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Some characterizations of the n-dimensional Peano derivative
by
ISRAEL BERNARD ZIBMAN (Princeton, N.J.)

Abstract. A measurable function f is said to have a Peano derivative of order
% at a point x if there is a polynomial P of degree at most & with the property that
flz+t) =P@E)+ o (|¢1)*. This work gives a characterization of the Peano derivative
for functions of several variables in terms of the behaviour of the expression

N N
3 Aif (ot oo ) — ( 3 4i) F()-
3 =1

i=1

The A; are real numbers and the v; are points on the unit sphere, ¢ > 0 and o e SO0(n).
Almost everywhere results similar to those of Denjoy—Rademacher—Stepanov, Khin-
tehine, and Stein—Zygmund are obtained in this non-linear setting.

The techniques involve boundary behavior of harmonic functions and analysis
on SO(n). When n is greater than 2 the non-commutativity of SO (n) requires gpecial
treatment. A technique, introduced by Stein and Zygmund, is developed which allows
one to substitute a certain convolution with a central function for a eonvolution with
a zonal funetion.

Introduction. The purpose of this paper is to present an extension
and a unification of several of the characterizations of the n-dimensional
Peano derivative. Our characterizations will be stated as a description
of the behavior of functions restricted to spheres centered at points of
possible differentiability. The action of the rotation group on the sphere
will play a significant role.

We say that a function f, defined on 2 neighborhood of a point  in
R", hag a kth Peano derivative at © if there is & polynomial P of degree at
most k such that f(z-+1) = P(#)-+o([tf). When k = 1, this is the ordinary
derivative. When & is greater than 1, f need not be k—1 differentiable
near » to have a kth Peano derivative at 2.

We consider in this paper configurations consisting of a finite number
of points on the unit sphere in R", vy, ..., Vy- ‘We assign each point &

N
non-zero weight A;. The origin is given the weight B = — ) A;. To each
i=1

_configuration we associate an integer type . The integer m is defined as

N
the infimum of the :degrees of all polynomials for ‘which _ZAiP(WiH—

=1
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+BP(0) # 0. Since XN is finite, m is also finite and non-zero. The type
is a measure of the symmetry —all moments of order less than m vanish.
‘We shall consider the question of when the condition

N
D Af(w+oo(v)+Bf (@) = 0(¢")  (¢>0, 5 eS0(n))
=1 . .

for # in a measurable set E implies that f has a kth Peano derivative almost
everywhere in E. We prove that this is true when % equals m. When
% is less than s, an integral similar to an integral of Marcinkiewicz must
be finite. We recall the following classical theorems to illustrate the situ-
htion. In each case, f is & measurable function defined on & neighbbrhood
of a measurable subset B of R™. In the literature, the theorems of Khin-
tchine and Marcinkiewicz—Zygmund are stated for functions of one variable.

The extension to » variables is an easy application of the methods of

Stein and Zygmund ([10], Chapter VIII). The theorems below are also
contained in the present paper.
Denjoy—Rademacher—Stepanov [7]: f has an ordinary first derivative

almost everywhere in E if and only if f(w-+1)—Ff(x) = O(|t]) for almost
every « € E.

Xhintchine [3]: f has an ordinary first derivative almost everywhere
in B if and only if flw+1)—flw—1) = O(|i]) for almost every = e E.

Stein—Zygmund [13]: f has an ordinary first derivative almost every-
where in E if and only if the following two conditions are satisfied for a.e. z € H.

(1) fle+8)+fle—1)—2f(@) = O(#);

(2) There ewists 8, > 0 such that

|f(@+1)+f(@—1) —2f(2)" P
1tin+2 :

< o
i<y
Marecinkiewicz-Zygmund [6]: f has a second Peano derivative almost
everywhere in E if amd only if f( +1) + f(2—1) — 2f (%) = O (|t[*) for a.e.2 € B.
Stein-Zygmund [8]: Let v; = (0,0,...,1,0,...,0), 4§ =1,...,n, be
the stamdard basis for R". f has a second Peano derivative almost everywhere
in B if and only if 42(]”(@—{—90(171»)) +f(z— Qo‘(’vi)))—an(w) = 0(g?) for
i=1

a.e. © € B. The estimate may depend on x € E but not on o € SO(n).

Observe in the above theorem that if f is twice differentiable at

, then g‘.z( _i’ ( fl+ oo(v))+f (w—gc(rvi)))—%f(w)) converges to the Lap-

=1
lacian of f at . The above theorem may be viewed as a local analog of
the following theorem. ‘
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TaEOREM ([10], p. 77). Let (0 /02)* be & differential monomial of degree
2. If f is continuously twice differentiable and has compact suppori, then

(@],

P

<A, 4fl, for 1<p< oo

The last theorem has been generalized and extended to other elliptic
systems [1]. The following version is very closely related to the results
in this paper. : )

TaEOREM. Let P,(z),...,Py(x) and P(x) be homogeneous polynomials
of degres m. Suppose the only common complex zeroes () of Py, ..., Py all lie
on the variety o+ ... +#5 = 0. For 1< p < oo, there is & constant A,
such that for all f € C"(R™) with compact support,

]
IP(8/0)flz, < 4, ) 1P:(8]02)f Iz, -
=1

The proof of this theorem is based on an easy application of the
Hilbert Nullstellensatz and the boundedness of the higher Riesz transforms -
for 1 <p < o0

The proof of the theorems in this paper will use the local analog of
the Riesz transform theory —the theory of nontangential limits for
conjugate systems of harmonic functions. The Py, ..., P; will be homo-
geneous harmonic polynomials. These polynomials transform suifably
under the action of the rotation group. We let u(z, y) be the Poisson inte-
gral of our function f. We shall gain control of P;(d [ox)u(x, y),i =1, ..., d.
The method of harmonic derivatives of Stein [10], [11] will be used to
complete the proof.

