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Restricted and unrestricted convergence of
approximate identities in product spaces

by
CHONG RAE KIM (Ossining, N.Y.)

Abstract. For multiple Fourier series, if f& L, p > 1, then the (C, 1) sum of
the Fourier series of f converges almost everywhere to f, (with the aid of unrestricted
sums), and for fe L' we have restricted almost everywhere convergence. .

Our purpose is to extend thése facts to general approximate identities. A measure
of generality is whether the result includes the Kantorovich polynomials. In the
unrestricted case we obtain a result which does include the Kantorovich polynomials
and in the restricted case we obtain a result which does not include them.

1. Terminology and notation. 1.1. A Kkernel is a sequence {®,(z, 1)}
of functions defined in the square {(#,7): 6 <2 < b, 4 <I< b} and such
that, for all «,

b
lim f@,(m,t)dﬁ =1.

n—>0 g

1.2. A kernel {®,(z, 1)} is called an approximate identity if
a b
m{f |¢n(w,z){dt+f|¢n(w,t)|m}=o
n->0 g ¥

for a<a<ae<f<h
1.3. For a set of approximate identities, if

[EOR)  ENCT LAY

converges 0 f(Byy .-y Tr) 88 Mgy oony Ny tend to + oo independently (or
dependently) of one another, we say that it converges unrestrictedly . (or
restrictedly).

1.4. A function ¥(z,?) is called a majorant (having the monotonicity
property). of the function &(w,?) if

[D(@, D) < P(@,1)

and if, for fixed », ¥ (s, f) increases on the closed interval [a, #] and de-
creases on the closed interval [z, b].
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2. Unrestricted case.

TerorEM. Let [{(D' @, 1)} 14 =1,2,..., k] be a finite set of approwi-
mate sdentities each of which 4s defined in the squa.'re (o <E< byy @ < 1 < by).
Suppose that for each i there exists a sequence {¥i (x, 1)} such that

(1 for each n, Pi(z,1) is a majorant having the monotonicity property
of @i (z,1), and ’

b

f Wi m, 1) dt < 0; < oo, where O; is independent of n and x. Let

f(tl, tk) be a function of k=2 variables defined on the closed k-cell
Q= {tl, Jh): @ <t < by, b =1, ..., kL If If|(log™ [f1)Y*~" és integrable
on Q, thm

[ftty e ,mncb (@2 1) iy .
Q

converges almost everywhere to f(wy, ...
pendently of one another.

Examples are the product kernels of Fejér, Kantorovich, Landau,
and de la Vallée Poussin, as well as the product Poisson kernel.

The proof of the theorem needs the following lemmas.

Lmvma 1. Let [{®f (e, )11 =1,2,...
identities of the Theorem. If f e C(Q), then

5 Tg) as Ny ooey Ny tend 10 -+ oo inde-

, k] be a set of approwimale

k

[ 7y ey t0) [ ] B (s, t) ity ..

@ i=1

converges to f(wy, ..., x,) atall points (v, .

tend to + oo independently of one another.
Luvma 2. Let {7, (x, 1)} be o sequence of positive fumctions such that

for fized n and «, the fumction ¥, (z,t), as a function of t only, increases

on the closed interval [a, ®] and decreases on the closed interval [m, b] and

.oy @) mside of Q as Ny, ..., My

b .
f‘P,,(a;, Ddt < C, where O is a constant.

et f(tylog™| f(t)] be integrable over [a, b] and

o) " (@) = sup f HOIEACRTS
z+h
@) ) = {1 f 1 (w)] du}
Then
P* (@) < 30f* (2).
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Lewma 3. If f(»), a<a<b, is infegrable and

zt+h

1
r@ =iy [ nal
then
(3) I < 4,0l (0<p<1)
and
b b
) f fflogtfya< A, f Ifilog*f )&+ 4, (a>1),

where 4, and A, are constants depending only on p and a, réspectively .

‘We omit; the proofs of Lemma 1 and Lemmsa 3 since Lemma 1 can
be obtained easily, and Lemma 3 is a regult of Zygmund [3].

