%(I% for ¢ = 0,..., .

(iii) diam (suppey)—>0 as k—oc.

The third property is a new feature; the previously known bases
do not satisfy (iii). The construction of the basis (¢.)r-, leans heavily
on a method of Filippov and Riabienkii [5], pp. 158-165. The basic lemma
(Lemma 2.2.1 -below) concerns the interpolating by spline funetions.

In the case p = 0 the construction of the basis (p,);~; was deseribed
by the author in [9] (under the name “cube basis”). .

In Section 4 it is given an answer to the problem of Z. Ciesielski [3].
It is proved that derivatives of order p of fe C” (I% satisfy the Holder
condition with an exponent s (0 < s < 1) iff the sequence of coefficients
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of f is bounded. We obtain as a corollary the result of J. Frampton and
A. J. Tromba [6] that the spaces H,,,(I%) and I, are isomorphic (for
the definitions, see Preliminaries).

The author is very grateful to Z. Semadeni, Z. Ciesielski, and J. Dom-
sta for helpful discussions.

1. Preliminaries

1.1. On bases and spaces of differentiable functions. Throughout
this paper R denotes the set of reals, N the set of nonnegative integers,
and I the unit interval [0, 1]; moreover, d is a fixed positive integer (the
dimension of the cube),

a = (ag, ..., az) e N®
od
is & multiindex, |a| = Y a;, 6, = (8;,)%; is the mth vector of the eano-
=1
nical bagis of R% 6 = (0, ...,0) e N%, |g—y| denotes the Fuclidean dis-
tance in R?. If f is & function on X and Y is contained in X, then f de-
notes the restriction of the function f to ¥. O(X) denotes the space of

continuous functions on the compact set X. CP(I% denotes the space -

of p-times continuously differentiable functions on the d-dimensional
cube I? provided with the norm

IF1% = sup {ID°f o la] < 2},
where D“ is the differential operator
al
N
6:1;1"1 ... 023

and |gll., = sup {lg(x)l: = I%.

For an f in C(I%, let w, denote the modulus of continuity of f, i.e.

or(8) = sup {If(#) —f()i: lo~y| < d; w,y eI for
If f is in CP(I%), then we define for k< p

6>0.

wpie(d) = sup {wwj(5)3 lal = k}.
The continuity of f means that w.(8)—0 as 6->0; since o, is subadditive,
wr(nd) < nowy(d) for mel.
For 0 <8 <1, let
Hy (I = {fe 07(I%): Jo> 0, wpuld) < o-6%.

Thus, H,,,(I% is the space of functions whose derivatives of order P
satisfy the Holder condition with an exponent s. The norm in H,

D+8 (Id) iS
1D°f (@) — D°f (9)]

f1ee+e = max (sup{ P

: la] = p; w,yeld}, Hfl[("))-
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A sequence (X,); , of finite-dimensional subspaces of a Banach
space X is called & basis of finite-dimensional subspaces iff each f in X
can be written uniquely as

F=2tuw
n=1

where f, € X, and the series converges in X.
A sequence ()5, of elements of a Banach space X is called a Schauder
basts iff each f in X has a unique decomposition

f= Ean(f)an

n=1

where a,(f) are scalars and the series converges in X ((a,)., is the as-
sociated sequence of coefficient functionals). If (g,)>, is a Schauder
basis for X, then §,, are operators of partial sums, i.e.
’ n
8uf = ) a(f)gss
. i1

and the number
sup {I8.fl: IflI <1, n e N}

is called the norm of the basis (p,)7 ;. In [7]the following lemma is proved.

Lemma 111 If (X,)°, 48 a basis of finite-dimensional subspaces
for X and (fpi)&ﬁﬂ are bases for X, with uniformly bounded norms, then
(p)izy %8 @ Dasis for X.

A basis (p,)3, for C(I%) is called an interpolating basis with nodes
()5, 1 for each f in C(I% and each n in N

f(mm) = nf(wm) rfor
A Dasis for CP(I% is called simulianeous iff it is a basis in each space
0%(I% for q = 0, ..., p.

1.2. Some estimations for divided differences. Let T; = .., tf,i]

be partitions of the unit interval I and 0 =# <...<t#, =1. Then
a

Ty = [] T; determines a partition of the cube I? into n,- ... -n, cuboids
i=1

(i.e. rectangular parallelepipeds). Let y: TR be a function defined on
the set T, of vertices of the cuboids. The divided differences of o are
defined by induetion: :

Apgy =,
AFmY (s oy By)
A;'QW(t}q’ ST) i;cnm-}—u vy tldcd) - A;’g’/"(tllcﬂ - wﬁc‘m; (Y tgd)

= ?

m T
tkm"" a1 t"’m

m=1,...,n.

