STUDIA MATHEMATICA, T. LXIII. (1978)

Quotient spaces of (s) with basis
by
ED DUBINSEKEY and WILLIAM ROBINSON (Potsdam, N.Y.)

Abstract. A complete characterization, in terms of a Tepresenting matrix, is
given for a nuclear Kothe space to be a quotient space of (s). Using this characteriz-
ation, we obtain a nuclear Fréchet space which is neither & quotient space of (s) nor
of (5)¥. Moreover, the only nuelear Fréchet spaces with basis which are both a sub-
space of (s) and a quotient space of (s) are (up to isomorphism) infinite type power
series spaces.

In this paper we investigate the nature of spaces with basis which
are quotient spaces of (s), and in our main theorem 2.4 we give a com-
plete characterization. As & consequence we are able to construct a nuelear
Fréchet space which is neither a quotient of {s) nor of (s)". This solves a
problem posed by Pelezyhski ([12]). In addition, we prove that any
Kothe space which is both a quotient space and a subspace of (s8) must
be isomorphic to an infinite type power geries space.

Notation. ¥ will denote the collection of natural numbers. It B is
a nuclear Fréchet space with a bagis (w;), we say that the matrix (af)
represents (;) if there exists a fundamental system of semi-norms (py)
on B such that af = py(w;). Then, beeause of the nuclearity, there are
two equivalent systems of semi-norms given by

ol = Y |&laf  and  [ol, = suplélaf
j=1 g

for all z = Y &z e B. Tt is easy to see that the representing matrix
i=1

(af) can be altered by replacing finitely many elements of each row by
arbitrary non-negative scalars. It E is a nuclear Fréchet space with
basis (2;) and if («;) has matrix representation (af), the associated sequence
space is the space

e

K = E(af) ={t = 1): ) = ' iylaf <+oo, ke ).
j=1

=
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E is isomorphic to K and &' is isomorphic to
E* = {t: 3% and M > 0 such that [ < Maf, j e N}.

A space E(af) is called a Kithe space if for all %, j, 0<< af < af*,
- In this case, each p, is a continuous norm on K (a,}“).

A Kothe space is an infinite type power series space (p.s.s.) A (a)
if it is defined by a matrix of the form (af) = (%), where 0 < 4 < Oy
loa (i
and sup Log(9) < +o0. Of primary importance is the space (s) = 4, (a)
i a;
where ¢; = log(j-+1). A Kothe space is a finile type p.8.5., Ay (f), if it is

o\
defined by a matrix (af) = ((»——) ), where 0 < §; < fy,, With

log(j

i s .
disk is isomorphiec to the Kothe space A,(8) with 8, = « for all x.

There are three classifications of nuclear Fréchet spaces E with

= 0. The space 4, of functions analytic on the open umit

basis (z;) and continuous norms which are of interest here. (z;) is said -

to be (d,) if there is & matrix representation (af) of (#;) with the property
that for all & there exists p such that for all ¢ ;
(afy
i e
Condition (d,) was introduced by Dragilev in [6]. Because of a theorem

in [1], if one basis for ¥ is (d,), then-all bases for B are (d,). Hence we
can refer to F as a (d,) space.

() 18 said 0 be (d,) if there-is a matrix representation (a]f’) of ()
sneh that for all % and j,

a;cwti af—}l
k1 & T %t
; a5

Condition (d;) was given in [5] and again is independent of the basis
for B, so we can refer to the space F as a (d,) space. It is shown in [5]
that F is {d,) if and only if ¥ is isomorphic to 2 subspace of (s).

(2;) is said to be (d,) if there is & matrix representation (af) of (m))
such that for all %, j

akt? ak+l

=2 =
E+1 73

& @

E will be called a (d,) space if B has a basis which is (dg). It is not
hard to check that an infinite type p.s.s. is both (ds) and (d,) and that
a finite type p.s.s. is (d,).
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Two bases (v;) and (y;) are quasi-equivalent if there exists a per-
mutation z of the natural numbers and scalars d; > 0 such that 3t
converges if and only if 3 ¢dy.; converges.