Proof of Lemma 2. Pub ¢t f]f w)jdw. For fixed #, a <& <D,
b
[ 1O ol 1) = f ¥, (z, 1) do ()
= [Z(z, Do H)la— f P (A, (o, 1)

= [P (@, Yp(t)Ts—p(®) f AP, (@, 1)+

+ [Tp(@) —p018[ 2, (2, 1).
Let
H, = [¥,(z, )p)li—o(@) fb a(Z, (@, 1)
and , ’
H, = [ [p(@)—p0)1d(P,(@, 1)
‘We have ‘

= [p(d) — (@)1, (z, b)+ @) ¥, (2, a).
Sinee ¥, (z, 1) is increasing on [a, #] and decreasing on [w, b],
o> f ¥ (0, ) dt> (b—2),(2,b), or P, b)<—b-—_0—;
and

o}_fTn(m,t)dt>(m~—a)!l/n(w,a), o ¥, (@, )<
ta
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Thus
b)— € .
H1<0¢( ) —p(#) i @(®) <24 (@),
b—zx B—0

b
B, = [ p@—p®d(pa(o,1)

a

b
P (@) —p(t)
= af T = )d(Z, (o, 1)

) —o(t
<§:£ 3&2—_:’—() )|
b
<10 [ a—1a(Z,(a,9)).
We know that ’
] x
[le—td (@, 0)| = [(@—0)a ‘I’(mt)+f(t w)d( ¥, (z, 1)

= [(0—1)Pu(e, D5~ f 7, (@, )d(@—1)+

b

+[E—a) (— oo, 1)) f (@, 1)) d(—m)
= —(2—a) ¥, (2,0)—(b—2)¥,(z, D)+

+ fl_rf,, @, t)dt < o

b
0and [ ¥, (2, t)dt < c. Therefore,
o .
= H,+H,< 3¢f* (). This completes

since (2 — a) ¥, (%, @) > 0, (b —2) P, (=, t) >

H, < of*(x). This shows that ¥*(x)
the proof of Lemma 2.

Now we are ready t0 prove the theorem by a method mmﬂar to the
method: of Zygmund.

Proof of Theorem. Let

Py, 505 f) = sup ff(tl,..-,tk)H

(®1peeitp) i=1

(o;,, t) Aty ... diy.

‘We wigh to find a mea.sumble function f; such that

@*(a}u s B3 ) < Cofe@ay vy )
and for every p, 0 <p <1,
el < ¢

Ilf1(log* ifi)"’"’lh-F Cs
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ie.,
by by o
U o [ @, ...,mk)dwl...da:k]
a1 @

by by
<o [ [ 1fl0og*If)*  day ...

a k3

dw,+-¢,

where ¢, and ¢ are constants.

Let us fix @,, ..., #;, and let f (=, ...,
in the same way as (2), that is,

;) be obtained from f{@y, ..., o)

z+h

Fi@y ey ) =sup - [ 1,0 a0

Similarly we obtain fa(®y, ..., %) from fi(®, ..., 2;), this time fixing
DLy, By oy By, and 50 on. We get from (4) of Lemma 3

by b
f ff,,_l(wl,...
o g

by by
4 [ oo [ feslog*fy sy ... doe+Ay <
1 'k

5 ) A%y ... A,

by by '
Sy [ oo [ If1log* If ) do, ... Ayt Ay

ag ay

Let us now observe that, using Lemma 2, we have

by 31
| [ [ floy eyt [] @, (@3, 1)y .. )
* . by, b k
< [ [ Wt s )l [ [ Vi, 00 .
ag bkal b" i=1 . .
<B [ oo [ hl@ntay e ) [ [ Phosy 00 .
ay, ag i=2

by
< by f Froc1 @y <o ey By, ) Py (005 B) By
ay

< Beful@ay ey B
The above inequality shows that
(6) B (@1y ey 815 F) < oS3 (B1y ooes @)y  WheTe 6y = fy.
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Now we want to show that [fil, < e [ l Fl{log* |f1/*~1+e¢. Using Holder’s
inequality, we get

by
[ f Uil@ay -or @)1y ... Ao
" by * o1 by e
=§f o f dwl...dwk_llf(fk)pdmk]
kbkl— akb,, b Op—1
<{, f [ do.. dwk_l[ f Gordo V([ o [ dwye.dm )
ag—1 a ap—1