1.2.1)
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where £k, y Moy — G — 15 By = 0, ..., my—a; for ¢ £ m. Note that
ATaip is defmed only at the points Whlch are not too close to the faces
{o = (w),eI% @ =1}; A3 is a linear operator from O(Zy) t6

({]Jl{zo, ey

d
145, 9le = sup {4z, p(@): o e [T 6, -,

=1

r"w'})‘ We write

o ai}} .

Let W, = {0, ..., nh}% where b = 1/n. We write
@+ 6,k ar
W22) i) =YOERIZRE vy, — inagy).
Thus, 43y = al'... ~ag!dj, p.

LewmA 1.2.1. Suppose that there is a number D such thot

1+1

(1.23) 1/D< <D for k=1,...,n—1,4=2,...,d.

By =T
Suppose that a, p are multiindices satisfying o, < f; for i =1, ...,d. Then
there exists a number c.s(D) independent of Ty and y such that

’ d

G 6ap (D) | [ (fhya—1h)5 1A, o

for v € O(Ty). .
Proof. We prove the existence of ¢,,(D) by induction en 8], a being

L AIES

i=1

fixed. If |af = |B|, then obviously ¢, (D) = 1. Passing from || to |8]+1,
we have
145’3”"?(%: EaS) tgd)l
< [Agew(til, sy tle-;—u cey t%)“‘f’g‘/‘(ﬁcﬂ vy tmlcm$ rens tzd)‘

= . m
fg"m+ Byl tkm

@ \Pmom
<v.,ﬂ(D>[( Tntt e ) +1](t,?m+l—t"k;)x

X H tk4,+1"tk
Hence according to (1.2.3) it suffices to take
Copren (D) = tap(D)(DPn=m4-1). m

The same formula (1.2.1) determines a linear operator A4z, from

. (m
R

w45 vl

C(I% into C ( H [0, %.—a;])- The double meaning of A7, should not cause
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any confusion. Let us note that
DP A f = A5, D’f  for feC?(I%) and |Bl<p.
Lemya 1.2.2. Let feC?(I%), 1< o] < p+1. Then
(1.2.4) 15 e < B @ gy (B)

Proof. We proceed by induction on |ai. If |a] =1, then a =,

and

|43f (@) =
Let o] > 1 and @, > 0. Then a = B+, 18] = la|
| = 145m(4Ef) (@)] = B |4 @+ o h) —

[4imf (@) = 27 |f (@4 6,h) —f(#) < B 7P op(h).
—1 and
431 (@)
R » .
= h“i f D‘mzlgf(a;—i-tsm)dtl =nt ] f Agpfmf(m+mm)dt]< [ 48 Demf,.
0 0 )

But
AR D f o < B SUD {0 e, (1) 19l = 1BI— 1} < B 00100y (B)-
Combining the above inequalities, wé get (1.2.4). m
LEMMA 1.2.3. Let f e CP(I%), 0< o] < p; then N

147f llo < sup {ID"f oo 18] = lal}.
The proof is analogous to that in Lemma 1.2.2.

1.3. A generalization of Rolle’s theorem: The following lemma will
be needed in Section 3.
Lemva 1.3.1. If la|<gq, a,,,ieR, k;=0,...

, 0, € '=1, ey dy and
a

sequences (ay,)ii_, are strictly increasing, then for each f in O([] [af, ai.])
i=1
satisfying f(a,l{l, ey a,id) =0 for k; =0,...,

a point o° eH{a,,, al ] such that Def(a)

a;, ©=1,...,d, there ewvists

) =0.

Proof. ]'_f d = 1, then the statement of the lemma is 2 known gen-
eralization of Rolle’s theorem. Let us assume that the lemma is true for
each cube of dimension less than d and let f satisfy the assumption of
the lemma. :

d
(i) If a, = 0, then we can consider the cube {a} ><i]_‘]2 [af, al] as
a cube of dimension less than d. We get

Daf — D(a2 ..... ad)f,
where

.f(mzy cen

ttg) = flag, @y, “eey ®g)-


GUEST


130 J. Ryll

By the above assumption, there exists a point & = (af,...,2%) such
that e
D(”ﬁ"""’d)f(a?") =0.
Then 2° = (al, a3, ..., #3) is the desired point.
3 7 d .
(ii) If a,> 0, then we define a function f in 0%([][a}, &’ ]) as
- i=1 *

- a—-1

@1y ooy mg) = fl@y, ooey ) — Z Wil@,) -flag, 2y ..., %3),

k=0

\glere W), is the Lagrange interpolation polynomial of degree a,— 1 such
. that
(1.3.1) Wila)) =6 for k,j=0,...,aq—1.
By the assumption about the function f, we have

Flahs @iy ooyal) =0, & =0,...,0,5=2,...,4d.
From the above equalities and from (i) it follows that there exists a point

d

- . ‘ .
2 = (ag,, 25, ..., #3), which belongs to {a3} Xi[l [a;, ai;], such that

(1.3.2) Do f(z%) =0.
Let
f(”) = Da—alelf(ms mg; ceey w?i)
It follows from (1.3.1) that
(1.33)  f(@) = Def(al, of, .., o) —
o1
_;g’: Wilas)-D*=“if(a}, af, ..., a}), j=0,...,a.