I

1. Preliminary results. We fix an infinite matrix (af) of positive
numbers satisfying

“ﬁ-:—l aﬁi} N
1) < Er mbed.

Given numbers %, ..., ¥, not all 0 and & e N, we define
% a*
Bty oees t, =mi11{ : min ———=_9},
¢l ¥ cier Wl T
1.1 LEMMA. @iy, ooy tp) < @y ooes Bp)-
Proof. Suppose ¢ > ¢* = ¢“(1, ..., 1,). Then, by definition,
gk a

<=
ftel Il

1 %
2

Hence, applying (1),
. - ltel alc a§+l

S <
ltxl ~ afe  aG

so i1
“r _ o

ftg#] [l

which implies that " t%(ty, ..., %,) % ¢ for every g > g“(k, ..., t,). Hence,
ST Ey, ey ) < &l oo ny B

1.2, Levma, If 0< "< g™ '<...<g'<p and 0 =1, <L <...
. <1, are integers, then we can choose i, ...,1, such that 3 =0 for
§ % oY ey 0™ Tt 5 0, but otherwise arbitrary and such that

b Li+1
o [ty Gs .
2) li" T presuls i=1,...,m—1.
@ it1 ot Giv1

Moreover, if any such choice is made, then
Pty ooy tp) = ¢ Jor L <k, i=1,...,m.
Proof. First we observe that the choiee of 7, ..., f, satisfying (2) is
possible because of (1).
Fix ¢ =1,...,m and suppose that 1< j<< 4. Then #1,_ < k< it
follows from (2) and (1) that

L1 %
til %y %
- = ?
t,i+1 gt a1
e RES1 3
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so that
k 2 :
a*; a
I g 1<, by <k<,.
{1l Mgl

Applying this successively with j replaced by j+1,5+2,...,2—1 yields
ok, p
o* of

sl )

which implies that o*(f;, ..., ) < ¢ for [,_, < k<1,
On the other hand, suppose that ¢ < j < m. Then for k < ; it follows
from (1) and (2) that

for 1<j<i,li <k

% l—1
a1 @51 [tgi—1]
kS Ly H
Gy ak; [t,4]
so that

k %

o a”;

pi~1 o

———<—— for i<j<m, k<.
il eyl J=Th BS5

Applying this successively with j replaced by j—1, j—2, ..., ¢ +1 yields

% 1
a a
ot of

[l ]
which implies that ¢*(t,,...,¢,) > o' for k<}. Hence, we have that
Flhy ooy ty) = o for l,_, < k<1,

1.3. THEOREM. Let B be a nuclear Fréchet space with fundamental
sysiem of morms (| ;) and a basis (x;). Let 0 =Py < Pp1 < Dy, neN,
~be integers and () a sequende of scalars such that for all n-e N there exists
i(n) €(Py_y, Pyl such that iy #= 0. Set af = [u,], and corresponding to
this mairiz set o = ¢"(tp, 11,11, ). Finally let K be the Kothe space
determined by the matriz

%
1211:!

Then there is a quotient map T: B—K satisfying
(3) : T @y =0,

for <j<m, k<

1

Ppa<it<p,, nelN.

