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Some results in the metric theory of
tensor products
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Abstract. Using estimates, based on Khintchine’s inequality, for multilinear
forms we obtain similar estimates for tensor norms of trigonometric polynomials.
From these estimates we obtain new proofs of Varopoulos results in the descriptive ;
theory of tensor algebras. We also present an operator from the dise algebra A4 (D)
into I which has no isometric extension as an operator from C(T) into Il

0. Introduction. In this paper we shall study some problems in
the metric theory of tensor products. Our main result is an estimate for
tensor norms of trigonometric polynomials. Using this estimate, we can
then give new proofs of the results of Varopoulos in-the descriptive theory
of ‘the tensor algebra’ V(T?) = 0(T)&C(T). We can also prove various
gerieralizations of these results. We obtain our estimates for tensor norms
of trigonometric polynomials by passing over from norm estimates on
tensor products over finite spaces, and we start the paper by proving
in Section 1. the necessary results for tensor products over discrete
spaces. The starting point for our estimates is the following theorem
of Littlewood (by probabilists called Khintchine’s inequality): Let I be
the wnit interval, and let {r,(®)};=, be the Rademacher functions. Let
further {a;}}_, be complex numbers. Let

| fl@) = Y mrul@), 1<k<m, wel;
then fe L1(I), fe L*(I), and
(0.1.1) I1flizs = @ UIf e - ([10D)-

Our estimates in the metric theory of tensor products are contained
in the first three sections of the paper, while in the last section we study
the algebra V++(T?) = 4 (D)4 (D). Our main result in this section is
that the imbedding of V*++ into V is not isometric, though we are not
able to decide whether VT is a closed subspace of V. .

1. Tensor products over discrete spaces. 1. We shall assume the
reader to be acquainted with the theory of tensor products of Banach
spaces as presented e.g. in Grothendieck [2] or Varopoulos [11]..We
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shall here fcilow the notations of Grothendieck [2], so that AQB and
A& B will denote respectively the projective and the injective tensor
products of the Banach spaces A and B.

Let further (X, dx) be a measure space with 2 positive measure dx
and let 4 be a Banach space. We shall denote by PP(X, A) the set of
all measurable A-valued functions &(z) on X, such that

(111 ( [ to@zas] = la@)lencx.a < oo

x

If X is » diserete space and dw is counting measure, we shall write 1 (X, 4).
In this section we shall study spaces of the type

(X, pRRDYBI(DE ... ®T(Dy),
where the D, are discrete spaces.

The particular cases I* (Z)RT(Z), resp. £¥(X, dz) Q1 (Z) were studied
by resp. Littlewood and Orlicz. They proved essentially that -

(1.1.2) 27 (X, dn)Q@ (D) « £°|X, (D)),

and that the inclusion has norm < V3 ([6], [9]). .

Now the theorems of Littlewood and Orlicz follow directly from
inequality (0.1.1) of the introduction, and using & gtraightforward in-
duction argument it is-easy to see that this inequality may be generalized
ag follows:

Lzwma (L.1) (Davie [1]). Let If = Iy x Iy x ... X I, be the wnit cube
in R", and let r.(z;) be the k-th Rademacher Sfunetion on I;. Let further
A~fay b, g1 <K< K, be a finite array of (real or complex) numbers.

Defining
(11.3)
Alw) = A(@y, gy oeny Ba) = 2 “(kl,lcz,...,k,,.)"'kl(51’71)”7‘2 (®a) «- . T, (25),

1<ki<K;

we have
A(x) e 23(I%),

and

114)  LA@legy > 2 1A @)les = 27 Yla) .