Then., by 0(1'.3.2), (1.3.3), f(a,}) =0 for j =0, ..., a;. Hence there exists
@ point #] in [4;, a3 ] such that

0 = Df(x)) = D*1(D*11f) (af, ..., @}) = D*f(a}, ..., a}).
Sinc;e F—f i3 a polynomial of degree a;—1 with respect to the variable
we infer that D%1f = D““f and hence D°f = D°f m Y

) quOLLARY 132. If fe CYI%), fur, =0, @ € I% then for each a which
satisfies la] < q there exists @ point z° such that

lo*—a| <Vdgh, Df(a") = 0.
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v

2. Extension operators into C?(I% .
2.1. Extension operators in the one-dimensional case. Let T =

= {ly, t1yees b}, Where n2p, 0 =4 <...<t% =1, and y e C(T). We

define polynomials P,y for 4 = 0,...,n—p of degree not greafer than

9 such that -

(2.1.1) Pyt = v(k), k=14,...,i+p.
We define polynomials Q¢ for i =1,...,n—p of degree not greater
than 2p +1 such that

DiQup(t,_y) = DIPy_ip(t_
©@.1.9) Q;I’( 1) ‘ -1 (1), j=0,...
DIQp(t;) = D’ Pyp(t).
The polynomials P;y and @,y exist and are unique. We define the function
Loy as

3Py

telti 1, b)), i =1,...,n=D;
t € [typ) tnl-
LemmA 2.1.1. Let T satisfy (1.2.3). Then Lg is an operator from c(T)
into CP(I) and '
@) Lpyr =,
(ii) DR Lyp(s) ewisis for t e INT,
(iii) there emists a number o(p, D) independent of T and y such that

¥ Lyyll < o(p, D) [459ley 4 =0,-.;2,
sup {|D?+ Lyp(t)]: t € INT}< o(p, DY AF  pllo-

Proof. According to (2.1.2) the function Lpyisin 0P(I) and satisfies
(i) and (ii). We are going to show that Q,v is of the form (2.1.9). Let P;f
= P(fir); Qf = Qilfir) for fin C(I). If ¢ is fixed and y is a variable,
then @, (1) becomes a linear functional on the (p+ 2)-dimensional space
of all functions on the set {t;_y, ..., ti1p)- Consequently,

Low(t) = Q:p(®) for

(2.1.3)
P,_pp() for

(2.14)

p+1

Qw(t) = D) Fuy®) wltisa),

i=0

where f;() do not depend on y. Moreover, the numbers p(tini1)s
j =0,...,p+1, can be expressed as- linear combinations of AL y(t;_,),
j=0,...,p+1, with coefficients 74(%) independent of y. Thus

p+1

Qup(t) = D) 1y(0) Aoy (tiy)-

i=0

(2.1.5)
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We define polynomials w;;, by

wy(t) =1, 4=1,...,n—p,
(2.1.8) k-
Wy (1) = — 0 = i
5 () _ﬂ(t ty)s E=1,.,p+1; i=1,.., 0—p.

Then

2L7) Apwp(tig) = 0y G,k =0,..,p+1; 4 =1, ey m—p.

The degree of wy, is equal to k. Hence for % — 0,...,p

2.
(2.1.8) Powy =wy, Py =wy, Qswy, = wy,.
This means that P; are projecti ‘
: jections from C(I) onto th
nomials of degree not greater than p. . ¢ subspace of poly-

From (2.1.5) and (2.1.7) it follows that

P+l
Qiwy, = 2 Ty dptog () = 1y,

J=1

for k=0,...,p; i= — ini i i
o ooy P34 =1,...,m—p. Combining this with (2.1.5) we

(2.1.9)
P+
Qi?ﬂ = Z ”ijA;w(fzq), where Vy = i for =0, P
fur] Qi ppy  for  §=pi1.

Analogously, one can show that

P
9 .
( '1‘10) Pﬂ—pw = Zvu—p,jdz'wwn—p)'
=0 .

We are going to estimate D'o_(f) for 5 — 0. . i
a Dolynomial (3ot w(t) for § = 0,- -y P+1. Since w;, is

Diwy(t) = jt (t=tgpa).

