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A remark on
Edgar’s extremal integral representation theorem

by
PIOTR MANKIEWICZ (Warszawa)

Abstract. If is proved that if K is a closed, bounded, convex subset of a Banach
space with the Radon-Nikodym property, then for every zec K there is a Borel
probability measure p on K, supported by a “separable extremal set” such that »
is the barycenter of u.

In [4], G. A. Edgar has proved a very nice version of Choquet’s
theorem [7] for separable, closed, bounded, convex subsets of Banach
spaces with the Radon-Nikedym property. Namely, he proved that if
K is a separable, closed, bounded, eonvex subset of a Banach space with
the Radon—Nikodym property, then for every y € K there is a prob-
ability measure 4 on the universally Borel measurable sets in K such that

@ y = [aau),
K

and the set of extreme points of K has g-measure 1. His brilliant proof
is Dbased on the Kuratowski-Ryll-Nardzewski selection theorem and
Chatterji’s theorem on the convergence of bounded martingales in Banach
spaces with the Radon-Nikodym property.

In [56], the same author has generalized his previous result to the
nonseparable case. He defined, for universally Borel, separable supported
probability measures on a fixed closed, bounded, convex subset K of
2 Banach space with the Radon-Nikodym property, an order relation
< in such a way that g, < p, means, roughly speaking, that the support
of p, is closer o the seb of extreme points of K than the support of y;.
He proved that for any y € K there is a measure maximal with respect
to the order relation and such that (1) holds. In such a sefting the result
and, what is more important, its proof becomes much more complicated
than in the separable case.

Below, we present an equivalent version, and we hope — an eagjer
one, of Edgar’s nonseparable theorem on extremal integral representation.
But there are delicate points in the problem which are worth mentioning
in advance. Namely,
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(i) One has to decide upon the meaning of the integral in formulae (15,

In view of the definition of the Radon-Nikodym property we believe that. .

the natural notion of integral in Banach spaces with the Radon-Nikodym
property is the “Bochner integral”. But the identity function f(z) = #,
for » € K, must be p-almost separable valued, which implies that x is
a separable supported measure. Therefore, we have to restrict our interest
to separable supported measures.

(ii) Also, one has to decide on what ¢-algebra of subsets the meagure
must be defined. Sinee the Bochner integral corresponds to convergence
in the norm topology, it seems reasonable to choose the o-algebra of
Borel sets. Therefore, we shall seek a separable supported Borel measure
# on K such that (1) holds and the support of u is as close as possible
to the extreme points of K.

We recall that a Banach space X is said to have the Radon—Nikodym
property (RNP) iff, for every probability space (2, X, P) and every
X-valued measure v defined on the o-algebra X with the finite total
variation. absolutely continuous with respect to P, there is a Bochuer
integrable function f: 2-»X such that

»(4) = [fdP  for every AeX.
P

H this iy the case, we write f = ;——;

Throughout the paper, X will denote a Banach space with the
Radon-Nikodym property and by “measure” and “integral” we shall
always mean a separable supported Borel measure and the Bochner
integral. 'As usual, we shall identify an integrable function with its equiv-
alence class. If K is a closed, bounded, convex subseét of X and (2,2,P)
i§ a probability space, then

L(2,K) = {f e L,(2, X): f(0) € K for w e Q).

) X < 2'is & o-algebra and f e L,(Q, X), then the conditional empecia-
tiow of f with respect to Xy is a X,-measurable function g: R—X with the
Droperty

fgdP = ffdP for every 4 eX;.
4 4

The conditional expectation of f with respect to X will be denoted

by B(f, Z1). Tt is known (cf. [8]) that the conditional expectation always .

exists. In‘the cage of Banach spaces with the RNP, the existence of the
conditional expectation follows easily from the definition: of the RNP.

In the sequel we shall deal with the fixed probability space (2, X, P).
Namely, let ¢ denote the first uncountable ordinal. Then Q — {0: 1),

icm

©
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i.e. the set of all c-sequences of 0’y and 1’s. The probability P will be the
completed product of measures which assign 1 to each element of {0, 1}
and X will be the P-complete c-algebra of subsets of 0 generated by sets
of the form :

A, ={0 = 0(se: w{a) =0} for a<c.