The early theorems about differentiability were concerned with
essentially  linear configurations. In the theorems of Khintchine and
Marcinkiewicz-Zygmund and the earlier theorem of Stein-Zygmund, the
second point, —1, is in the opposite direction of the first point. When other
directions are introduced, as in the second theorem of Stein—Zygmund,
we. are led in the proof to consider expressions of the following type.

N o
-P(f‘/y [FR) 5("’1)""i)Aif(m+ QU(”i))df’anldQ-
=1 0 0eS0(n)

The funetion Py, ¢, 7, o(v) -p) will be some derivative of the Poisson
kernel expressed in spherieal coordinates. In two dimensions, o(v;)-%;
= o(v)-v; for any unit vectors v;, v; and o € SO(2). We can then move

(1) This theorem is true under the weaker assumption that the only real zero is at
the origin. The corresponding loeal analog is not yet known. (See [9], p. 166.)
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the summation sign inside the integral, past the tunction P(y, ¢, 7, o(v) ).
In higher dimensions this is not possible since SO (n) i8 not commutative.

To overcome this problem we develop a technique introduced by
Stein-Zygmund [8]. They demonstrated the existence of a function
B(y, o, r, o) which is a central function of o € SO(n) and satisfies

ff’(y: 0,7, 0)f(o(v))do = f

SO(n) 80(n)

0 CnY
Byr (™72~ 20ra (v) -v-ty2HnD ) flo(v))do

for any v on the unit sphere. It is also shown that P is comparable in size
to the indicated second derivative of the Poisson kernel. The proof uses
the theory of semigroups and Sechauder type estimates. The proof in this
baper is more direct and extends to other derivatives of the Poisson
kernel. This will be carried out in Section IL

I would like to express my appreciation to my adviser, E. M. Stein
who suggested the problem and who provided much advice and ‘encourage-
ment during the course of this work.

I. The charaeterizations. Let vy, ..., ¥y be a finite collection of points
on the unit sphere in R”. Let A, ..., 4, be non-zero real numbers. Set

N
B = — Y A,;. Let m be the infimum of the degrees of all polynomials for

i=1

N
which 3'4,Q(v;)+BQ(0) 0. We note that m is greater than zero. Let
ge=1

f be & measurable function defined on a neighborhood of a measurable
subset B of R". We obtain the following theorems.

TaeorEM 1. The function f has an m-th Peano derivative af almost
every » € B if and only if for ¢ >0, ¢ eSO (n),

N
2 Ad(@teo®)+Bf(0) = 0™ a5 o0 for ne. v e,

The estimate may depend on z but is uniform in o Sor fized ».

TeBoREM 2. If k< m, then f has & k-th Peano derivative af almost
every w € B if and only if for a.e. x c B the Jollowing two conditions are

satisfied.
N
(a) g;iff (2400 (v)) +Bf(a) = 0(".
(b) There is & 8, > 0 such that
v
| 2 Adlo+ eoto)) + Bf(o)f

12k

dodp < oco.
¢ 80n) e

The estimate in (a) is wniform in o for fived z.

©
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Observe that the conditions for differentiability in Theorem 2 are
independent of the type of the configuration as long as & is less than m.
This might seem surprising, since, when m is very large, the cancellations

N .
would cause 3 A,f(x-¢0(v;))+Bf(s) to be small for any reasonable
4=1

function f. The method of Marcinkiewicz [5] shows that for any configur-
ation and >0, one can find a function possessing an ordinary first
derivative almost everywhere, yet

N -
, e | Aot eo(w) + B ()]

dodp

3—s

i som) e

is infinite almost everywhere for any §, > 0.

The proof of Theorems 1 and 2 will be based on the idea of “splitting
of funetions’ developed by Marcinkiewiez [4] and Calderén and Zygmund
[1]. It will use the method of harmonic derivatives due to Stein and Zyg-
mund [10], [13].- This method is described by the following definitions
and theorem from Stein [10], Chapter VIII. In Stein’s book the statements
are for first derivatives, but the extension to higher derivatives is
immediate.

DerinrTION. Let f be a locally integrable function defined in an open
set Q. For a fixed », € Q we modify f by setting it to zero outside a bounded
neighborhood of x;. The function f is now in L, (R") and we may take
its Poisson integral

w(e,y) = Pyfl@) = [ W—T%Tﬂ Fit)a.
r"

‘We shall say that f has a k-th harmonic derivative at x, if for all non-
n

negative s-tuples a = (ay,...,q,) with Ya; <k (9/02)*u(z,y) has a
i=1

non-tangential limit at ,. This means that there is a §> 0 such that

lim (—a—) u(w, y) exists and is finite.
;Im—yxﬂ’[:ﬁy »

DEFINITION ([1]). A function feL,(R"), L<p < oo, has a k-ih
derivative in the Ly, sense at x, if there is a polynomial @ of degree at most
% with the property that

(e [ if@+n—QWPa)” =o(d") as  o—0.
lEj<e

If f has a kth Peano derivative at 2, or a kth derivative in the L, sense,
then f has a kth harmonic derivative at z,. Also if f and all derivatives
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. of order less than or equal to % exist in the sense of distributions and are
in L, (we write f e LE), then f may be redefined on a set of measure zero
to have a kth Peano derivative almost everywhere.