Replacing now inequality (0.1.1) by (1.1.4) in the arguments of Lititle-
wood and Orlicz, one has the following ‘

TraEoREM (1.2). Let (X, u) be a measure space, let {D;};., be discrete
spaces, and let D = Dy X Dy X ... X Dy then

(L13) 27X, n)RE(D)® ... IL(D,) c ZP(X, (D)),
and the indusion has norm < 242,

I<p < o0,
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2. In a later paper [3], Hardy and Littlewood, starting from (1.1.2)
gtudied the spaces PR, L1 <p<2, 1< ¢<2, and proved in particular
that
1.2.1) 1?(Dy)QT(Dy) = 17(Dy, 12(Dy))

and that the inclusion has norm < V3.
Using Minkowski’s inequality one has

(1.2.2) ZP(DI, ? (DE)) = ZZ(DEI, P(Dy))

and by Holder’s inequality one has also

(1.2.3) B(D,, (D) }NP(D,, B(D,)) < I"(Dy X Dy)
where 7 = 4p/(2+p), and hence (Hardy and Littlewood)
(1.2.4) P(D)®IMDy) = I'(Dy x Dy),

Combining the above results, one has by induction the following
corollary.

COROLLARY (1.3). Let {D.}i., be discrete spaces, let D = Dy X Dy X ...
... XDy, and let v = 2s/(s+1); then

(1.2.5) FD)RR(D)R ... ®B(D,) = I'(D).
If the spaces D, are not only discrete, but also finite, then 12(D) and

r as above.

T1(D) are isomorphic as linear spaces, and the inclusion of 12(D) into I* (D)

has norm l/ﬁ, (]D| = card(D)). One has therefore also the. following
corollary of (1.1.5).

THEOREM (L.4) (Varopoulos). Let (X, x) be a measure space, and let
{D;}5_, be finite spaces. Denoting the cardinality of D = Dy x Dy X ... X Dy
by |D|, we have
(1.2.6) :

v

L1, pRMDY® ... OR(Dy) = £4X, (D))
= FHX)QIM(D) = LH(X x D),

where the inclusion has norm < 257 . 1/17)_[_

Uting the duality of the spaces ¢, and It and of the projective and
injective tensor morms, ome has the following corollaries of the above
results.

COROLLARY (L.5). Let (X, u) be & measure space, let {D;};_, be disorete
spaces, and let 1 < ¢ < oco; then

(1.2.7) 2 X, (D)) € LUX)R0,(D) .- ©To(Dy)
and also
(1.2.8) ClX, 1B(D)) « C(X)RCe(D)B --- ®Cs(Dy)-
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COROLLARY (1.6). Let {D;} be discrete spaces, and letr' = 2sf(s—1);
then :

(1.2.9) (D) & Co(D)RCs(DG .- §0a(Dy).
CoROLLARY (1.7). Let D; be finite spaces; then
(1.2.10) C(Xx D) = C(X)QI™(D)QI*(Dy) ... §1°(Dy)

and the norm of the inclusion is < 2%V |DJ.

2. Tensor norms of trigonometric polymomials. 1. In this section
we shall find estimates for the tensor norm of & trigonometric polynomial

N
i(ms+nl,
Z arrme ¢ )$

m=—M n=-—N

. ar
pls, 1) =

(211)

and of higher dimensional analogues. It will turn out that these estimates
depend only on min (N, M), say min(N, M). = N, and that we may jusb
ag well congider the function ‘

N
(212) flo, ) = D) auls)e™, o<1,
n=—N
and obtain the same estimates. .
Let now # €Z°% n = (fy, Nay ..., W), and leb t e T% 1 = (3, 1y, ..., T).
‘We shall write
(2.1.3) wt = Nty S+t .. N

We further define [n| e (Z1)°, by

(2.1.4) Inl = (Inal, 11aly <oy IMel),

and for n €2° N e (Z7), we shall say that n| < N if (¥ —n|) e (Z¥)°. -

We can now make the following definition.