Conversely, if K is a sequence spaoe in which the coordinate functionals
are continuous ond if T: B—I is a quotient map satisfying (3), then (e,)
8 & basis for K, K is a Kithe space and K = K.
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Proof. We prove the second statement first. Let 4 ¢ X. Then there
exists £ e F such that & = ' &w; and y = T£. Thus,
i=1

© 0 Dy,
.7!:25-;1'9”«522( Z fit«;)@n-

i=1 n=1 i=p,_;+1

Since the coordinate functionals are continuous, the representation of
y is unique, 80 (e,) is & basis for K. Sinee T is a quotient map, we have
the quotient norms

oyl = inf{loll: » T (y)}.
For all n, ke XN,
lleally = inf{llzl: @ & T7*(e,)}

=mf{2 f (54“?)2:251'%51'7 and

Pm

Eiti = 6mn}
m  t=py,_ 1+l =0, —1+1
Dy, . P

(&ak) it =1

i=pp_ 1+l

= in:ﬁ{
i=pp—1+1
Fn . \3\ 1
-( 2 )
=Dy 1+1
where the last step is, for instance, an application of Lagrange multi-

liers.
pliers =

2
Now for any % we have & such that Y (—“—’_,:—) = M;, < co. Thus,
n
k\z  p E\2 p
e = =\7 =) =) < Y
tel . a¥ 13 ai| \a;
[ t=pp—1+1. [:A4 i=pp_y+1
and so
co""k
Hle" [l < t—n < MPle"ly *ymel.
k
Eﬂ«

This proves the second statement. -
For the first statement we let ¢ = {w = Y&z, e B: for all nelN
Py K X
2 &t = 0}. Clearly, G is a closed subspace of F so we have a quotient
i=pp_1+1 '

map =: B—+F|F. Let y, = n(m) Then, ;%) = lym=(®;) for n e N,

(0}
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Py <i<p,. It is easy to construet a sequence in (E/G)’ biorthogonal
to (y,). Thus, the second statement is satisfied with T, e, replaced with
T, Yy, 50 we are finished.

2. Quotients of (s) with a basis. We begin by applying the method
of Theorem 1.3 to the construetion of quotient spaces of (s).

2.1. TEEOREM. Let K = K (¢) be o nuclear Kithe space determined
by o matriz ¢ = (cF) which satisfies the following condition: There is a se-
quence (k;) of integers such that imk; = oo and such thai

7 .

. (}k.+2 1 G’-H'l .
(4) <<y g k<lje¥.

¢

Then there is a quotient map T': (s)—~XK of the form (3).

Proof. First we note that the basis (e,) for (s) can be arranged into
an infinite matrix which we may denote (€;,m). Then, as was pointed
out in [5], a “matrix” for (s) is given by (jm)". ]

We will select & set oj> gf>...> o> 0 of integers for each
j satisfying ‘

f+1

() Joit < =5 <jefs
£

E=1,..,k.
To do this, we first choose g} to be the smallest integer such that

<joj.

Sl

Assume that of has been chosen so that the right-hand inequality in
(5) holds. We then choose g™ to be the largest integer such that the left-
hand inequality in (3) holds. In view of (4) it follows that > 1 and
also, . -

| gt 147 1 .
‘vg—c;q < E‘G‘j;r< EJ(Q;GH‘H) < jgft

8o that the right-hand inequality of (5) holds for k-+1. By induction we
may complete the construction of Qfs +e ey gfi .

Our next step it to apply Lemma 1.2 with fixed j. The parameters
{a%), m, &, ¢* of that lemma are taken respectively to be (GmY*, &y, &, of.
Inequality (2) becomes

k& [2 el E R+
(—f—’g) <- (i) , k=1,..

—_— M o I —1;
o o ot T
E]
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or
G 1t el

P J 2k
1oy < T < jéb E=1,...,k_,.
' (]@;)k/ItQIjJ 7185y » By

Comparing this relation with (5) we see that we may choose

(Ge5)*
(6) It =T k=18,
and it then follows from Lemma 1.1 that
(1) Pl -onty) =f  for E=1,..,%,.

Finally, to apply Lemma 1.2 we consider the quotient space B of
(s) generated by the basis elements (e,m)y m = o4, ..., o, ieN and
order them lexicographically as follows,

é

ey € e srey @ € % .
? 1 oky—D 16, 1y €, 417
J,ajj :/,ej j+1,gj+1

i~Le "i,gj’fj’
The indices (p,) become (j, o}) and the sequence (t;) becomes (tz). By
Lemma 1.2 and (7) we have a quotient map of the form (3)of B ox{to the
Kothe space K (b) where b = (bf) is the matrix given by

b= e

T

, k,jeN.

