144

[8]
[91
[10]

[11]

J. Ryll

W. N. Malozemow, Stmultane tion of functi

rivatives, Leningrad 1973 (Russian).

J. Ryll, Schauder bases for the space of continuous fumctwm on ﬂ-dmemwiml
cube, Comm. Math. 17 (1973), pp. 201-213.

8. Sehonefeld, Schauder bases in sp of differ
Math. Soc. 75 (1969), pp. 586-590.

— A study of products and sums of Schauder bases in Bamach spaces, Diser-
tation, Purdue University, 1969.

appr s and their de-

tiable fs 17
J

s, Bull. Amer.

Received December 16, 1975 (1105)

icm°®

STUDIA MATHEMATICA, T. LXIII. (1978)

The chain rule for
differentiable measures®

by

HUI-HSIUNG KUO (Amherst, N. Y.)

Abstract. The chain rule for ‘differentiable measures is proved. It states that
if v is an H-differentiable measure on a Banach space B and 0 is a suitable transfor-
mation, then the composition s = yo § is also H-differentiable and the derivative
is given by Dpu(da) = 0 (z)* Do 0(dm)+ 30" (x) (6 (x)"Ley, ). ey u{dz), wWhere

7
{eq; n =1,2,.7) is an orthonormal basis of H.

1. Introduction. The notion of differentiable measure has been
introduced in [5], [6], [8]. It plays an important role in Schwartz’ distri-
bution theory on Banach spaces. See, for instance, papers [1], [3], [10].
In particular, it has been shown in [10], Theorem 8, that s harmonic
distribution ean be represented by a smooth measure. However, in infinite
dimensional spaces, there is no canonical way to represent a smooth
measure by a smooth function.

In order to study distribution theory on infinite dimensional mani-
folds, one has to define differentiability for measures on manifolds. This
obviously requires a fundamental theorem for differemtiable measures,
namely, the chain rule. Unlike the chain rule for differentiable functions,
that for differentiable measures takes a mon-trivial form and has some
rather unexpected applications. For example, one can consider & Dirichlet
form associated with a Borel measure on a Riemann~Wiener manifold.
Tn case the measures is differentiable and has logarithmic derivative
([13], p- 121), we can use the chain rule to produce a self-adjoint operator
associated with this Dirichlet form. This will be done in [12] and the
subsequent papers. We remark that the number operator on a Riemann—

- Wiener manifold can be constructed in this way [11].

‘We would like to thank the referee for pointing out seveml am-
biguous statements and arguments in the original version of this paper
and for making some suggestions to generalize the original results.
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2. H-differentiable measures. In this paper, (H, B) will denote a
fixed pair of a Hilbert space H and a Banach space B with the following
interpolation property: there exists a Hilbert space H, such that H < H,
< B, the inclusion map from H into H, is continuous, and (H,, B) is
an abstract Wiener space (see [7] for the definition). Note that H can
be finite dimensional even when B is infinite dimensional. We need the
interpolation property since in the proof of Theorem 1 below we have
to use two theorems on abstract Wiener spaces, i.e. [10], Theorem 1
and Theorem 3. The norm and inner product of H will be denoted by
{-] and (-, -, respectively.

Let U be an open subset of B. A subset 4 of U is said to be properly
bounded in U if A is bounded and, in case U # B, dist(4, U%) > 0. B,(U)
will denote the collection of properly bounded Borel subsets of U. A
function f from U into a Banach space K is said to be J-times (j> 1)
H-differentiable ot o point » in U if the function g(h) = f(z-+h) from
(U—x)nH into K is j-times Fréchet differentiable at the origin. f is
said to be j-times H-differentiable on U if it is j times H-differentiable
at every point in U. We define the i-th (1<i<j) H-derivative f?(z)
of fat o in U to be thei-th Fréchet derivative g (0) of g at 0. Note that
fz) e I'(H; K) for each » in U. Here I'{H; K) denotes the Banach
space of continuous i-linear maps from Hx ... X H (i factors) into K.

DEFINITION 1. A local measure on U is a real-valued set function
defined on %,(U) such that the restriction of 4 to any properly bounded
open subset of U is a finife real Borel measure.

DEFINITION 2. A local measure x4 on U is said to be H-differentiable
it ‘ )
(i) for any bounded uniformly continuous funetion f with support
properly. bounded in U, uf(s) = [ f(x+y)u(dy) is H-differentiable at
U

the origin and

(ii) for any sequence f, of uniformly continuous functions converging
to zero pointwise and boundedly with | suppf, properly bounded in U,
n
lim {(uf,) (0), > = 0 for all & in H.
N—+0a “
(Throughout the paper we shall confuse the H-derivative and the
H-gradient of real-valued functions.)