SPLITTING THEOREM. Suppose that f is a locally integrable function
and that for every z, in @ set B of finite measure f has a k-th harmonic deriv-
ative at x,. Then for every e > 0 we can find a compact set F with m (H—F) < &
and & function g e L% such that b(z) = f(x)— g(») vanishes on F. If, in
addition, f has o k-th derivative in the L, sense at every point of B, then
we may choose F as above with the additional property that

[ 1bm )P

M dy < oo

lyis1
for mye F.

We proceed to prove Theorems 1 and 2.
The necessity of the condition in Theorem 1 is clear. Suppose

m

flo+i) = 2P,~(t)+0(lilm);

3
where P; is homogeneous of degree j. Then

m

N N
D) Aflo+eow)) +Bf(w) = 3o’ D AP;(o(w)) +o0(e™).

i=1 j=1

N
Since the configuration is of type m, X 4,P;(c(v;)) = 0 for j < m. Hence
i=1

N N
D) Aif(o+ eo(0) + Bf(2) = ¢ ) APy (o(m)) +0(¢™) = O(&").

=1

The necessity of condition (a) of Theorem 2 iz proven in the same
fagshion. To show the necessity of condition (b), we first prove the
following proposition.

ProPOSITION. Let {A;,v;,4 =1, ..., N} be a configuration of type m.
Let k< m. If f e LE(R™), then

N
= | Ad (ot 0o (0)) + Bf@)f

12k
80(n) @

(1)

Godod < Olfl ..,
R" O =
Proof. By Plancherel’s theorem and the effect of translations om
the Fourier transform, the left-hand side of (1) is equal fo
oo N o
(2) [ [ e [1fwr| Y Ao 1 B[ dtdedo.
RA i=1

S0(n) 0
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Let

0

N
[ ] 3 amevs s 5] -0

S0(®)0 i=1

I(t) =

. N

For fixed #, Taylor’s theorem shows that > 4,6 ™) LB = 0(g™) as
=1

0—>0 so I(t) is finite. By homogeneity, I(t) = O]t[**. Hence (2) is equal to

o f wPEiforat< ol

Eopny *
n zFmm

If f hag 2 kth Peano derivative on B, then f is locally bounded. We
may restrict B to a compact set and assume that f vanishes outside a
bounded neighborhood of E. Now the existence of a kth Peano derivative
implies that f has a kth derivative in the I, sense on E and the Splitting
theorem may be applied. We can find a set ¥, arbitrarily cloge to B in
measure and functions g e L% (R™) and b(s) = f(»)—g(x). The function
gis in LE(R™) and satisfies condition (b) of the theorem by the proposition.
Since b vanishes on F,

N
j ;1 Ab(2+ go(v;)) + Bb ()

~ dado
o<1 80(n) gt
N
blz+y)P
<f§—;’ ,l} Wdy<oo for wel.
= <1

Hence f = g+b also satisfies condition (b).

The proof of the sufficiency of the conditions is more difficult. We
will first show that it suffices to prove that f has a harmonic derivative
of the appropriate order. The following lemma will be used repeatedly for
the purpose of “desymmetrization®.

DESYMMETRIZATION LeMMA. Let B be a measurable subset of R™ of
Jinite positive measure. yy will denote the characteristic function of H. Set

1

c=3%[ [ o"dodo. If v,,...,vy i5 a finite subset of the unit sphere
0 SO(n) .

in B™ and 0 < & <1, then for almost every z, € B there is a 0z > 0 such

that if |@—my)| < 8, then :

s|:c—-zol

. ‘
m(0— e0(01) [ [ s(o— oo (v,) + eo(v,)) " dedo > o(slo—my|)".
80(n) 0 i=3

This says-that if » is close to #,, there is a point of B even closer
to » with the property that this point, (2 — go’(vl)), is the center of a eonfi-
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guration containing # = (#— go( vl)}—l—ga(ful) in the v, position and such
that the points (—po(v,)+ oo (v;), ¢ = , N, in the »; position all
belong to E. In fact, there are many such pa.lrs (g, o) with this property.
In particular, there is some r < elw—a,| for which there are many o.
We have the following corollary.

COROLLARY. There is an r < & | — x| with the property that

f 2zlw—ro(v)) ” gm(@—r0(v,)+ro(;) do > ne.
80(n} =2
Proof of the corollary. If the integral was smaller than ne for
all 0 <7< &ls— |, then the integral of the lemma would be dominated by
elz—p|
ne "t do = o(e|m—m,))".
[}

Proof of the lemma. Let ¥ = 1—yg.

zlz—2xg
f f xE(w 00 () H%E »— 00 () + 00 (v;)) 0" *dodo

S0(n) 0 i=2

. - -
= f f " tdodo— f f 7(4;—@0’('01)) " Tdodo—
SO(m) © 50(m) b
N ) slz—zpl

=2 | [ #@—eo(e)+eo(v))e" dgdo+
i=2 SOm) 0
N x|
+ [ [ zle—eoo)z(r—eo(w) +eo(w)) f“‘ldeda+..- -
i=2 80(m) 0
The first integral after the equal sign is just 2¢(e |z —x,|)". The re-
maining sum of integrals is dominated by

2N +1

(@ +1) .