By (1.2.3) we get

sup {| (=t )|z telt,

{. ... k_l}\(mpm'mj} x+r—1)[ € [ i—13 ti-(-p]}
Stp— L7 < eylp, D) L A

and

(2.1.11)  sup {|DIwy()]: te [ty 4y, T} < eo(o, Dy tty—t,_, [
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Let us note that Pyw; gy = (birp—Fiep) Wiri,p) 5O

(2.1.12) 1D Py 1 (8] < &5, D) P

Since the polynomial Q;w; ., satisfies (2.1.2) with y = W;pyqr, from
Hermite interpolation formula ([8], p. 98) it is of the form

Q1 W;,p41 (1)

— 5271 Ek("l)"~r Dp—kpiwi,p+1(ti)(1’+k—”)!(t—ti-—i)p“'("'"ti)p—r
= Z @ —R)! (=) p! (=t F7 '

k=0 r=0
If we write w(f) = (1—1,)"-(t—1)"™", then
sup {IDP0(B)]: t e [y, 41 < 6(P) i —tial

So, combining the above inequalities and (2.1.12), we have an estimation

2p+1—j-r

(2113)  sup {|DQwipna (B: ¥ € [, 81}
2 Ok
<es(p, D) 2 .2 =ty g — Fe a2 T = T
k=0 r=0

< (P, D) Ml — b P

From (2.1.9), (2.1.10), (2.1.11), and (2.1.13) we obtain
B+l :
sup (D' Qup®l: e [, 11} < &0, D) D) l—tial 145 liall,

k=j
n
sup {IDiPn—p @) teltp—ps (MIES e(p, D) 2 ltn‘p_tn—p—:l‘kﬂ IA’ZE’W”"—F) I
k=3

Conibining the above inequalities and Lemma 1.2.1, we obt@in (2.1.4). m
2.2. Extension operators in the multi-dimensional case. Let T,
={ti, ..., i} for i =1,...,d be partitions of T (0 =th<...<f, =1)

We write -~
d

TE = ”Tf,el- fOl‘

i=1

e ={(g .18 € {Oil}d’

where T;y = Ty; T = 1. It L: C(T)~CQ(I) is any linear operator and &
is such that g = 0, then we can define an operator Lj: C (T;)—>G(T,+,j)
by the formula

(2.23) (L5p)(@yy ooy %a) = (L(Tp(wu ceny Tygy Ty Fjpry e wd)))(mj)a

where u e G(T,) and (%, ..., %g) € T,Hj, ie. Lf iy the operator L applied
to the function y regarded as a function of the jth variable only. Obviously,
if

IZple < 147yl for  peO(Ty),
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then
Ml < 1489yl for  yeO(T,).

Formula (2.2.1) will be applied to the operators Lg,:
t=1,...,d(2.1.9).
We define an operator L = Ly,: 0(Tg)-+C(I% by the formula

(2.2.2) L

O(T)~C(I),

_ 51 o ;e
=Lp,0...0L3,;0 ... 6 Lp, 3,

a
where ¢ = 3 ¢;. The operator Ly, ; is of the form

=i+l
L;'i,i’lj(mlt veny Bg)
241
§ . .
D) O (@) Mm@y, oy By By ey ma), B <<y,
n=0 .
= ) F=0,...,m—p—1,

3
oy By_1y gy +o s Bg), t—p S ;< 1,

Z”km CAR 5’"'1’(-1’1:

m=0 -

where e C(T,), (ml,

eommute in the sense:
if 4 % j, ¢ is such that e = ¢ = 0, then

L;,“;“JOL}PW(%, e
for e O(T,), (®yy..., %) € T.ﬂ-e_ﬁ-et
Let ¢ be such that &, =¢; =0 for a pair of indices 7, <4, < d.

Let. f; be a function on I for j = 0, 1. The operator M7 is defined by the
formula

(2.2.3)

, Bg) = +’10LT i P (@1, ey Tg)

 #a) = filwy) A p(ay, ..

for oy € [tk, t,m) (15 ...y 25) eT,,Hi ; Where 7 =
j= 0 1. It ig clear that

(Mo Mip) @y, ...y @) =

Miyp(xy, ...

1
)
<3 V519 1y Digp1y oeey Z3)

-
£0r 7 =ste; . and

(M* 5 M) (s, ..., @a)

— . Toes +11€4. " i i
= fo(®;,) J1 (mi‘)(qu:t“ Pyl @y, .. Bip1y B85 Bigiy eoey Byoy B
Bypgay oeey Bg)
i i .
for @ € [t tk]-r1]7 §=0,1; (@, ..., m,) ET“*‘% oy Since LT{,; are sums

of operators of the form (2 2.3), they eommute too Let us note that if
1 # j, then the operator AT@ commutes with the operator L.