Note that in Definition 2 we use uniform continuity instead of con-
tinuity which is used in [8], Definition 2. Uniform continuity is necessary
in the proof of Theorem 1 below. However, as in the proof of [8], Theorem 1
it can be shown that x is H-differentiable if and only “if there exists a
(unique) finitely additive set function Dy from #,(U) into H such that
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for each h in H, {Du(-), > is a local measure and
{uf) (0),ky = — [ f(@) (Du(dw), B
U

for all & in H and all boundéd uniformly continuous functions f with
suppf properly bounded in U. Dy is called the H-derivative of u. It follows
from Pettis’ theorem ([4], p. 318) that Dy is an H-valued local measure
on U. .

3. The chain rule. First we make the following definition (cf. [9],
P. 104). A continuous bilinear map § from H x H into H is said to be
trace class type if for each % in H, 8, is a trace class operator of H, where
{8k, kY = (S(h, k), uy, and the linear map u—8, is continuous from
H into the Banach space S (H) of trace class operators of H. It follows
that there is a unique vector in H, denoted by TRACE 8, such that
{TRACES, u) = traces, for all «in H. Moreover, TRACE § = _nE 8(6,, €,)

for any orthonormal basis {e,} of H. We will denote by § the map Su = 8§,
from H into #(H). Note that § e L{H; £ (H)).

- Let U and V be two open subsets of B. Let 6 be a twice H-differen- -
tiable homeomorphism from U onto V. We assume that 6 satisties the
following conditions: :

(i) for each x in U, 8'(x) e L{H; H) and is invertible, and the map
¢'(-) from U into L(H; H) is measurable, .

(ii) for each @ in U, 0"{x) e L*(H; H) and the bilinear map (&, k)—
(8" () (h, *); k) from H x H into H is trace class type, and the map
6’ (-) from U into L2(H; H) is measurable.

LeMMA 1. Let J4(x) be the bilinear map from H x H into H defined
by J4(@) (hy k) = (6" (=) (6" (2)7'h, ) k. Then Jo(x) is trace class type
for each = in U and TRACEJy(-) from U into H is measurable.

Proof. Let § and T denote the bilinear maps (h, k)—~{(0" () (k, -), &>
and (h, k)—><0" (@) (0" (€)"'h, -), k>, respectively. It is easy to see that
for each % in H,

Syh = 0"(%) (h,w), T h = 6"(2) (0 (&) h,u),

where kh € H. Therefore, T, = 8,6 (x)™" as operators in L(H; H). Since
8 is trace class type by condition (ii), this relation shows easily that T
is also trace class type. The measurability of TRACEJ,(-) follows from
the fact that

TRACBJ,(2) = Y, (0" (@) (6(@) 6y ), €0

THEOREM 1. (The chain rule.) Suppose 0 is a twice H-differentiable
homeomorphism from U onte V satisfying the above conditions (i) and (ii).
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Let v be an H-differendiable local measure on V and u = vo 0. Assume
that the following conditions are also satisfied:

(iil) 6(A) € By(V) for all 4 e B,(U),

(iv) over every properly bounded subset of U: 6'() and 6'(-) are
bounded in operator norm, 6'(-) 4s Bartle Dyo §-integrable and je taking
valuss in L(H; #(H)) is Bochner u-integrable. :

Then u is an H-differentiable local measure on U and its H-derivative
s given by

Du(dz) = §'({z)*Dro 6(dw) +(TRACE J,(2)) u(dw),
where * denotes the adjoint and Jo(x) is defined by

Jo(@) (b, k) = {8"(@) (0’ (@), ), kY b, keH,

s0 ‘that
TRACEJ,(2) = 2 0" () (8" () 6y, +) €, .

for any orthonormal basis {e,} of H.

Remarks. (1) See [4], p. 112 for Bochner u-integrability and [2],
p. 341 for Bartle Dyo §-integrability. ‘

(2) Suppose that » is a finite real Borel measure on V (instead of
a local measure); then yu is a finite real Borel measure on U. In this case
(iii) need not be assumed. If (iv) holds for every Borel subset 4 of U,
then we have a stronger conclusion, i.e. Dy is an H-valued vector measure
on U.