By (8) and the fact that lim k; = oo it follows that K (b) = K. Thus,

we have a quotient map ofj the form (3) of B onto K. Composing this
with the obvious quotient map of (s) onto B gives the desired result.
In the next theorem, we obtain a necessary condition for a Kéthe
space to be a quotient space of (s).
2.2. TurorEM. If K is o Kithe space which is a quotient space of
(s), then there is a matriz (ab) for K such that

a75+2 a’k—!-l
(dy) = for all n,keN.
“:—,-1 = a/”]: f 3

Proof. We have a guotient map J: (s)—XK, so the transpoge J':
K’~>(s)’ has the property that B = K’ is bounded if and only if J'(B)
is bounded in (s)'. Thus, for any fundamental system of closed, absolutely
convex bounded setis (4)in (s)', and By, = (J')"(4,), (B,) is a fundamental
System of bounded sets in K, and (BY) is a fundamental system of 0-neigh-
borhoods in K.
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Let (y;) be the basis for K with associated functionals (g;). Because
of the continuous norms on K we may assume that (g;) is bounded in K'.
For any set 8, we will use g5 to denote the gauge of S. Let 4, be any
fundamental system of closed, absolutely convexsetyin (s)’ with 4, < 4,,,,
By, = (J')7 (4y).

Let &, be such that g; e B, for all j. For k> ky, y € K, define

¥ =lon @)™ Wl = sup Ig; () B

Then 3f > 0, and we will show that (| l)xms, i5 & fundamental system
of norms for K.

Clearly if ge K’ and t>0,getB, if and only if J'(g9)etd, so
04,7"(9) = ep,(9)- Thus, for g e K', k> ko and y ¢ K we have

e GO
Il = sup ==~ 25, (07 %;g(y)'

e iy
A%

On the other hand, since (y;) is a basis and Kis nuclear, then for & > %,
we can find indices 4,1 and M, N > 0 such that

;jig,<y)leBlg<yj) <M s igy ()l gl < Ve (y)-
Hence,
e o(y) < Msuplg;(y)le o(y) = Msup 50! oz,(95)e_o(¥;)
B i Bi eplgy) VT E Y

<M s1jlp o5, (950 o (¥) 19l -
But for each j and y e K,

N
9; (¥)] QBg(yj) < —EQB,'] (),

N
9 ﬂ(yj)gj B‘lw = '_Bl

Henee 08,(9:) 0,0 () < N|M, and e o)< Nlylh, so the systems of
it ]
norms are equivalent.
Finally, we choose 4, = {ae(s):

. la,| < ¥ n e N}. Observe that
if a is absorbed by A, then

< ¥ ,neN} = l l

Let ¢* be the index at which this sup occurs; i.e.,.

0y (@) =mf{l > 0 ]a;,]

|
@“{f«
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Then
QAk+1(a) 1@t ]/(qk+1)k+i < @ gral [(g* 1Y _gn
QA,H_z(“) e k+z]/( Ryt Ia’gk+1]/(qk+l)k+2 ’
and
0 (@ lagllg e gl .
Capr (@ Tageral KTV~ [l (T

Applying this inequality with @ = J'(g%) for all §j and & >
bl

ko we see that
b}""l

'Ej,;_ﬁ < —bj,ry

which is just (d,) condition.

The final result before our main theorem is a reconciliation of the
apparent differences between condition (d,) and condition (4) of
Theorem 2.1. i i

2.3. TuroREM. Let E be a nuclear Fréchet space with a basis (z,) and
a continuous morm. If (m,) has a matriz representation satisfying condition

(4) of Theorem 2.1, then (, ) has a (4,) matric representation.