Jtl<3fz—ag]

‘When do is a point of density of H, this integral is o(jz —m,|"). We choose

85, such that for |w—a| < 4, , this integral is less than o(s v —m))".

Remarks. 1. The function m, () = m{x ¢ B, l#—a,| < 37} is con-
tinuous. If we fix ¢ > 0 and § > 0, we see from the proof that the subset
of E for which the result of the lemma holds for 6, = § is measurable.
It is simply the set of z, € B for which 2¥+im, o () < c{er)” for r< 6

2. If F iz not necessarily meagurable it is stﬂl true that, except for
a subset of Lebesgue measure zero, the points of E are points of exterior

densgity of H. (See [10], p. 251.) The results of the lemma hold at these
doints.
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Now suppose that f has a kth harmonic derivative at every =, € E.
We choose F' < F and write f = g b according to the splitiing lemma.
The function ¢ is in L% and has a kth Peano derivative a.e. The function
b vanishes on F. To show that b has a kth Peano derivative on F, it will
ertamlv suffice to show that b(mo-{-t) = o(Jt|F) for a.e. e F.

y-A b "l"o+ oo(v, z))'T'Bb (%)

1-1

¥
2 i f(@o+ 00 (2) — g (@o+ 00 (0:))) + B(f(20) — g (@) = O(c").

~
Consider the subset F; = {z, e F: | 3 A,b(zo+ 00 (v;)) + Bb(%)] < jo*
i=1

for o < 1/j}. F; is given by a continuum of condifions and may not be
meagurable if f is not continuous. Nevertheless, we may still apply the
desymmetrization lemma to F; for any & 0<e<1. For a.e. x,eF;,
thereis a d, > 0 with the property that for any » with |# — 2| < min(d,,, 1/j)
there is an 7, 0 <7 < &|w —,|, and o € 3O(n) such that z—ro(v,) € F;
and @—ro(v,)+ro(v;) eFy, ¢ =2,..., N. The function b vanishes at
these points. Hence

|4,b(2)] = [2 A;b(w—70 (v,) + 70 (0,)) -+ Bb (& — 70 (0,)

<) ( | — o) = o (|5 —m,[*)-

Recall that 4, is not zero. Since F is equal t0 a countable uwnion of
the F;, b has a kth Peano derivatjve almost everywhere in F' and hence
in B. f = ¢g+b, likewise, has a kth Peano derivative in E.

The remainder of the paper will be devoted to showing that f has
a kth harmonic derivative almost everywhere in E.

Levmva. Under the condition of Theorem 1 or condition (a) of Theorem
2 f is locally bounded near a.e. x, € H.
~

Proof. Let F; = |z cB: |f(o)| <jand 1 S’A.;f {0+ oo () +Bf ()] < jie*

for 0 < p<1/j}. Apply the desymmetmza.tlon lemma to F;. For a.e.

s [ —%| < 6z < 1[j, there is ar 0<r<|o—), a,nd o e80(n)
With the property that @—ro(v,) € F; and s—ro(v)+ro(v;) € Fy,
i=2,...,N.

N
[4,f(=)] < ZAJ ~70l 7)1)—]—7‘0 )+Bf(w—m(vl))l +
+‘z Asf(m—70(v))+7r0(0)) -+ Bf (e —r0 "h))i

N

<]7”k-f-9(2 4] +1Bl).

i=9
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We may restrict f and F and assurme that f is bounded and has com-
pact support. '

We seb u(w,y) = P,*f(x)—the Poisson integral of f.

‘We will use the following theorems about harmonic functions «(z, y)
defined in the upper half space R [9]. We fix a > 0 and & > 0. I'(z,)
will denote the truncated cone, {(z,y): |lz—a,| < ay, 0 <y < h}.

THEOREM. If 4 is non-tangentially bounded in E, then u has a non-

tangential limit almost everywhere in E.
‘ i

a .
THEOREM. Ifa—y%‘ has non-tangential limits in E, then the same is

true almost everywhere in E for P(0[0x)u when P(x) is & homogeneous
polynomial in y, %y, ..., %, of degree k.

THEOREM. For any integral & > 0, in order that u have non-tangential
limits almost everywhere in B, it is necessary and sufficient that a generalized
area integral '

Ay (@) = f f dwdy

L)

2k~n—1
Y

" u
—@;7 (@, )

be finite for a.e. m, e B.

THEOREM. If Q,(),..., Qz(®) are homogeneous polynomials of degree
r amd, the common complex zeroes satisfy o+ ... +af = 0, then

(a) The non-tangential boundedness of Q;(0/0x)u, ¢ =1,...,d, in a
set B imply the ewistence of non-tangential limits a.e. of P (0 /6m)u whemP s
any homogeneous polynomial of degree r in ¥y, %y, ..., %,.