Proof. Let f be bounded, Lip-1 w.r.t. B-norm and H-differentiable

with support properly bounded in U such that f' is bounded and Lip-1 -

from U into H. Let uf(w) = [ f(#+y)u(dy), which is defined on some
4 .

B-open ball W with center at the origin such that Wsuppf = {#+y;
oz e W,y esuppf} is properly bounded in U. It is easy to see that uf is
H-differentiable on W and its H-derivative at # in W is given by

L) (@), By = [(f(z+y), Ryuldy)
U
= [{f o+ 07 @), W@, hed.
v

Define g(2) = flo+67(2)}, 2 € V. Then suppg is properly bounded in V
by condition (iii), -and {g'(2), B> = {f'{w+ 67 (2)), 0°(67 (2))"*h)> for R
in H. Therefore, ¢'(2) = [6"(67"(2))7'|*f"[#+ 67 (2)) and so f'(s+67(2))
= §'{67"(2))*g’ (»). Hence )
A (@), By = [g'(2), 667 (2)) By »(die)
. vV

= [ D5 @), 6.5 <O(67 (2)R), e, v (de),
¥ n
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where {e,} is-an orthonormal basis of H. Let @ denote the support of
f. Then @ — is properly bounded for any @ in W. Let [¢| denote the tobal
variation of u. Then

S [Kg' (0®)); ead] KO @)y €031 11l (3Y)
n U

= 3 [ K00 @7 T @), eny | KO @Ry el 1u1(@)
n U

’ —1% pr B’ d
=3 [ KO @TF (@+y), ed) KE'@)hy e 11 (@)

n @—

<3| J @@ T e, ot @™ [ <o), el (@)} "

” Q-x

<13 [arw T+ o) {Y | O @)k, el )}

n Q-=z n Q-z

Q
< [hlsup |f' ()] sup 16" (y) 7'l sup 18" ()1l 1l (@ — ),
Q@ YQ—x YeQ—

[ 108 @) TF @+l {Q _f;w'(y)_ 1l (@)

which is finite by condition (iv) and the boundedness of f'. The}*efore,
we can interchange integration and gummation in the expression' of

{(uf) (@), B to geb
Lpf) (@) By

I

;‘ J (g (@), 6> <0 (672 (), 0,3 %(de)

I

D[4 @), e ealde),

n V

where o, (d2) = {0 (67*(2))h, e,>(dz) is defined on some open subset of
V containing the support of g. If is easy to see that g, is a local measure
and, by [8], Theorem 3,

(Don(@), By = {8 (0712 by enp <Dv(d2), B+ '
+40"(67(=) (6(67 (&) 'R, B), eupr(@), keH.
Apply the integration by parts formula ([8], Theorem 2) to obtain
Gy @), hy = — 3 [ 9@ {0 (67 @)y 0> <Dr(de); o>+
' T +{6"(072(=)) (67 (67 (&))" ey B), 6upr(d2)}-
Recall that g(s) = flo-+07"(2)) and leb y = 6~ (2). Then
ufY (@), By = — ) J Fl@+9) (<O @)h, 6,y Do 8(dy), e+

(0" () (8" @) 0 1), 6a) (A}
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If H is finite dumensional, we can obviously interchange summation
and integration. Suppose that H i infinite dimensional and let P, be
the orthogonal projection onto the span of {e,, ..., e,}. Then

D [F@+9) <0 @)k, 6,5 Dvob(ay), e,
n U
=1lim [(P,f(2-+9)0'(y)h, Dvo 6(dy)>.
n—»DOU

By [2], Theorem 4 and Theorem 10, for any bounded Bartle Dyo 6-inte-
grable function F with values in H, we have )

[<F), Drob(ay)y = lim [<P,F(y), Do 6(dy)).
Therefore, »
Zn Uf F(@+9) 6" )k, 6> (Do b(dy), e,> = Uf F(@-+9)<8'(y) b, Dvo 6 (dy)>
' | ‘= [fla+9) <6 () Dvo b(ay), k.
Moreover, 7
;‘ J Fla+y) <0 (9) (8" @) e, 1), €, pldly)
= trace J F@+9) (To(@)ap(dy) = Jf(aery) trace (7(y))u(dy)
= J J(@+y) CTRACE,(y), by (dy)

= [f(@+y) (TRACEJ, ()| u(dy), Y,
U

where (Jy(y)); denotes the operator such that <(Ja(y))hu, vy = {To) %

X (#, v), h>. Here we have used the integrability of J,. Therefore, we have
shown that

ufY (@), B> = ~ [fl@+7y) <0 (y)* Dro 6(dy) +(TRACET () s (dy), B
) (28

holds for any bounded, Lip-1, H-differentiable function f with support
properly bounded in U such that f' is bounded, Lip-1 from U into H. y
and for all » in W. i .