Conversely if (w,) has a (d,) matric representation, then there is a basis
(¥,) for B which is quasiequivalent to (x,) and which has o representation
satisfying condition (4).

Proof. Suppose (z,
(4). Then B is a quotient space of (s), so by Theorem 2.2, (v,
representation.

Suppose (| |;) is a fundamental system of norms on F such that

) is & basis for B with a representation satistying
) has a (d,)

Iwnlk+1
’
Imn|k+1 [mnlk

Using a result of Bessaga and Pelezynfiski ([2]), we can find a permutation
(#,) of (1,) such that for all % there exists j > & such that

,
s for all %, n.

Loy = n?
] ]lc

Next, we define a decomposition of N into disjoint sets N, by

for » sufficiently large (depending on k).

Ny = {n eN: : “}2 <n%}
Znl1
]zn1v+2 2 iznlv—i—l}’ 1<y< oo,

N, = {n eN:
2]y

izn|v+l

|znilc+1

N, {n eN: 2 , for all keN}.

Znlk
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Note that each N, may be infinite, finite, or empty. Moreover, none of
the relations in the definition of the N, or on the inequality specifying
||, are changed if #, is replaced by a non-zero scalar multiple, ¥,,. Choose
y, 80 that if n e N,,v<< + 0, |Yplor; = 1, and g, =2, if n e N,. Clearly,
(y,) is & Dbasis for E quasiequivalent to (z,).

We define (|| [) by
w0y < o0, neN,, k>v+1,

Wl =
f nlk

v<< oo, # €N, and k> v+1, then

otherwise.
Observe that if 0 <

[Ynlsse
‘yn]v}l

k’/nlk

... p2l—r=1)
Iyn\k—l

]:’/n[k = ']:’/n|u+1 < = ||?ln“1c7
50 that [y,l; < [yl for all n, k.
On the other hand, for each & there exists I and M > 0 such that

w* < My, /1y, le- Thus, if v+1< % and n € N,, then

Jl[ yﬂ!l = ‘Mlyﬂ.ll

Walle = 7%= <
I n[k

Hence (||-{l;) is an equivalent system of norms. Now we want to check
that '

< Bl _ Bl
uynuw T Wl

This is obvious if # e N, and k+1 <y << oo. If k> v-+1, both ratios are
equal to n2 If k =5, we have, for n e N,,

for all n, k.

ﬂ‘?/n”v-{—z 2' nE - “/nlv-}-l —_ ”yn“u-(-l
”y'nuv-(—l kynlﬂ-l ['yulv H%;Hv )
Ifk =941 and % e N,, we have
Walbss _ 0 _ 7 Walbso
Wl s2 Wadotr  Walbgs ©
Finally we let ¢f —.1/2"‘ ;- For all %, §
A )
g 9w’ iy,
L Willega
T2l
0k+1 1 Gj+1

S L.
40" 2
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Now choose k; to be the largest integer less than or equal to l( ~3 +log,( j)),
hm Iy = oo, and if k< %k
To4-2

171l -2 _ G

2k+3 I N
2 I/51lrc 41 6; +

j* < 1
i< R ts

Hence (¢f) is the desired matrix representation,
We are now ready to prove the main theorem.

2.4. THROREM. Let B be a nuclear Fréchet space with a basis. Then
E is a quotient space of (8) if and only if E is isomorphio to one of the following:
(a) A Kothe space satisfying (d,).
(b) w.
(¢) ox K, where K is a Kdithe space satisfying (d,).
(d) J] E™, where each E™ is a Kothe space satisfying (d,).
n