Lema 2.2.1. Let T; satisfy (2.1.1) for i =1,...,d. Then L is an
operator from C(T,) into CP(I%) and

1%3) €Tpypyy and & = 0. The operators L
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(i) I"/’lTo =v;

(i) the derivative D®P+V% Loy(w) ewists for any = in I* such that o, € INT;
fori=1,...,4d;

(iii) the derivative DLy (x) ewists for any #» in I¢ and o such that
max o; < P3

(iv) there exisis & number ¢(p, d, D) not depending on Ty and vy such
that

1D° Lyl < (D, &, DY A7, plee  for maxe;<p,
sup {| D Ly (@, ..., @)z @ € INTY < ¢(p, 4, D) AF; iyl

Proof. For ¢ e O(T,) the functions Ly ¢ and their derivatives are

of the form
" pt1

= 2 Divy A’é’,-‘]’(t};)
b=

(2.2.4) D% Ly,p(t)

for ¢t in the closure of Jy;, k=0, ...,n;—,

(2.2.5) DPF Ly (1) = DPF 0y 000 (0) 457 (8
for ¢t in Jy;, & =0, ..., n;—p, where
oo = (f;;,t)‘;.;_l), k=0!'~-7'"'€—'p”“1:
a (tz{—p) t:“.), kE=mn —p.

Let us note that
Dtio(Ly, ) = (D% Ly,);-
Let p e O(Ty), let a De such that max ;< p. According to (22 .2), we
have .
DAL = DL j0 Ly 50 ... oL = (D Ly ){ 0Lg 50 ... oL
o Lo (DA Ly, )Y

Thus D41 L exists and is p-times differentiable with respect to the vari-
ables #s, ..., #;. If we apply the above procedure o all variables @y, ..., ¥g,

1
&
= Lp, 50 ...

" then we obtain

DIy = Do ... o D¥do Iy = (D1Lg )i o ... o (D Ly,
Hence the function Ly is in ¢P(I%). From the above and (2.2.4) we obtain
DELy(@y, .oy Ba)

p¥1 pEL
= Y .. Do, o (%) ... - Doy 5 (-;r;a)Af,, q)(t}c g aeey tzd)
i 181 afa (] 1
B=a Ba=cg ’

for ; the closure of Jy ;, i =1, ..., d. Therefore from (2.1.9) and (2.1.11)
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we infer
1D Iyl < sup{ 2 24 o(p; 4, D)'n [t — 8 %
Bi=oy  Bg=og i=1

X\ M@y oy B By =05y my—p5 & = 1,...,d}.

Now we apply Lemma 1.2.1 and obtain (iv) in the case where maxa; < p.
In an analogous way one can show, using (2.2.5), the estimation (iv)
for a = (p+1)e;.

3. Constructions of bases

3.1. Projections in the space (2(I%). In this section p and d are fixed
integers (p >0, d>1). The number ¢(p,d, 1) will shortly be dencfed
by ¢. We recall that Wy, = {0, &, ..., nh}%, where 1/h = n > p. Obvionsly,
{0, by ..., nk} satisfies (1.2.3) with D'= 1. We define an operator a,

from O(I%) to ¢P(I% as an extension of the function g restricted to Wj: - ‘

(3.1.1) Grg = Ly, (gin,) dor ge ary.
By Lemmas 1.2.3 and 2.2.L we have for ge (1% and ¢ =0, ...,p

1Grgl@ < e-llgi®  and

This means that the operator G, is a continuous projection on the space
0U(I% for g =0,...,p. Let us take a multiindex o satisfying |a|< g
and a function g in the space C4(I%). If @,y e (INWy)%, then

G 9y, = Gl

DaG}zg(w)'—DuGh i
y D Gy g{ @1y -- -y @iy Yiras - o9 Ya) — D GG @1y ooy Bi_1, Yiy "‘-:?/d)l
T
2‘ f DG g (g, - - ;-—1: 3 y't-!-l; <1 Ya dt]
<@ lm yl-sup {ID°G1gllee: B = lal+1}.
Let a, ¢ be as before and =z, y € I°. We choose sequences (z¥), (y*) such

that lim o = &, lim y* = y and 2%, ¥* e (INW,)% Obviously, we have

(3.12)  |D"Grg(w)—DGrg(y)|
= lim | DGy (") — D*Grg(y*)| < &' o —y|-sup {ID°Grgll: 161 = lal+1}.
From this inequality and Lemmas 1.2.2 and 2.2.1 it follows that

(3.1.3) @ plalgyy () < AP 6 8- wp (B) BTN

According to Corollary 1.3.2, for each « with ] < ¢ and each z 1% there
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exists 2 point z° in I¢ such that
<ghva D*Ghg(a”) = D*g(a").
Combining (3.1.2) and Lemmas 1.2.2 and
(D&, g(2) — Dg(z)] < |D°Ghg(2) — D Gy (»

o — 2% and
2.2.1, we get
D+ 1D%g (%) — D¢ ()]

<Va-ogh-opn (B) 17+ 0, (ghVa) < Vi (g6 + ) © pyar, (1)
So N
(3.1.4) D@9~ D*gll < Valge+q) 0,510, (k).
Now let (h,);.; be a sequence convergent to 0 and such that

By i, e N (e Winsr © Wagdy 2 =1,2,...