T

[ o] f (o da| ).
ay g1
By inequality (3) of Lemma 3,

by, . b :
{f (fk)pd“;k} "< 4, f Jro1 Gy
ay, ay

b by L b, by
[ (fk)Pdml...dmk}’pgApj o [ fuaoy ... A
ay ay ay ay

"Combining this and inequality (5), we get
Ifillp < el11f 1 Qog™ 1F 1Vl +e.
Having obtained our desired function f;, we are now ready to prove that

%
ff(tn coes ) HQii(wn t)dty ...

almost everywhere

: First of all, we fix p such that 0 < p < } and apply the above in-
?»qnahty to the function M 'f, where M ig a pomtwe constant so large that
in the resulting inequality

(8)
11 by, Y by by

{alj { (f,,)ﬂdm,...@&kej v [ If1(logt | MF Y dmy ..

al ak

t%xg last term ¢/M on the right is < (£/2)?. Then we make a decompo-
sition f = g-+h, where g is & continuous function and

9 - jlhida}l,..dmk{e,
Q

ab—>f (D1, .00y B)

da, o/ M

(10y’

¢ b{ [hl(log* | MR} < (e/2)!s,
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Applying inequality (8) to the function &, we aittain
{f iz, ...

Q

@ < (/2 (oJ2)P < 8P ,
This together with (9) shows that the set E(e) of points (%, ..
either |h(®y, ..., %) > Ve or {he{y, ..

Since

[0y -ost0)
Q

k
= [glis, -..,t,an @i (s, 1) Ay - B
Q

+ [ By, -

Q

.y %y,), Where
) Ve, is of measure < 2

k
H quz,-(-’ﬁi: )y e Bl —F(Bry ey B
=1

_g(mly vy $h) +

A H B, (7, 1) .

by —h{(®y ..oy Bp)

and, by Lemma 1,

g{®gy ey Tp)—>0

. ,
) [ | Phelon 18ty .. i~

i=1

fg(tn seey
¢

, m—>o0, We see that it (@,

llmsup‘ f Flyy ooy tr) n @“, i, b

Ayseees i=1

*
S C PRI

A8 Myy s x,) ¢ B(s) and &< 1, then

(@1, -y )]

s B B{®5 .oy )]
< o (@r, ey )+ By .oy T < (LH 0V .

Since the number ¢ may be as small as we please, and the measure
of B(e) tends to 0 with e, the theorem follows.
3., Examples. 3.1. Kantorovich kernel. Let

¥ <i< y4+1
n—+1 \n—}—l’

»=0,1,..

K0, 0 = (1) (1) (0 =0)

L 0<e <1,

1) has the monotonicity property and

41
1 n+l n

J Ealz, D= (n+1) 5’() ey [ oa- S)ea—orr =1

0 we==i) v=0
n-'-l

Kn(m)

for all » and «. Hence the Kantorovich kernel satisfies the conditions of
the Theorem.
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3.2. Landaw kernel. Let
Ly(2, 1) = ]/ﬁ [L—(—a)2?, 0<i<1,0<a<l.
T . R
Then IL,(x, t) has the monotonicity property,
. — .

]im]/; f[l~(t——:c)2]“dt —1 forall @,

n->00
0 .

and it converges mniformly.’ Hence, the Landau kernel satisfies the con-
dition of the Theorem.