Proof. Sufficiency: (a) follows from Theorems 2.1 and 2.3. The
fact that o is a quotient of (s) follows from the closed graph theorem
and the theorem of Borel which asserts that for any sequence £ cw g
e0P(0,1)2 ¢(0) = &. Tt is well known that (s) = 0P(0,1) ([10]).
(¢) follows since (s) = (8) X (s). Next we observe that it is shown by
Grothendieck ([7]) that the tensor product of quotient maps of Fréchet
spaces is a quotient map. Thus, we have a quotient map (s) o2z s @s—

o«
»o®s8 = [](s) = (5)¥. But each K™ is a quotient of () so [] K™ is

n=1
a quotient of (s)¥, hence of (s).
Necessity: Liet B be a nuclear Fréchet space with a basis which is
a quotient space of (s). By a theorem of ([3]) ¥ is isomorphic to one of
the following: a Xothe space, w, w X K, where K is-a Kothe space, or
a countable product of Kothe spaces. The result then follows from

‘Theorem 2.2.

3. Applications and examples. We begin by noting that condition (d,)
is dependent upon the choice of the system of norms. However, it is
possible to give an equivalent condition which is independent of the
matrix representation.

3.1. THEOREM. Let (x;) be o basis for a nuclear Fréchet space B which
has a continuous norm. Then (x;) has a (d) matriz representation if and

only if for ome (equivalently for amy) matriz representation (af) of w; there

ewist strictly increasing sequences (k) and (r,,) of positive integers such that

for all m there exists j(m) with
I, 1z, X, 1t e
aym+1 m arm m .

®) ( L ) <( - ) , iz jm).
a,jm a,jm—l

§ — Studia Mathematica LXIIL3
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Proof. Let (cf) satisty (d,) and let (af) be 'any equivalent matrix.
There exist p,, %, such that

a} . eP1tl )
<1 and ——<1 for largej.
eP1 a,;‘l

7

By induction we find by = 1<k <<... and 1<<p;<pp<<... such that
for each m’ :

x, D t1
a;m—1 C:m R
é@m <1 and ;,km <1 for large j.
j ¢

Thaus, for each m and sufficiently large j we have
Gf’m-l-z gferz O;Jm"*'l
am = gn T T gmeTt T

0}7""+1 Dyyt-9—Pop a,;cm P9~ Pm
< om < T 1 .
¢

a,;‘m-E-l

= ——l
am—

mn
I we set 7, = [](Pj.5—D;), the result follows.
i=1
Conversely suppose we have a matrix representation (a,}‘) with (%,)
and (r,,) as specified. We construet a (d,) matrix by interpolating between
the a*n'g. R
For each m and 0< o< 7y, lotb
' ) /1
e — a’.‘m—l( a]’.“m )Q Tm ,1.
¢] ¢} akr—1
1

Then for all m and 0 < o< 7y,

7, 0+1
0"

a,;‘m )1/ Tm—1

- (s

and this decreases as m increases. Observe that since ¢ = afm-1, (¢™°),, ,
is equivalent to (af).

3.2. CoROLLARY. Hvery Kothe space which is both (&;) and (d,) is
isomorphic to an infinite type P.s.8.

Proof. Without loss of generality we choose a matrix (a}‘) for the
Kothe space K such that af = 1 and, for each &, j, (af)® < af*'. I there
is an equivalent (d,) matrix, then we may apply Theorem 3.1 and obtain
%, and for each % and r such that for j sufficiently large

a}c+1

af
To do this, let (k,), (*»n) be as in Theorem 3.1.

< (afry.
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It by <5< B+1 < Fopyy, then

o llrm< ajr llrm< | for large 7.
aF =1 afm SUa) 86 J.

Hence, for each % dr and M, > 0 such that

k+1
] aj kyr ,
a5 < oF < M (ay) for all j.

J
By induction we prove that for all g, (4%1)% < af1te. For o =1, this
is just the statement (af1)® < af1*!.

If (af)™ < afrte, then

(@@ < (af1te) (af1)? < (aftto) < afttod,  jeN.
Hence (af) is equivalent to ((af1)?)e2,. Thus, up to & permutation and
a diagonal transformation, K is an infinite type p.s.s.

In the other direction it is easy to check that every infinite type
p.s.8. is both (dg) and (d,).