We write

WYn = Whn; T'Yn = Wn\ ﬂ;yn-—}. H U (WO = Q’) .
n=1
(v

We arrange the elements of V into a sequence
B+ < B < (A7 1) (R, = —1). We write
N,={keN: 0,eV,} ={keN: (B, +1°2 < k< (W7 +1)%,

The operators B, and-R, from the \xspafce C*(I?% to itself are defined
by induction:

k)it 50 that v, e ¥, for

n=1,...

B, =id, =G0k, ., n=1,..,
(3.1.5)
R, =R, =id— }B (v =1,...).
k=1

Levva 3.1.1. The operators B, are orthogonal projections, i.e.

‘ 0, m FEn,

B,,

Proof. In virtue of (3.1.5) and Lemma 2.2.1 we have for f in (7(I%
Buflw, = Barfliw, — 6 Boafliw, = 0.

B,B,, =

nm
m = n.

Hence
Buiflw, = Cn, Buflwr, =0
and
GhmBn+1f =0 for

For a fixed n, let

m=1,...,n.

m(n) =inf{m e N: B, B, #0 and m s#a}.
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Then m(n) < oo and

mim)—1 0 if mn)<n,
BmB, =G B,— B, B,}= .
m(n) hm(n)( ;c;: k n) lGnﬂ(m) (B,—B,B,) if m(n) > n.

Hence m(n) > n and
n—1 v
B,B, =6, (B.~ > BiB,) = G4, Bn = G, 01, Bucy = 65, Fpy = By
. k=t
Thus m(n) = + oo, i.e. BB, =0 for n #m. m °
LemmA 3.1.2. Let
wDQGhng(‘s) < 6b 'wmg(hn)'h;I
for g in CU(I% and n =1,..., b being a positive constant. Then
(3.1.6) @pap, A8) < wpey(8)+ 8D (B +1)"F 0 gy () i
k=1

Let o, = opg, ;- We are going to prove (3.1.6) by induction on n. For
n =1, inequality (3.1.6) is just the same as (3.1.7). Let us assume that
(3.1.6) is true for some n. Then .
4 n
0 12(8) < 0,(8) + 8D 0p (g )ity < 00(8) 87D D) (0+1)" oo () s +
k=1

+46-b (wo(hn+1) + hn+1b 2 b+ 1)n_kwo(hk) hl;l) h;—i]:-l
fe=1

n
= 0p(8)+ 35 (0+1) 3 B+ 0ol 5+ @o(huss) )
k=1
n+1

= wp(8)+ 30 ) (b+11H F oy ()i w
k=1

3.2. Bases in 0%(I%). We recall that ¢ =e¢(p, d, 1). Let 4 and M
be fixed integers such that
(3.2.1) AzedP41, Mz2.
We define 2 sequence (h,)m: DY
(3.2.2) By, = ATTM™.
Let us note that if t,—~0 as m—oco, then

k3
(3.2.3) M Y4 ME >0 a8 moo.
. k=1
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We define functions ¢? in C?(I%) extending canonically the functions
20, where
- - {0 we VN
FE(w) = ’ fouks for keN,.
/3 .
1, W=y

Technically,
(3.2.4) o = o0 = Ly (§30) for keN,.

o0

THBOREM 3.2.1. The sequence (pp)e, is a simultancous interpolating
basis for OP(I%) with nodes (V)i—:-
Proof. Let ¢ be fixed, 0 < ¢ << p. We write
B, = B, (C¥(I%).

We prove the theorem in two steps. First we show that (F,);.; is a basis

of finite-dimensional subspaces in C%(I%. Then we prove that for each n

the sequence (¢x).y,, is 2 basis in B, and the norms are uniformly bounded

with respect to n. Hence, by Lemma 1.1.1, (p)i=; i8 & basis in C*(I%).
Let f e 0%(I%. By (3.1.5) we have '

(8.2.5) f= ZN:Bmf—}—Rnf.
We are going to prove that ~
C R fI9-0 as  n—>oco.