Now let f be any bounded uniformly continuous funetion with support
properly bounded in U. By [10], Theorem 1 and Theorem 3, there exists
a sequence {f;} of bounded Lip-1 functions converging uniformly to f
such that LkJsuppfk is properly bounded in U -and f,, k = 1,2, ..., are

H-differentiable with bounded Lip-1 derivatives. Tt is easy to see that
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there exists an B-opén ball W, with center at the origin such that W,

+(s11ppf UD suppfk) is properly bounded in U. We have shown that
k=1 .

ufyy, & =1,2, ..., are H-differentiable and for % in H,

ufe)' @), By = — [ fulw+9) <0 (y)" Dro b(dy) + (TRACET(y)) u(dy), by
17

Obviously, on Wy, uf; converges uniformly to uf and (uf)’ converges
uniformly to

— [£(-+v) {6 (9)* Dro 6(dy) + (TRACEI o(y) | u(dy)}-
U .

Therefore, uf is H-differentiable on W, and

uf) @), By = — [Fla+) <O ()" Dyob(dy) + (TRACET, (y)) u(dy), h)-
U

In particular, for z = 0, we have

QY (0), By = — [ £) 0 (@)* Dro 6(dy) + (TRACEJo(y) u(dy), -
U

"This shows that x is an H-differentiable Iocal meéasure and its H-derivative
is given by
Du(dy) = 0'(y)*Dvo6(dy) + (TRACET,(y)) s (dy) -

4. Logarithmic derivative. In this section we assume that H is dense
in B. Let 4 be the inclusion map from H into B. Then i* is injective from B
into H*. We may identify B* with ¢*(B*) and also, by the lziesz repre-
sentation theorem, identify H* with H. Thus we have B" < H < B.
Tt is easy to see that B* is dense in H with respect to H-topology*and
hence there exists an orthonormal basis {e,} of H such that e, e B" for
all n. Let (-, -) denote the natural pairing of B and B*; then (h, k) = <h, k)
for all » in H and k in B*. . _

Let |||} denote the norm of B and |||l the norm of B". We will use
|7 ¢ to denote the operator norm of a bounded operator T in L‘(X s Y)’;

i:JEMMA 2. Suppose T e L(H, H) and T(B*) = B*. Then the* adjoint T
of T emtends uniquely by continuity to & bounded *ogerator (T*)y" from B
into itself, i.e. (I)" e L(B, B). Moreover, |(T*) llzz = ITllgp and
(%, Ty) = ((T*)" w,y) for any we B and y e B. .

Proof. First note that, by the closed graph theorem, I' € L(B", B7).
Let » e Hj; then

IT*s)| = sup (T*®,y)| = sup KT*@,y>| = sup Kz, Ty)|
llwlle=1 iyl =1 Iiyl=1

< | sup 1Tyl < lloof [1T1ze, 5
=1


GUEST


152 . H.-H. Kuo

Therefore, T* extends uniquely to a bounded operator (T*)” of B and
nry” J]BB< I35, g+ - Similar computation as above shows that 1T |lpx,
L WT*) Mg,z The last assertion is obvious. R

DErINTTION 3. Let u be a local measure on an open subset U of B.
A Borel subset N of U is said to be u-negligible if u(Nn4) = 0 for all 4
in %, (U). Two Borel measurable functions f and g defined on U are said
to be equal a.e. [u] if the set {w e U; f(2) # g(2)} is w-negligible.

Suppose that x is' a positive H-differentiable local measure on an
open subset U of B such that, for each h in H, (Du(-), k) is absolutely
continuous with respect to u. We can take an increasing sequence {U,}
of properly bounded open subsets of U such that | J U, = U and apply

»
the Radon~Nikodym theorem to each U,. In this way, we get a Borel
mesasurable function &, defined on U such that for all 4 e #,(T)

(Du(d), by = f £4(0) u (dm).
It is easy to see that &, is uniquely deﬁned up to a.e. [x#] in the sense
of Definition 3 above. &, will be denoted by d{Du, k) /du and called the
logarithmic derivative of u in the direction h.