In [11], Mitiagin and Henkin prove the following theorem: If an
(8)-nudlear space B is isomorphic to a closed subspace of a finite center of
a Hilbert scale F and is a quotient space of a finite center of a Hilbert soale
@G, then B is a finite center of a Hilbert scale. If we assume that the finite
centers ¥ and G are nuclear, then they are finite type p.s.s. and are
(s)-nuclear (for instance, see [13]). Hence, a space & which is a subspace
of one finite type p.s.s. and a quotient space of another must be a finite
type p.s.s. We give a similar result for infinite type p.s.s.

3.3. THEOREM. If A (o) and A, (B) are imfinile type p.5.8's and if
the Kithe space K is a subspace of A (o) and o quotient space of A(B),
then K is isomorphic to an infinite type p.s.s.

In particular, if B is a subspace of (8) with a basis which is also a quo-
tient space of (s), then E is isomorphic to a complemented subspace of (s).

Proof. Let B be isomorphiec to a subspace of A, () and to a quotient
space of A,(B). Using the main theorem of [5] we conclude that B is
(ds), while from Theorem 2.2 % is (d,). Hence, from Corollary 3.2 F is
isomorphic to an infinite type p.s.s.

Martinean ([9]) asked whether every nuclear Fréchet space is a quo-
tient of (s) and Pelezynski ([12]) asked whether every nuclear Fréchet
space is a quotient of (s). Using a result of Zahariuta ([15], Theorem
3) it is easy to construct a negative answer to Martineau’s quesbion.gUsing
this or the above result along with the following which appears in [9]
we can also answer the other question in the negative.

3.4, THEOREM. (s) and (s)" have the same quotient spaces. Hence there
ewist nuclear Kithe spaces which are not quotient spaces of (s)¥.
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Proof. Clearly, (s) is & quotient of (s)¥ and, as we observed in the
proof of Theorem 2.4, ()Y is & quotient of (s). It is well known that there
exist Kothe spaces which are (d,;} but are not isomorphic to an infinite
type p.5.5. ([5]). Any such space is not a quotient space of (s), by Theorem
3.3, hence not a quotient space of (s)™. For instance, the space X (af)
with af = ¢ is not a quotient space of (s).

It should be noted that Vogt ([14]) has recently shown that every
nuclear Fréchet space is a quotient space of some subspace of (s). He
also has announced a solution to the problem of Martineau.

3.5. TaEOREM. Every (dy) space is a (dj) space.

Proof. Without loss of generality we may assume that the matrix

representing our (d,) space is (a}"), where for all j,

; % a;aj*?
hkm af =1, . and for all %, ]1jm (@ = 0.

Hence, for each %, and j sufficiently large,
afaf*? < (af T2

3.6. BXAMPLE. 4, is both a subspace of () and a quotient space
of (s)¥ but A, is not isomorphic to a complemented subspace of (8)¥.

, '.Piroof. Since 41 is (ds), 4, is & quotient space of (s)¥. By a result

of Komura and Komura ([8]), 4, is isomorphic to a subspace of (s)V.
However, ﬁom the Dragilev theory ([1]) A, cannot be isomorphic to
any eomplemented subspace of (s)V.

This lagt result shows that (s)Y fails to have the property of (s) which
is mentioned in the statement of Theorem 3.3. From the result of Mitiagin
and Henkin cited above it follows that any stable finite type p.s.s. has
this same property. Moreover, this property is shared by any infinite
type p.5.s. Ay (e) where

supfﬂ-< +oo  or ]im—a;'ﬂ. = o ([4])
5 n A,

This suggests the following

PrOBLEM. Which nuclear Fréchet spaces E have the property that
any space isomorphic to a subspace of F and a quotient space of B is
isomorphic to a eomplemented subspace of E?

. Added 'in proof: Simjlar results, in some cases more general, have been obtained
independently by D. Vogt and D. Wagner.
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