Moreover, by X, for £< ¢, we shall denote the P-complete ¢-algebra
generated by the sets 4, for a<< & K a<B<c¢, then X, < Zy. In par-
ticular, X, = {0, 2}, 2, = 2.

Now, fix an arbitrary closed, bounded, convex set K in X. We write
f<yg, for f,geL(Q,K), provided that there is an a< c such that
f = H(g, %,). Tt is easy to see that < is a partial order relation in L(Q, K).
Note that since every fe L(2, K) is an a.e. imit of step funetions, for
every f there is an a < ¢ such that f is X -measurable. On the other hand,
every feL(Q, K) is almost separable valued.

LemvA. Let K be a closed, bounded, convexr subset of X. Then for
every f e L(Q, K) there is a g € L(2, K) such that f < g and ¢ is maximal
with respect to the relation <<.

Proof. Assume the confrary and let f e L(Q, K) be a function which
does not satisfy the Lemma. We shall define, by transfinite induction,
a c-sequence of functions (f, ). in L(Q, K) with the following properties:

(i) each f, is 2 -measurable,
(i) fo = B(f, Z,) for every a<<f<c,
(iii) for every a < ¢ there exists a g > a such that f, + f,.
To this end, let o, be the smallest ordinal such that f is %, -measurable.
For every a < «,, we define f, = E(f, X,). Now, assume that the functions
foy for a<< 8, have been defined. If § is not a limit ordinal, then there
is y such that ¢ +1 = . Sinee there is no maximal funetion greater than
f, we infer that there is a g e L(2, K) sueh that f, < g and f, # g. Let
a; be the smallest ordinal such that g is X, -measurable. We put f, =
E(g, Z,) for f < ¢ < ay. Obviously, f, = B(f,, L,), for every a < o’ < a;.
If g is a limit ordinal, we define f; = limf,. In order to prove that this
a<p

limit exists, observe first that for any increasing sequence (a,) of ordinals
converging to g, limf, exists by Chatterji’s theorem [3], since ( fo,) 18
" .

a bounded martingale. The coneclusion now follows by routine arguments,
To show that f, = B(fs Z,), for y < §, note that, by the dominated
convergence theorem, for every 4 < X, we have

J#,ap =1m [f,ap = [lim . P = [f,aP.

4 — Studia Mathematica LXIIL3
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So, we can assume that the sequence (fa)ace, Sabistying conditions (i)—(iid)
has been defined. Now, put

»(4) = [f,aP for AeX,.
A

Sinee £ = | Z, and because of (ii), we obtain that » is a P-absolutely
a<t
continuous meagure defined on Z. On the other hand, since K is bounded,

we infer that » is of finite fotal variation. Hence, there is a Bochner in-
tegrable function f, = *;% e L(8, K). Then f, is X -measurable for some
a< ¢ For each < ¢ we have f; = E(f., Zp), while, for a << f<< ¢ it is
immediate that f, = B(f:, Z5). Consequently fz = f;, for a< B << ¢ which
contradicts (iii) and proves the Lemma.

Tt is known (cf. [1]) that if K is a separable, closed, bounded, convex
subset of X, then the set of its extreme points is u-meagurable for every
separable supported, Borel measure x4 On X. The set of extreme points
of K will be denoted by ext(K).

A separable supported, complete, Borel probability measure x on
a closed, convex subset K of X will be said to be supported by a separable
esiremal set (or for short: to be separable extremal) iff, for every closed
separable subspace ¥ of X including suppp, we have u(ext(En Y)) =1

" TasoreM. Let K be a closed, bounded, convex subset of a Banach space
X with the Radon-Nikodym property. Then, for every y € K there exists
a separable extremal, Borel probability measure u on K such that

y= [@du).
K

Proof. Put f(w) =y, for v € 2. By the Lemma, there is a maximal
g'e L(Q, K) greater than f. Let « be the smallest ordinal such that ¢ is
 -measurable. Without any loss of generalify we ecan assume that
g(w) = g(e) for every pair o, €2 such that w(§) = w'(§) for £> a.
Therefore, in the sequel we shall consider g as-a P,-measurable function
defined on Q, = {0, 1}", where P, is a completed product measure on 2.
Sinee o is & countable ordinal, we infer that the product topology on @, is
mptrizable, Q,is compact with respect to this topology and P, is a Borel
measure. R .