(b) The finiteness of [[ 4™ " 11Q.(0[0m)u(z, y) dedy, i =1,..., d,

T(ag)
in a set B imply the f/mzt(mess a.e, of f f y*"11P(d /ﬁm)ulzdwd/y when
P is any homogeneous polynomial in ¥, wl, @y, of degree r. In particular,
n

if a ={(ay,-...,q,) 18 any non-negative n-tuple with |a]
the finiteness of

[ [y 1011940 0wy u (@, y)Pdwdy, i =1,...,d,
Iz}
implies the finiteness of
o ¥
glr=la-n-1 .WT u(w,y)| dody

T(zg)

for almost every @, € E. This in urn implies the ewistence a.e. of non-tangen-
laf

0 )
tial limits. of W%(m , Y) by the preceding thoorem‘ﬂ ~

= Ya;<r, then
=
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~ Let @ be a homogineous polynomial of smallest degree for which
Z’A-Q (%) # 0. @ may be written @(x) = w)—l—]w]:R(w) where, P is

hmmomc and R is of degl-ee m—2 (see [2]) If ZAiP ) # 0, we take
P as our . Otherwise, S‘A ;PR (w; ZA R .,) # 0. By our defini-
tion of m, B must be a constant ﬁmetlon and ZA # 0.

=1

In this latter case we shall prove Theorem 1 by showing that O*ujoy?
is non-tangentially bounded a.e. in E. Theorem 2 shall be proved by

showing that
*u
[[v |57
) ¥

»Y) rdmdy

is finite almost everywhere in B. The preceding theorems may be applied
to show that % has a second or first harmonic derivative respectively when
these quantities are finite. The estimates on 9%u/dy* used in obtaining
these results are identical to those shown below in the case of Q (x) & harmo-
nic polynomial. The algebra is considerably easier and will not be shown.

Let Y,(#),...,¥z(x) be an orthonormal basis for the homogeneous
harmonic polynomials of degree m. To prove Theorem 1 we shall show
that ¥,(0/0z)u(x, y) is n.t. bounded a.e. in E. To prove Theorem 2 we
shall show that

[ [ B Y0 oy ue, y) Fdedy
T(zy)

is finite a.e. in . The following lemma shows that the ¥, satisfy the
conditions for the Q; of the preceding theorem. .

LEMMA. The only common zero of Y., ..., ¥ is @ = 0.

Proof. For 1 <j, k<<n, j # k, (x;-+ix,)" and (x; —iz)™ are homo-
geneous harmonic polynomials of degree . They are simultaneously
zero only when @; = @, = 0.

nY

W js the Poisson

In the following lemma P, () =
kernel.

LeMmA. Let Q be o homogencous harmonic polynomial of degree m.
Then .

Q( 5/%)1’ (@) = CryQ (@) (| +y7)Hotmin,
Cy =¢, and C,, = ——(n+2m~1)0

Proof. When m is zero the lemma is obvious. Consider now @ of the
form Q(z) = (@, -+iz,)™. Assume that the lemma holds for polynomials
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of degree m—1. We write [z = (2, + i) (¥, — i) +25 + ... ;. Since

(i +i—6——)(ml+im2) =0 and (
0z, 0%,

we have

(o 6] Pt = 5 i)
0z, T ﬁwg) v Gy 0,
X [Om—ﬁ’/ (2 + dmg)™ ((“"1 i) (0, —2,) + 2% +

- (@%@—_{) Oy (@ F i) (Jaf? 4 y2) 0240

Hence, the lemma holds for @ of the form Q(z) = (x4 im,)". We
may change coordinates by replacing z by o '(w) f01 any o €80(n).
The lemma thus holds for a polynomial P(2) = @ (o-‘»‘(m)). Since the space
of homogeneous harmonic polynomials of degree m with real coefficients
is an irredugible representation space for SO (n) under the action (R,P)(x)
= P(a‘1 (#)), the image of B, (the real part of @) under SO(n) spans this
space 0 the lemma holds for all homogeneous harmonic polynomials.
- Weregard the vector space over R spanned by Y,, ..., ¥ as a represen-
tation space for an irreducible unitary representation of SO(n) (see
[2]). We denote by Z°(z) the zonal harmonic of degree m with respect
to the direction v. Then Z°(o(x)) = Z*(z) whenever ¢(v) = v. We choose
Y, (x) = Z" (@) where N is the wnit vector (L,0,...,0). The entries
Y, (o(N)}, ..., Xg{o(N)) occupy the first -column of the representation
matrix for ¢ with respect to this basis. Hence

ZY(T

0 ]
9, c?m )(wl_%”z) =2,

. _!_mi_l_yz)—}(n—idm—l)]

) X3 {o0(N)) = (Ros By = (Betpd = Xa (v~ 0w (W)

= Z"™ (gz(N)):
We may use the preceding lemma and the fact that

f Q(0/dx)P,(x)dz = @(0) for any polynomial Q

to write v
A, Y;(0/02)u(zoy)

mij(t

- IWW(AMDH mf(%)
R

~ Cye™ Y, (o
f f“‘e;fﬁ);—“—(ri%( o (20 + 0o (v)) —

0 'SO(n)

I

Af (o)) dog" do.

icm
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We let 7; be any rotation for which 7;(N) = v, i =1,...,N.
Y, (0 o) w0, )

d
Crye™ Z Y (v ) X; (o7 I)
( 2+y )i(nvi- 2m--1)

= [ [ LI 4 iy eoton) -

2 2y k(n+2m+1)
P oty (€YY

Ai(f (204007, (N)) _f(f”u)))do'e”"ldg

4;f (@) do g™ de.