DErFINITION (2.1). Let X be compact space, and let N e (Z1)°. We
shall say that the function f(z, 1), € X, t € T°, is & trigonometric polynomia
of degree << N on X x T° (or shorter fePy(X x T%)) if

@18)  fla, )= D aq(x)e™,
Inj<N
For N e(Z*) we shall further write prod(¥) = N, N, ... N,.
We ean now state our main theorem for trigonometric *polynomials.
THEOREM (2.2). Let X be & compact space, let N e (Z7), and let
fePy(X x T*); then

FeV (IXT) = C(X)QCTIQRO(T)S ... C(T,)  (trivially),

a,(6) e O(X), neZ tel"

and

(2.1.6) iflly < £ (prod (W) | f oo -
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To prove Theorem (2.2), we shall use & lemma which reduces the
given problem to a problem for finite spaces. We shall first introduce
some notations. We shall denote by P, the space of ordinary (one-variable,
periodic) trigonometric polynomials of degree < ¥, and we shall denote
by Ea the set of Mth roots of unity, censidered as a subspace of the
unit circle T. We shall further denote by R, : C(T)—C(H,,) the restriction
mapping, and we shall denote by R}, the restriction of B, to Py. We
shall prove the following lemma,

LeMMA (2.3). Let N and M be natural numbers such that M > (w/l@) -N,
and let Py, By, RY; be as above. Then there exists a map
(2.1.7) 852 O(By)—>0(T)
such that
. S50 RY = 14(Py),
and such that
ISF < (1~ N*r?j2 MY~ ‘
To prove the lemma, we shall use the following result of Grothen-
dieck [2].
PROPOSITION (2.4). Let ¢ > 0 be a real number, let A be a closed sub-
space of the Banach space B, let C be a C(K)-space, and let
T: A-C
be a compact operator. Then there exists
T': B0
such that T'|, = T, and such that |[T']| < |T||+e.

2. Proof of Lemma (2.3). Let us, in accordance with Proposition
(2.4), denote the spaces R3;(Py), C(Ey), and C(T), resp. by 4, B, and C.
Let further

T: A->C

be the interpolating polynomial, i.e. T is the inverse of R}, (defined on
A = Im (R} (Py))) followed by the inclusion of Py into C(T). Since A
is finite-dimensional, T is of finite rank and a fortiori compact. By Prop-
osition (2.4), T can then be extended to a mapping of B into ¢ with norm
arbitrarily close. :

We shall prove that ||T|| < k(M, N)™ = (L—N*a*/2M*)~!, and this
is equivalent to the following inequality

(2.21)  max{|p(m)l; m e By} > k(M, N)-max{p@); tel},

Towards this, let p e Py be such that Iplo = 12 @) = () =1, and

pePy.
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put ¢ = {p+7P)/2. We bhave then |g| = [Re{p}| < ipl_, and g ePy, s0 it
suffices to prove (2.2.1) for g. We take now m e Ey with |m —1#)| < =/M,
and we estimate ¢(m). We write therefore

222)  gm) =qt)+ [ ¢@)ds
ty

. m
= gt +Le—m)d @~ [ (@—m)q"(z)ds.
b
Now, t, is a max for ¢ so the integrated term is 0. By Bernstein’s in-
equality we have therefore

(2.2.3) glm)>1—N2(m—1)2/2 > 1 — N2r?/2 M2

‘We see that there are two inequalities in (2.2.3), both having cases
of equality. However, the cases of inequality are different, so the com-
bined inequality is strict. By compactness of the unit ball of Py we have
therefore |T)| < k(M, N), and this proves the lemma.

3. Proof of Theorem (2.2). To simplify notations we consider

only the case s = 1, but the general case is proved in exactly the same
way. We have therefore

(231)  fl@,1) = Ya,(0)e™,

Let M = 5N and let By < T be as in Lemma (2.3). Let further R(f)
be the restriction of f to X x E,.. Since card(Hy) = M, we have by
Corollary (1.6)

(2.3.2)

—~N<n< N, a,(2) e0(X), tel.