According to (3.1.4) and (3.1.5) we have for |a|<g
(3.2.6) [D°R,flw = ID"Byy~f DGy, By 1Sl < gdwplag,_, ().
Since for k< g—1

wpkg, () < Bosup {ID° B 1 fll: 18] = k+1},
it is enough to prove that
(3.2.7) wpip, (lpy)>0 28 n—0.
Using (3.1.3), (3.2.1), {3.2.2), and Lemma (8.1.2), we infer that

(8:2.8) ©pan s(ns1) < @pap(ays) Fhngn (A —1) DA™ Fope ()b
k=1
n
< @paplhysy) F AT DT ATTF AR M 0 gy (hy)
k=1
n+1
<A 3T opey(hy) ME.

k=1
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Since wpey(hy)—0 as k-0 and (3.2.3), we get (3.2.7). Hence f = > B.f.
f=1
The projections B, are orthogonal so the decomposition is unigue.

Obviously, (@rley, 18 & basis in B,. We are going to estimate the
norm of this basis. Let

U = ('vk(l)s sy 'Uk(d)) ev,.
Then the support of ¢, is contained in
d
[[ o) —p—1, ve(i) +p+1].
i=1
Consequently, for # in I% the cardinality of the set
-Z\T ‘T) {k E—Nn ‘pk ;: 0}
. Let ge B, and Uc N,. Then g = Y a,q,
keN,

where a, = g(v,). We have to estimate the norm of Syg = > ak?p,c:
keU

is not greater than (2p - 2)%

Du(zukq)k) I = 1 . a‘kDa‘pk(m)|
kel EeURN ()
<(p +2)%-5up {lay|: % e N,}-sup {IID”%Hm ke N},
for |a] < ¢ and therefore

(3.2.9) - 85919 < (2p+2)sup {layl: & e N,}sup {lp )@: keN,}.

We are going to estiﬁlate these upper bounds. We fix % in N,. Lemmas
2,21 and 1.2.1 imply that

1D allo < €145, Puylec < €7 Can (1) 145, G llai

' Hence

(3.2.10) lpel® < e(g) b2

Since g e K, we have gly,  =0. Let & e I% |a| < ¢ and 2° be such as
in Corollary 1.3.2. According to (3.1.2) we have

1D%g ()] = | DGy, g ()] = |D°G, g(2) — DGy, g(a")]
< @ ghy_ sup {IDgll.: 1Bl = lal-+1}.
So
(3.211) gl = 1D°g(v)] < @ gk, sup {IDgll.: 18] = 1} <
< AP -hi_sup {IDgll.: 1Bl = g} < A7 g% RE_, gl

From (3.2.9), (3.2.10), and (3.2.11) it follows that
185919 < ¢y B2 h:{-llLan"-" = ¢, [lgl@.
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Hence the norm of the basis (¢, 18 DOt greater than ¢;. m

4. An isomorphism of the spaces H, ,(I%) and I,. Troughcut this
section s is o fixed real number such that s e (0, 1), while 4 and M are
integers satisfying (3.2.1) and M > A®-9. Let (g,)7., be a basis for
C?(I% constructed in Section 3.2 for the given M, let (a,)3, be the as-
sociated sequence of coefficient functionals.

LEMMA 4.1.1. There exists a number ¢, such that the conditions f € OP(I%)
and opp(8) < 0° imply

(4.1.1) la (A < k2™ for keXN,.
Proof. From (3.2.6) and (3.2.8) it follows that

(41.2)  sup{ID°E,fllo: lal =p} < pAdopop,_ k)
< 1[—"12 o puy(hy) M* < M7 Z hEM* = M 3 MR 4Rk
=1 k=1
_ B _ (Mn(l—s)Ao—us‘_ ) Ml——sA—s _ _
= YA < H"A"Y = ok,
(Ml—s_A—s_l) M[—SA—S_l ( ) c1

Since R, f vanishes on W,, by Corollary 1.3.2 for each « in I® and a satis-
fying |a] < p there exists a point 2” in I% such that *—a| < ph, and
D°R,(5°y = 0. Hence

|D°R,f(#)| = |D°R,f(%) —D*R,f(z")| < physup {ID" B, fl: 18]
Combining this with (4.1.2), we get for each k in N,

IB.f (0! < pPh - sup {ID° B, flloo: 18] = P} < 0B
but if £ € N\N,,,, then ¢y, =0 and hence

= |a]+1}.

B, f(vr) = Bof(op) + Z a:(Np:(ve) = B, f(0) = a,(f)-
EN\Np 11
Sinee h, = h,,, € AM, we obtain the desired estimation. m

TEMMA 4.1.2. There exists a number ¢y, such that if fe C*(I%) and
() < BE*S for keN,; n =1, ..., then

(4.1.3)
Proof. Let |a| < p, # € I% Then

5‘ 2 laz ()] 1Dy ()]

m=n+1 keNy,~

< ) @p+2) sup {la ()l

m=1-+1
Y

wpps(8) L0596 for 6> 0.