We would like to use our control of f by adding up these integrals
for i =1, ..., N. However, when 2> 2, Z%(c(r;)) does not generally
equal Z% (cr (v; ))

Recall from the representation theory that, as a function of o,
flw+ oo(v;)) is a linear combination of the ¥,(z 77 o7 (N)) plus some
function which is orthogonal to the entry functions of this representation.
Algo, the entry functions themselves are pairwise orthogonal. Leb y,(0)
denote the character of the representation. With respect to the basis
d, occupy the first column,

R

tn(0) = 3 By(o) = Z'i(o 2 5(0).

.
I
-

By orthogonality,
[ 2% (0(0)) fla+ eo(w))do = [ sm(0)f(mo+ eo(vi)do
80(n) 30(n)
Now we can add and obtain

N

a
(3) > 4 > Fy(0) (0 /00)ulm, v)

i=1 F=1

]

0 SO(n) =1
If vAlf(«TO"[‘ oo () + Bf( mo ) = 0(¢™), the hypothesis of Theorem

1, then (6) is dominated by Ofy o+y) " 1" 'de which is uniformly

bounded as y tends to zero.
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Now suppose that f satisfies condition (b) of Theorem 2. We have
the estimates :

ygm(gz+y2)—§(n+2m+l)<Ay~n—m and

We set |4,]

|

l ZA.f (o + oo () + B () Ida We obtain

O(n) i=1

4;

'MZ
Ma

-

Y, (0) Y; (0 0w)u(w0, ¥)|

i=

1
-

j
<Ay [14le T de+ Ay [ 140" g
o<y o>y
=Ly +L(y).
By Schwarz’s inequality
Iy < A2yt ( f [42[2 o=+ gnvlde) ( f Q(n+1) ot dg)
ey ey

— Byl—-zm f Mglz @—zde,

ey

[ mrnwpa<n [y [ iapea

0 0 o<y

=B [ 14,0 ( f yay)de = B’ f 14, e dg < co.
0

L)< (A')2y2< f]Aelz g2 gk Qn—ldg)( f o~? Q"—Ide)

e>y e>y

=B f IAEF Q—2m—1d9’
>y

£ 2(m—k)—1 —am— .
J L <[4t 1(”( “9ay)ag

e>0
=B’ f 14 [29“2]‘_1119 < oco.
e>0

Thls gives us radial control of the expression

z, e H.
=1 Jj=

2 A; 2 Y;(v;) X;(0/0x)u(my) for

Observe, in fact, that our estimates hold uniformly in 8O(n) if we replace
the v; by o(v;).

ya(o* ) TN  frygrmme L,

icm
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Recall the homogeneous harmonic polynomial P which had the

property that Z'A P(v;) s 0. P is & linear combination of the ¥;. Hence,

we know that ZA Y;(v;) # 0 for some 3 The representation of SO (n)
N

ZA ¥a(v;)

,ZA Yd( ) Since “the Tepre-

sentation is n'reduclble, the image of ‘bhlS vector under the action of SO (n)
spans R?. Thus, there are real numbers By, 1<k, I < d, and o; with

the property that
a N
2 By 2 A Y (o () = O

i=1 =1

acts on R? by send.mg the mon-zero vector (ZA Y, (v,),
into the vector (ZA Y. (o7 (),

So

d

R
X;,(0/0m)u(ay, y) = ZBM( 3 4, Y T, (0(0)) X, (0 /o) (o, 9) -

1=1 i=1 j=1

Using our estimates for the inner summand, we obtain the result that
Y, (8/02)u(%,, ) is uniformly bounded as y—0 and

[ P T, (0 /0wy u (@, y)Pdy < o for meB
p . ;

under the conditions of Theorems 1 and 2, respectively.

We now proceed to obtain non-tangential control. As before, we
observe that

a
4, Y T;(0) ¥;(000) u(wa+rv;, 9)

J=1

a .
© o Ony 3 T (w() T, fro— eonX) )—slaa)ie—a
= i= A, flo,+ a(; —f(wy))do™do
Df 80(n) (1m0, — om; ()2 2 tam+) (Flao+eoal®)) A
- fo Omy s (rl — o o5 (N) X
= ( P+ o — 2rot; Loty (V) - N+ )}(n+2m+1) )

% Ay (f (@0 + 00 (0))) — (@) dog" ™ de-
As before, if SO (n) were abelian, we could add these expressions for
i=1,..., N. When n > 2 this cannot be done. Set
Cry Y+ (rN — go (X)) '
(P + ¢ —2roo (W) - N +yJirramsh

P(rye;9,0) =
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We seek a function P(r, o, ¥, o) with the property that

[ Blr, 0,0, 0f o+ eors(W)]do = [ P(r, 0,9, 757 0w)f (w0 + 00w W) do.
80(n) 80(n)
That is, P should have the same effect as P as a convolution kernel oper-
ating on functions defined on.the sphere. It is clear that P should be a
central function in o. That is, P(r, ¢, ¥, v~ o7) should equal P(r, o, ¥, o).
P in effect, masks the non-commutativity of SO (n). We should also require
that P satisfy the non-tangential estimate,

1B(r, 0,9, 0)| < Ay(e+y)™" ™  for

Observe that P satisfies such an estimate. When r = 0 we saw that P
could be constructed by replacing a zonal harmonic by a character.
When r 0 the construction of P follows this idea butb requires more
work. We construet P in Section II. Here we assume the existence of P.