IRy < @M |R(f))-

We observe next that for M = 5N we have k(M, N) > (1—10/50)
= 4/5, so by Lemma (2.3) we can find §%: C(¥,,)—C(T) with 83| < 5 /4.
We. define now 8: V(X X Ey)—~V(XXxT) by § = Id(G(X))@S% and
by standard properties of tensor norms we have then ||S|| < 5/4. On the
other hand, we have also defined § such that So R is the identity operator

for all trigonometric polynomials of degree <X ¥ on X x T, and we have
therefore

(2.3.3) Iy = ISo B(f)ily < 18I IB(H)lly

< (3/4)+(LON) - |B(f)loo < 4 F- | f .

This proves the case s = 1. In the general case we define, for each 4,

M; = BN;, By, a8 above, and an §; of norm < 5/4, and we obtain then
the estimate (2.1.6). )

4. Another proof of Theorem (2.2). In the preceding prdbf we
chose M = 5 in order to obtain the constant 4 in (2.3.3), and it is rather
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easy to see that with the restriction-extension method used above, this
constant cannot be very much improved. On the other hand, we have
very little information about the possible representations of f. In appli-
cations it is, however, generally less important to have good constants
than to have good information on the representation. We shall therefore
sketch amother proof of Theorem (2.2) that will give us a representation
with polynomials of a suitable order.

Towards this we define a “de la Vallée Poussin kernel” V, . (x) as
follows

Vi (@) = (B — 1)) o (@) — (L/(%— 1)) # (@),

where k is an integer > 1, and A, (») is the Fejér kernel. We next choose
M = 2(k+1)N+1, and we denote the normalized (= 1) Haar measure
on By by dm. We need the following facts:

(i) For & polynomial of degree < (k-+1)N, we have
[p(myam = [pat,
Eyr T
where df is normalized (= 1) Haar measure on 7.
(ii) For any fe C(E,) we define V(f)e C(T) by
[ Viow G —m)f(m)am
Ey :
and we have then [V (f)lle < ((k—}—l)/(k—l))-]]fl]m, and furthermore V(f)
is & polynomial of degree < kN, )
(iii) I f e O(&,,) is the restriction to H, of the polynomial p of

degree < N on T, then V, y-fis a polynomial of degree < (k+4-1)¥, and
therefore V(f) = p.

Let now f be a trigonometric polynomial of degree <N on X x T,
let k> 1 be an integer and define M as above. We restrict f to X x E,,,
and we choose a “good” representation

Fl@ym) = D) g(@)hy(m)
of fin V(X x Hy). By the above facts we have now
F@, ) = Dgul@) Vil (1),

which is then a “good” representation of f with polynomials of degree
< kN, and we have therefore the following theorem. .

TeEOREM (2.5). Let f(%, t) be a polynomial of degree <N on X xT.
Then there exists a representation

Fl@, 1) = D) gu(®)(0)

@
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with
g Wl < [(B+1) /(R —1)) - If I

and all h’s are polynomials of degree < kN.

The importance of Theorem (2.5) is that we can now obtain estimates
for trigonometric polynomials also in other algebras. Choosing % = 2,
disregarding the 1 in the definition of M, and using Bernstein’s inequality,
we have e.g. the following

THEOREM (2.6). Let X be a compact space and let f be a trigonometric
polynomial of degree < N on X X T'; then
- feV. = 0(D)@A.D),
oand
Iy, < 3-(6N)"
Similarly we have, by using well-known estimates for the Hilbert
transform on polynomials, the following result.
THEOREM (2.7). Let X be a compact space, and let f be an analytic
trigonometric polynomial of degree < N on X xT'; then
feVy=C0X)gA(D)
and
nquA 6N -Tog V.
3. The descriptive theory of temsor algebras. 1. In this paragraph
we shall combine Theorems (2.2) and (2.5) with some standard results

of approximation theory to obtain some results in the descriptive theory
of tensor algebras. Our main result is the following theorem.

TaEOREM (3.1). Let f(@,1) be a function on X x T° such that [ qua
function of ¥, has p; continuous- derivatives and such that

o2 = ()

qua function of t; belongs (uniformly) to the Lipschit? class a;. If, moreover,

;1
then fe V(X x T¥).

To prove the theorem we shall need the following lemma, from approxi-
mation theory ([7], p. 87).