3.3. Fejér kernel. Let

. t— :
Sln’l’b(—zm)—
F, (2,1 =-§E —W y  —IKiKw, —w<a< .
sin
2
Then
sin t—x 1
1 TS
2%7:.[ i s dit =1 for all » and =,
-= | sin )

and the sequence {nr/|n*¢—2)*+4)} is & majorant of the Fejér kernel
having the monotonicity property. But

f nrdt w2
o m(i—a)ta <3

and hence the Fejér kernel satisfies the conditions of the Theorem.
3.4. De la Vallée Poussin kernel. Let

“Vn t—x
Vﬂ(ﬂ},t)=’2-1/*_;0082 ('-—2——"), —r<eI<n, —wLi<n.
Then
7!]/“‘
. n t—z
lim f~—eos*f" —) dt =
_,"2ﬁ (z)dt 1  for all »,

and it converges uniformly. Since V,(z, ¢) has the monotonioity property,

the de la Vallée Poussin kernel satisfies the conditions of the Theorem.
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4. Restricted convergence. Without detail we only state a result
in the restricted case. This result includes many kernels such as Landau,
Gauss~Welerstrass, Cauchy—Poisson, and de la Vallée Poussin, but does
not include Kantorovich polynomials.

4.1. A sequence of functions {x,(z)} will be called a kernel (on the
real line) if », e I* for each » and

f g (w)du = 1.

4.2. A kernel {x,(2)} is called an approvimate identity (on the real

line) if there iz some congtant M > 0 with

[ awdu< M, n=1,2,..,

-0

im [ lm,(w)idu =0 (8> 0).

4.3. NI' is the set of those fe I'(R) which are normalized by
[ flw)du = 1.
Rusurr. Let the kernels {@,(v)} and {¥, ()} be approzimate identities.
If there ewist non-decreasing sequences {6} and {b,} such that

¢

e 70

190 (@) < oy 1Dul@)l <

and

[, ()] < b |¥fm<y)l<m B> 0),

then for every f e I'(R®) and for any pair {n}, {me} of non-decreasing se-
quences,

im [ [ flo+u, y+2) B (8) ¥ (v)dudy = [(@,9)
koo oo =0 .
almost everywhere on R
We state a corollary which follows from the above Result.
COROLLARY. Let e NI’ and W eNL' be bounded funclions such
that

C, C,
|¢(m>1<|711"+—a and uww;g-y—ﬁﬁ

e s i

K

i
k
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for positive numbers a and B. Then, for every feL'(r?) and for any pair
{ny}, {m;} of non-decreasing sequences,

limmgm, [ [ f(o+u, y-+0) O(ma) Plmo)dudo = (5, 9)

—00 -0

almost everywhere on R
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Vector measures on the closed subspaces of a Hilbert space
by
R. JAJTE and A. PASZKIEWICZ (L6dz)

Abstract. The present paper is concerned with vector valued measures defined
on the lattice of all orthogonal projectors in a separable Hilbert-space H, with values
in a Banach space X. Those measures can be extended to bounded linear. operators
on the space L (H) of all linear operators in H. In particular, we consider the measures
taking their values in a Hilbert space # and in L (). As a corollary we obtain a de-
scription of homomorphisms of a standard Hilbert logic into itself. This is the gener-
alization of the well-known theorem of Wigner.

Introduction. Let H (or #) denote a Hilbert space (real or complex).
Throughout we always assame dim H > 3. Let 8z (resp. S,) be the lattice
of all orthogonal projectors in H (resp. &) and let L(H) be the space of
all bounded linear operators acting in H.

An operator M e L(H), which is self-adjoint, nonnegative and trace-
class will be called the s-operator. -

For any subspace H' < H we shall denote by Sp. the lattice of all
projective operators acting in H'. -

Sg will also he treated as a set of operators from Sy which vanish
on HoH'. ' : ’

Let X be a Banach space (real or complex).

DeFINTTION 0, The mapping &: Sy—X will be called the wvector
Gleason measure (VG-measure) if

(i) for any sequence of mutually orthogonal: projectors Py, P, ...
from 8y the series

(0.1) ' 2 E(P)

is weakly convergent to E(OP;

(i) sup [£(P)] = K < oo.
PeSH

By the well-known theorem of Orlicz [4], the accepted definition
immediately implies unconditional and strong comvergence of (0:1).
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