(4) ZA Z’y

0

N
=[ [ B, e,9,0( > Aifloe+eo(v)) +Bf(wn)) ¢ dode.

0 SO(m)

r<ay, a>0.

Y, (0 [0z)u (s +1v;, y)

Using the estimate for P and proceeding exactly as in the radial
case, we obtain that if f satisfies the condition of Theorem 1, then (4) is
uniformly bounded for r < ay as y tends to zero. Similarly, under condition

" (b) of Theorem 2,

N d
.o(m,—k) 1]2_“112 Y]

1I>u‘1 i=1 =1

;0102 (10, )| dy < oo

‘We shall show that we have similar control over ¥, (0/0%)u(2,+ v, y
for pj<ay and B =1,...,d.

The vectors (¥ (o(v, ), s Y4(o(v))}) span R? as o runs through
SO (n). We can find 3 K >0 Wlth the property that the measure of the
set of (oy, ..., 05 € SO(n)* with the property

[YI (0'1(771)) ven Yd(al(vl))}
det}. . ............

XY, (o'd ('Dl))

. 1 a
is smaller than (”‘5 f do g ”ldg) = (ne)?.
50(m) .
Let § denote the complement of this set in SO(n).

Suppose that f satisfies the condition of Theorem 1. Let I be the
set of # € B for which |¥;(d/0x)u(2, y)| < M for y > 0 and j=1,...,d

icm
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i a . .
and | 3 A4; 3 ¥;{o(v;)) ¥,;(00w)u (m+7e(v;), y)| < M, for r < ay. We apply
~ “
the czrt)lla,lj'y to the desymmetrization lemma to F,, with ¢ =1. For
a.e. e Fy we can found a J,> 0 such that if jv—ax| < 8, there is an
7 < |v—a| with the property that
. .
[ azle—ro@) [ | 1a(z—ro(w) +ro(v))do > ne.
80(n) =2

By the preceding remarks we know that we can find (oy,..., 0,) €8
with the property that v—roy(vy) e Fyy and v—7roy(v) +roy(v;) € Fyy,
l=1,...,d,i=2,...,N. We can find a bounded set of real numbers
By (v) with & bound depending only on K such that

d
4, D) Byl (0) Y;(o1(02)) = 853

=1
A1Z By (v) Zyj(o'z 771)

Hence, for lv—m] < ay < 0§,

() |2A ZBM Zyj o (v)

=1

V(8 [0m)u(v, y) 5(0 [0myulv —roy(v,) +roy(w;), ).

Y;(0/0%)u (v —ray (v) +r0y ;) )| <0M.

The constant depends only on K and is independent of v. The terms for
i =2,..., N are uniforrly bounded since v—#o;(v,)+70;(v;) € Fy. Thus,
|Y,(8/0z)u(v, y)| < C'M for jv —o| < ay and ¥, (9 /0x)u has non-tangential
limits a.e. in F,; and hence almost everywhere in B. We have seen that
this implies that all mixed partial derivatives of order m have non-tangen-
tial limits a.e. in B. So f has a kth harmonic derivative in ¥ and there-
fore kth Peano derivatives.

Now suppose that f satisfies the conditions of Theorem 2. Let F;, be
the set of © ¢ ¥ such that

1) f Y211y (9 0wy u(w, y)Pdy < M, i =1,...,d, and
[}

N a

@) f gmPeT3TA, zyj(aw,.))yj(o [0x) ufw +ra (v,) ) *dy < M and
yoa—ly i=1 =1 '

(3) @ satisties the result of the desymmetrization lemma with 6, = 1/M.

Py is measurable and B = (J Fy. For v satistying |v—2| <1/M and
M=1

2 e Py we choose oy, ..., 04 and By (v) as above. Arguing as above, we
obtain
(6) [ o017, (0 jm)ulv

Y M>y>iv—zl/a

PPy < OM, h=1,..,d.
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.We wish to show that for ae. welFy and I(v) = {(v,y): [v——m}
< ay < 1|/M}
[ [ ym—0m1-n 1, (0 fowyu (v, y)Pdvdy < oo,
I(z)
It will suffice to show that
(™ J [ [ yem-m1m0 ¥, 8 foayu(o, )P dody dis < oo
Fyr ()

Let (@, v,y) be the characteristic function of {(z, v, ¥): v —o| < ay < 1L/M}

S 9@, 0, @0 <m@: o—al < g} = O
Rewrite (7) as
[ (L vio (0,0, ¥) A}y ™=R=1=" | X, (3 oa)u(0, ) dy do
R" O

<B Ry Y (3 02) w (v, @) dy du.
e U I'(z)
zeFpr

Since ¥, is bounded, the measure of {v: distance(v,Fy) < 1/M}

i finite. By (6), the above integral is also fm:lte The theory of the area
integral tells us that
m 2]

9
f f YO GagE 40 Y)

T(z)

dvdy < oo

for almost every # € E, o any non-negative n-tuple of order %. This in
turn implies that f has a kth harmonic derivative in F and hence, as we
have seen above, a kth Peano derivative almost everywhere in Z.