Lznnra (3.2). Let F(8) be a function on I* such that f qua fumetion of 1
has p; continuous derivatives, and such that DIi(f) qua function of t; has
modulus of continuity w;(h). Let further N € (Z*)°. Then there exists a trig-

=4<2,
— Pty
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onometric polynomial P on T° of degree < N, such that
311 P~ Pl < K-{ 3 N77i-o,(1/N))},

K depending possibly on s, p; and o;, but not on N.

Proof of Theorem (3.1). We shall denote constants by K,, K,
ete. Let N, = (N, Nogy ooy Nyg) With Ny = [(2)¥@+4) L 1], ([#] being
the integral part of #) and let P, be a trigonometrie polynomial on X x T°
satisfying (3.1.1). By the choice of N, and by the agsumptions on f, we
have then .

=Pl < K1'2—k-

The polyﬁomia.ls P, ‘converge uniformly to f, and we have therefure
fl@, 1) = Py(@, )+ D) (Pu(m, 1) —Pry(3,1)).
We shall prove that under the given assumptions on Py,

(3.1.2) , D IPL—Pyyllp, < o0

and this will elemly' prove the theorem. Towards this we observe that
P,—P,_, is a trigonometric polynomial on X x T%, of deg'ree < Ny, and
that

1P —Prilleo < 1Py —Flloo+ 1F —Pr—illeo < Ka27"
By Theorem (2.2) we hawve therefore
Py — Py _qlly, < KEy-27% prod(N;)'?, v

and by the choice of ¥, we have prod(N;) < K, 2%, and by comparison
with a geometric series we see that (3.1.2) is convergent.

Remark. Scrutinizing the proof of Theorem (3.1) we see that it
suffices in fact to assume that the functions w;(%) defined in Lemma (3.2)
satisty

1

°

for some a; such that

Z L o o 1T, p. 241
Pt :

By exactly the same means as above, but using Theorems (2.6) or
(2.7) instead of Theorem. (2.2) in our estimates, we have also the follow:.ng
theorems.

TaEOREM (3.3). Let f(w,t) be a function on X x T° such™ that f qua
Sunction of ¢; has p, continuous derivatives, and such that DYi(f) qua function
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of t; belongs to the Lipschitz class ;. If, moreover,
1/2 A '
2( 2 ta 1,
Pit+Bs

FeOXDQALTIG - - § 44, ().

THROREM (3.4). Let f(z, t) be an analytic func%on on X x T® satisfying
the smoothmess conditions. of Theorem (3.1); then

FeOXIQAD)S .- AD,)

We conclude this section with the remark that the sharpening of
Theorem (3.1) obtained in the Remark is a best possible result, and that
a similar sharpening of Theorem (3.4) is of course possible. However,
such a sharpening will contain a logarithm in the numerator of the inte-
gral, and we do not know if it is best-possible.

4. The algebra A(D)QA (D). 1. The algebra V(T?) = C(I)QC(T)
has been an important tool in the study of the Wiener algebra A4(T).
It ha.s therefore been suggested by Varopoulos that the algebra V+(T%)

(D)Y&A (D) (where A (D) is the disc algebra) could be used as a mean
of studying the algebra A*(T) of analytic functions with absolutely
convergent Taylor series.
~ Now it is well known that if B, ¢ =1, 2, are closed subspa,ces of
F;, i=1,2, then E,QF, is in general ‘not a closed subspace of F,QF,,
and it is often a difficult matter to decide when it is. In our case we have
the following; V*+(T?) is the algebm of all functions F(z, w) in A (D?)
that have a representation

then

#

(41.1) F(z,w) = D ful#)ge®),  fur 9 € A(D)
with A
(4.1.2) D el ligelh < 0.