DB, f(@)] <

: ke N,}-sup {”‘Pk”‘p): ke Nm} .
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Hence by (3.2.10)

@18 RSP < e 3 W = ok D (ATMY™ = o5,
m=n-+1 m=1

By (3.1.2) and Lemmas 2.2.1 and 1.2.1 we have
(41.5)  wps,, () = ®prgy g,(8) < 8" sup {|D ¢yt 18] = P41}
< 88" ¢-sup {]]A;’;m&,,kl]w: 1Bl = p+1}< degh,?! for ke,
Let %,y € I°. Then there exists an # such that
bopy < lB—yl < hy.
For a with |a] = p we obtain

[D°f () — D*f(y)]

n

<D D 1wl 1D pe(e) — Doy ()] +2 | D R, 1.,

Mm=1 keNn
< D20+ 0y (f)l: & e N -sup {pa (0—y]): b e N+
m=1
‘ +2|D°R,f|®

n n
Sor D MR R T+ 20,1 < 6 M A N (10 41-sym

Mme=1 m=1
_ n _ B (MI—SAI—S)n R .
S oM™ AT YA m<09hﬂ = ol < 610 l@— Y[,
and
‘ @ pp(8) < 0306, W \
Obviously for 6> l/ci'phm and ke N, Opog, (0) = mng,k(l/J -ph,). From
above and (4.1.5) it follows that for & e N, we have
Il @+ < ey - B2,
But
lipel @) > hyw=e.
Let y = (g™ (for & =1,..). Lemmas 411 and 4.1.2 imply
THEOREM 4.1.3. Let fe (°(I%, f = 3 ayp,. The following conditions
; =R
are equivalent:

() wpr(8) = 05 a5 5D,
(ii) ozl = O(1) as  Ek->co.
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THEOREM 4.1.4. The spaces H, (I% and 1, are isomorphic as linear
topological spaces. ’

Proof. Let feH,,  (I%. Then
f=Dalflee (i 02(I%).

We define &, = a,(f)-h, %~ for & eN,, n=1,2 ..., and

Tf = (&)7,-

Sincef € H,,,(I%), we have w, (8) < b- 8 and, by Lemma 4.1.1, (§)2., . .
I fI"* <1 (b<1), then [a,(f)| < ey hZ** for ke, ie. HIFI < .
Obviously, T is a one-to-one operator. We shall show that T maps H,,,(I%
onto ly,. Leb (£)iL; € I, and [|(&)52,] < 1. We are looking for a function bi
such that Tf = (£)2,. Let ,

o = &byt for  kelX,,

fu = 2 2“}:% " for w =1,...

i=1 keNy
By (4.1.4)

1o =Tl = Byl < 5+ B5, .
80 (fu)u=1 is a Cauchy sequence and

f=limf, = 3 ¥ age07(1%.
-0 n=1 keNy

By Lemma 4.1.2, w,, () < 6,*8° and so fe H,, (I%. m
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The chain rule for
differentiable measures®

by

HUI-HSIUNG KUO (Amherst, N. Y.)

Abstract. The chain rule for ‘differentiable measures is proved. It states that
if v is an H-differentiable measure on a Banach space B and 0 is a suitable transfor-
mation, then the composition s = yo § is also H-differentiable and the derivative
is given by Dpu(da) = 0 (z)* Do 0(dm)+ 30" (x) (6 (x)"Ley, ). ey u{dz), wWhere

7
{eq; n =1,2,.7) is an orthonormal basis of H.

1. Introduction. The notion of differentiable measure has been
introduced in [5], [6], [8]. It plays an important role in Schwartz’ distri-
bution theory on Banach spaces. See, for instance, papers [1], [3], [10].
In particular, it has been shown in [10], Theorem 8, that s harmonic
distribution ean be represented by a smooth measure. However, in infinite
dimensional spaces, there is no canonical way to represent a smooth
measure by a smooth function.

In order to study distribution theory on infinite dimensional mani-
folds, one has to define differentiability for measures on manifolds. This
obviously requires a fundamental theorem for differemtiable measures,
namely, the chain rule. Unlike the chain rule for differentiable functions,
that for differentiable measures takes a mon-trivial form and has some
rather unexpected applications. For example, one can consider & Dirichlet
form associated with a Borel measure on a Riemann~Wiener manifold.
Tn case the measures is differentiable and has logarithmic derivative
([13], p- 121), we can use the chain rule to produce a self-adjoint operator
associated with this Dirichlet form. This will be done in [12] and the
subsequent papers. We remark that the number operator on a Riemann—

- Wiener manifold can be constructed in this way [11].
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