DErFINITION 4. A positive H-differentiable local measure u on an
open subset U of B is sald to have logarithmic derivative if it has log-
arithmic derivative in every direction » of H and there exists a Borel
meaﬂumble fonction £ from U into B such that

(1) {I&]l is u-integrable over every properly bounded subset of U, and

(2) for each k in B*, d{Dp, k>[du = (£, k) ae. [u]

Suppose that & and % aré two Borel measurable functions with the
above property. Let {e,} be an ‘orthonormal bagis of H such that e, e B*
for all n. Then, for each n, (£ ¢,) = (7, ¢, ae [u]. Hence there exists
a p-negligible set N, such that (£(x), e,) = ( )y €,) for all .'v in N¢. Let
N = UN Then ¥ is also u-negligible. If » € N, then (@), &) = (n(2), &)

for aﬂn and 80 &(z) = 7 (). Therefore, £ = ya.e. [u]. Thus & in Definition 4
-1s uniquely determined up to a.e. [x]. & will be denoted by dDu/du and
called the logarithmic derivative of u. For example, when (H, B) is an
abstract Wiener space, let p, be the Wiener measure with mean 0 and
variance ¢ > 0. It has been shown in the example on 8], p. 193, that

{Dp,(dx), by = —t"'(m, h)p,(dw), h e B*. Hence p, has loga;mthmlc de-
rivative
dDyp,
—— (1) = —t " a.
dp, -

The terminology for d Dy [du is motivated by the following finite dimensional
example. Let H = B = R* and u(do) = w(z)ds, where w is a positive
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continuously differentiable function and dx is the Lebesgue measure
on R" It.is easy to show that dDu/du = (logw)’.

To state the next theorem, we-assume the following approximation
property on (H, B): there exists an orthonormal basis {e,} < B* of H
such that if P,o = (&, €1)6;,+ ... + (%, 6,)¢, for & in B then P,z as
n->co for every @ in B. Tt follows from the Uniform Boundedness Prin-
ciple that sup [Pylp,z < .

n

TEEOREM 2. Suppose that B has the above approvimation property.
Let p, v, and 8 be given as in Theorem 1 so that the conditions in Theorem 1
are satisfied. Suppose that, for each x in U, §' (x) (B*) = B, 6'(-) is measur-
able from T into L(B*, B*), and |6’ (-)|ps 5 18 bounded on every properly
bounded subset of U. )
Then, if v is positive and has logarithmic demmtwe, u 18 also positive
and has logarithmic derivative given by
dDyu w~ GDv
K3 "
Remark. The assumption that B has the approximation property
is a technical one and can be dropped as follows. Suppose there exists
a Banach space B, such that B, = B, (H, B,) is a pair of spaces with
the interpolation property and has the approximation property, and
dDy|dy takes values in B, a.e. [+]. Then the theorem remains true with
the obvious modification, i.e. replace B in the conditions with B,. If »
is a Wiener measure, such a space B, exists by [9], p. 66. )
Proof. We need only to prove that for any 4 e 4,(V) and any
ke BY,

[<Ds(ay), 6(07* (@) ky = Af ((6’(0~1(y)) ) (

Let P, be given by the approximation property of (H, B), P, @ = (1, 6;)6,+ ...
..+ (%, 6,)6, € B. As in the proof- of Theorem 1

(@) = (6 (@) (6(@) + TRACE J, ().

dDv

W), 1)»(an.

[ <omay), e'(@*l(y))k>‘=2 f <8 (07 @)y 003 DY ), 00>

A
- Z‘ f O (@), 0y 2252 (4 y)
= % Af (07 W)k, €,) (—d—(y), en)v(dy)

= lim f (Pﬂd—dl;l(?/) (671 y))k) (@)
frse' 3 |
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Let a = sup|P,lisz and b = sup||6’ (67" (9))| s, 5~ Then
n yed

Dy - aov , oo
(Pn—d7<y),e(e <y))k)|< Pn—g}(y)gne (67 (1) e

| D , . '

S e [
| dDy it

<ab s |- (.«/)“.

Moreover, as n-—oo,
aDy a1 ;iD f et
(2S00 ) > (G 0, 0 (0 )

Therefore, by the Lebesgue dominated convergence theorem,

Iim
N—>00 A

P,

aDy
" dy

), 0 (67 ) k)v(dy)

fl

dy

f ((e’ (61 (y))*)"( ddev

A4

/ ( ) 9'("‘1@/>)k)v(dy)
A

(y)), k) ().

This completes the proof.
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