The norm is as always the inf of {4.1.2) over all representations (4.1.1).
Now it is easy to see that the closure of ¥+ (T%) in V(7T?)is simply V(T?)n
N4 (D?), which we shall denote V*(T1?), and which is the algebra of all
F(z,w) € A(D?), which on T? have a representation

(41.3) B ) = D Fild)ule"),  fur g O(T)
with ’ '
(4.1.4) D) Wl 1l < 0,

thus f, and g, are only assumed to be continuous.
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In this section we shall study the relations between V++ and v,
and we shall prove that the embedding is not isometric, even though
we shall not be able to decide whether it is closed or mot. .

9. The non-isometry of VT in V. Let ¢, be the algebra of eontinuous
functions on two points. We shall denote the algebra A(D)Q¢; by 4,,
and the algebra C(T)&¢, by C,. We have then the following theorem.

THEOREM (4.1). Let T: A,~>C, be the natural embedding. Then there
exists F e A, such that

TR, < (L4721 | Bl

By duality, Theorem (4.1) is equivalent to the following
THEOREM (4.1). There emists A e A, such that for every estension
Aely of 4,
I4llgy = (L4 7)1 |l -
Tt ig in this form that we shall first prove it. Towards this we observe

that an element F of A, can be represented by a pair (fi, fa), f; € A(D).
Tikewise -an element A of A, can be represented as & pair

4 =(.ﬁly.ﬁz)7 ﬁiEM(T)/Hé:
and an element A4 of C; can be represented by a pair

A = (g o)y, ps € M(T).

" An extension of 4 to C, is therefore a choice (4, us) 0f measures such

that M]A(D) = fi;-
TFurthermore, the norm of A in. A, is given by

MLy, = sup {lo [ fa+B [ fail; el <1, 1BI<1, fe A(D
T T
D), IfI<1}

= sup {||fi; + ¢“fallagrym; 0 <0< 27},

), W<y

= sup || Tf fai| +['Tf 12

and likewise, for any A e 0y, we have

I 4ligy = sup {llsn + 6 pallagay; 0 < 6 <2r}.

We shall consider now the elements. Fy = (1, a2), 0<a<<1, in 4,,
and the elements 4, = (dt, be~*dt), 0 < b, di is normalized Haar measure
on T, 4, € Ay. We shall prove Theorem (4.1)" in the following more precise
form.

TemorEM (4.1)". (i) If 0 <b<<1/2, then |4l = 1.

(1) If 1/2 < b, then |4yl = b-+(1/4D).

(iil) Every ewtenswn, 4, of A, has norm > {1+ (4b2[n?))"%
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Proof of Theorem (4.'1)”. ‘We shall first prove (i) and (ii). Towards
this we observe that, by the definition of norm, we bhave
’ 145145 = sup {IF(O)+b1f (0)]; f € A(D), Ifllypy < 1}-
Let fe A(D), lif] < 1. Putting
9(2) = (f(2) —f(

we have by Schwartz’ lemma

lg"(0) = If" (O)/{1~

0L —F(0)f(2)),

I oE <1,

and hence |f'(0)] < 1—[f(0)[2 -
Therefore, .
A B(L d<ocy —|F FOSPSIE
14yl <sup fo+b(L—2%); 0<w <1} = b (1/4b) if b=1/2.

On the other hand, the function f(z) = 1 certainly satisfies |f(0)] = 1
and this proves (i). To finish the proof of (ii) we take
Fole) = (Z+(l/2b))/(} +(2/20))
and then
o0 +D1f5(0)] = b+ (1/4b).

To prove (iii) we shall need the following lemma, proved in [4].

LevmwmA (4.2). Let X be a locally -compact space ond let pu,, p, € M(X);

then
2

mae (s + 6% pall; 0< 0 <2} > (@) [ g+ a6
[

> (2ﬁ)_ljy [ laaelf €% liell| 46
> (Il + (412 Il
Let now 4y = (g, pa) = ((1-+hy(®) dty (b6~ -+ hy(0))dt), By, by € H3,
be any extension of 4, to C,. Then ’
[Lldu =1, [éap, =5,
1, ljmall > b. By Lemma (4.2) we have then
4l > (14 (4b2 =2 )P,