Let u be a complete, Borel measure on K given by the formulae
#(B) = P(g~*(B)), for Borel B = K. We shall show that x is separable
extremal. Indeed, if this is not the case, then there is a closed separable
subspace ¥ of X which contains suppu, and a Borel set B of positive
measure g, disjoint from ext(Kn Y). This implies g(w) ¢ ext(K n Y) for
wed =g*(B)cQ, and P(4)>0. Let K, = KnY. Since ¢ is P,-

©
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measurable, there is a compact C; = 4 of positive measure P, such that g
restricted to €, is continnous. Let 0y = g{Cy). We have u(0s) > P(0,) > 0.
Obviously C, = B. ’

Using the Kuratowski-Ryll-Nardzewski selection theorem ([6]) we
can find universally Borel measurable functions f,, f; on K, to K, which
satisty (fo(®) +f1(@)) /2 = = for every » € K, and fo(®) = fi(@) = @ if and
only if & e ext(K,) (see [4]). Since x is 2 Borel measure on K, and K,
is separable, we infer that there is a compact 0 = 0, of positive uy-measure
such that f, and f, restricted to C are continuous. Put, for 4 e K,

filw)  for
z for

zeC,

gi(m) = W¢G,

for i = 0, 1. Finally, for v = (%) € Q, we define

for w = w(&) € Q such that w(a+1l) =0

_ [geog)(w)
h(w) *{ ; for © — w(f) e @ such that w(a+1) = 1.

(g109) (o)

It easily follows from the definition of » that ke L(Q2, K,) e I{2, K)
g < h, b differs from g on the set g~*(C) and P{g~1(0)) = u(C) > 0, which
contradicts the fact that g is maximal. On the other hand

y= [faP = [gaP = [z du(a),
Q 2 K

which completes the proof.

Remark. Using a similar argument and the fechnique developed
in [2], one can prove that every separable supported, Borel probability
measure on K is dominated by a separable extremal one.

Tt could be interesting to know whether the theorem above and
Edgar’s theorem on integral representation are equivalent. A positive
answer on this question is given by the proposition below.

By #(K) we shall denote the space of all tight Borel probability
measures on K endowed with a suitable topology (see [5]). We recall
that T: K—~#(K) is said to be a dilation iff T restricted to every separable
subset of K is Borel and for every y € K we have

y = [@dT () ().
K

It p,ve #(K), then we write y < v iff there is a dilation T such that
» = Ty, where Ty is defined by the formulae

(Tu)(4) = [(T(@)(4)dp ).

K
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Tt can be proved ([5]) that < is a partial order relation and that Ty = 4
if and only if T'(x) = 6(%) for w-almost all # € K (here and below, &(z)
denotes the Dirac measure concentrated in #). To show that the Theorem
and Bdgar’s theorem on :. .2ral representation cpincide, it iy enough
to prove the following )

PROPOSITION. A measure ueP(K), where K is a closed, bounded,
conves subset of X, is mamimal (with respect to <) if and only if it is separ-
able extremal.

Proof. Let p e #(K) be maximal. Assume that x is not separable
extremal. Then (in the notation of the proof of Theorem) we put T'(z)
= (8{fo(@)) + 8(f.(2))) /2, for € 0, and T'(2) = 6 (=), otherwise. Obviously,
# # Tu and p < Tu. Hence p is not maximal; a contradiction.

Conversely, let u be separable extremal. Assume that 4 is not maximal.
Then there is a dilation T' such that Ty = u. Since the measure v, = 7' ()
is separable supported for each » € K and T is separable Borel, one can
show, using the same argument ag in [5], that the closed linear subspace

Y =span |J suppuy,

xesS

where § = suppyu, is separable. Obviously S c Y. Set A = {we8: T(2)
# 6(2)}. We have p(d)> 0 and 4 c (YnK). Fix an arbitrary y e A.
Sinee v, % §(y) and since ¥ ig separable, there is a closed ball B in ¥
such that #,(B)> 0 and y ¢ B. Let K; = YnK and ¢ = K,\B. We
have

Y =Kfa::dvy(w) = dé{%d”v(%’)‘}'ﬂéf%dwy(m) = oty + B,

1

where a = ,(B), f=4,(0), a+p =1. Obviously, #, ¢ B and x, e K,.
Thus », s y. Henece y is not'an extreme point of K,. This shows that
A is disjoint from ext(¥ nK); a contradiction. This completes the proof.
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