This completes the proof of Theorem (4.1)"”. Theorem (4.1)" follows from
the particular case b = 1/2, and Theorem (4.1) follows then by duality.
For more information about this problem we refer to [13].
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3. The descriptive theory for A(D)QA (D). In Section 2 we considered
trigonometric polynomials on X x T% and were able to obtain estimates
also for amalytic trigonometric polynomialy on X x 7°. However, in that
section we did not consider the most natural clags of analytic .poly-
nomials, namely -the analytic polynomials on 7 x 7. The main reason
for this is that in the estimates obtained there, the dependence on the
x-variable was completely irrelevant. Consequently, in the descriptive
theory of Section 3 no assumptions were made on the behaviour of
F(z,1) as a function of @. In the case of analytic polynomials on Tx T
we can no longer do this, and our main estimate is the following theorem.

THEOREM (4.3). Let
: M N
F(s, t 2 Zamnexp{z (ms-+nt)};
. m=0n=0
then
F(s,t) e V+H
and

IFlp++ < O~ (log M) (log N) (min (M, N)J”" 1F1los.

where € is an absolute constant. .

To prove Theorem (4.3) we start from Theorem (2.5) to get a “good”
representation of F using only polynomials of degree <2M in s and
< 2¥ in ¢ This gives us the factor (min (M, N))¥* in the estimate. We
then “cut” this representation to obtain a representation using only
analytic. polynomials. This gives us the factors log M and log ¥ and this
proves the theorem.

Using Theorem. (4.3) we can now prove the following result in the

- descriptive theory of V++.

THEOREM (4.4). Let F(z, w) e A(D*) and asswme that T (¢, %) as a
function of s belongs to A,, some a> 0, and as a funciion of t belongs to
A, B> 1/2. Then F(z, w)e Vi+."

Since the proof of this theorem is only a slight modification of the
proof of Theorem (3.1), we shall only indicate the proof. We start as
usual by approximating F successively by polynomials P; of degree
(my., ny), where my, = (2%)71% n, = 2%, and we observe then that we have

Py — Pyl < O (Bla) -k -2 [(2F1) 2 - 9]
— 01.7‘;3.2(1/2—17)76’

—Py_y) is convergent in V**+, and this
proves the theorem.
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A version of the Harris—Spitzer ‘‘random constant velocity” model for
infinite systems.of particles

by
WOJCIECH SZATZSCHNEIDER (Warszawa)

Abstract. In this paper a one-dimensional system of infinitely many elastic
particles is considered. If the initial positions and velocities are independent random
variables, then the actual motion of the 0th particle converges to the Gaussian process,
which is in general non-Markovian.

0. Introduction. We shall consider a system of particles with equal
masses (point masses) on the real line. This system will be one with a
“random. constant velocity”, ie. the position z,(t) of the kth trajectory

at time ¢ >0 (if the particles can penetrate each other) is described by
the formula

() = m+ vt for

where {1, —k}T%, {v,}12 are independent systems of independent random
variables 1dentlcaﬂy distributed in each of the systems.

‘We shall consider the billiard-ball case, i.e. whenever two partlcles
meet we assume that they collide elastically, that is, the collision con-
serves the energy and momentum. This implies that they simply exchange
trajectories.

If Elz,—%] =0 and E[v,] = 0, we define, by the deterministic
theorem of Harris [6], the actual motion of the kth elastic particle v, (t).

We restrict our attention to the trajectory y(¢) = 4,(t). In this model,
which we call model D, we shall prove the convergence of the finite-dimen-
sional distributions of the processes Y, (f): = y(At)/4AY, t> 0, to the
joint distributions of the Gaussian process X (f), as A-—>oco, with

BLX(5)] =0,
X(s)] = min(t, s) v

k=0, +1,...,t>0,

B[X @) — Bmin (tu~, sv™) +-min{iu*, sv+)];
here v and v are independent random variables, with the same distribution
law ag v,’s, and

a”:= —min(0, a), a*:=max(0,a).
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