I. A central version of the Poisson kernel. It remains to find a
funetion P(r, o, y, o) which is a central function of ¢ and for which

® [P, e,y offeny
S0(n)

))do

O Z (N — ov" o7 () f (0w (V)

= so{;) (7*3 + 02— 2rpr Y oz (N) .N_|_yz)§(n+2m+1)

do.

We also require that P(r, ¢, o) < 4,y(g+7)"""™* for r < ay.
'We shall first construet P for m = 0, that is, for the Poisson kernel
itself. Now it ZY = a, a7+ a,,_;27 2 {m]2+ ..., then
OnyZ3(rN — o (W)
(r2+ o> —2roo (W) - N o) Hntam+l)

=|e, " @ = +a, o nY
—\%m ™ 'm—2 arm—sayz ‘m—4 ar’"—"ay" ([’/‘N- QG(N)I2+’IJ2)“"+1) *

icm
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2 i 62

(@) = _ZF P,(x) were used in

N " i1 0%

the above equality. Once we find P for m = 0 we may take these deriva-

tives (and prove estimates) to construct the proper version for any m.
‘We write the Poisson kernel as

oY
@erf T (@97 Ber— o (N)- NJO
Set a = (*+1+9%) 2er.
LeMuA, For a> 0, r < ay implies a>1-+6, for some 6, > 0.
Proof. If o< 2,

The identities », =

_ 92+7-2 y2
=5 tapot e
If o > 2,
. 5 + y2 5
2g¢ 4°
Let s =a—Va*—1. This solves a = (1+s2)/2s. For a>1+39,
0<s<1—48". Recall ([12], p. 145) that the Poisson kernel for the
sphere is .
1—s? 1—s?
Plsy o) = (s*—2s0(N)- IV 1) - (25)"2((L + s2) [28 — o (N) - N )™
=Y @2y (o(N))
k=0

The dimension of the space of homogeneous harmonic polynomials
of degree k, dj, iy of the order k" %.
We shall first find a central analog of

@)™ <
- 2 @8 7Y (o()
k=0
A fractional integration in ¢ will produce an analog of (¢ — o(I)-Nj~H~+D,
Fubini’s theorem justifies the interchange of the fractional mtegratlon
and the convolution in (8).
‘We have seen earlier that

(o — o (W) )"

[ Z¥ (v or (M) flov(M)}do = [ gu(0)f{ow(N))do
S0(n) SO(n)
Thls suggests that we define (4 —o(N)-N)™™ by
23)”” o
(9) (a-a(N)-N' =1 g &, 8" 1.(0)
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The series is dominated by the geometric series Y k™2 s* which converges
%0
uniformly for 0 <s< 1—4. The derivatives of (9) with respect to s
(or @) also converge uniformly. For large a, s = a—l/a2 —1 ~1/2a.-We
may find central functions b, (o) for which
(a—o(F)-N)™= = b, (o)a7*"2.
&

=0

The series and its derivatives converge uniformly for a> 1+ 4.

ae (

da‘l/ﬂ

D
ot

. (a-;ﬁ).N)—%(n+1)'= i3] (o) a—k—n/z)

D 1

d o0

=o— [ (X wloyrt—m)t— e a
daa k=0

— v b' (a.)a—k—i(nH)

- k

— a—i(n+1)Z/1 b;(a) a .
fr

=0

We set

D Y

Birye,4,0) = oS “—ﬂnH)Z B, (o)a~"

k=0

oy O
= T T ) b (U)w_k.
z ) %
(& +7r+y) ,;

'We have seen that P satisties (8) for m = 0. We ghall now show that
o™ .
W;P(ﬁ 0¥, 0) < Ay(e+y)
for r < ay. ‘
LevmMA. We have

am

o0
ayzjarm—zj P = 0y(92+72+y2)_yn+2m+1)2 Q}Z"’” (ry0,9,0) a'—k’
=0
where Q™ (r, 0, y, o) 48 a homogeneous polynomial in 7, g, and y of degree

m whose coefficients are central functions of o.

icm
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Proof. It is true for m = 0. Assume that the lemma is true for m —1,

am—l - _ _ e o
WP = ey (472 +y?) i 1’2@53"’”1”)(7, 0,9, 0}
k=0 -

A simple computation wusing the idenbities (20r)6 = *+7*+y* and
dal0r = 2(r—ap) (2gr)™" produces the result

5?/21‘2;1@—2]' P = gy(g2+r2yyiremed kzo Qda*,
where
oQy9
or
— 2 Qi 42 (kb +1) Qi1
" A similar computation uging the identity da/dy = 2y(2¢r)”" produces

am+1 . . i .
6—_Hy2(f =) MM_I_M.P. When we differentiate with
respect to y an odd number of times the result does not contain the
factor v. ) )

Since the differentiated series converges uniformly and absolutely
for a > 1+ 4,, we obtain :

Q) = —(m+2m —1)rQf* )+ (e + 72 +y?)

a similar expression for

m
@5%;”:53‘?(7”; 0, 9,9) < Byle+r+y) ™" "1+ 4,67

<Awle+yymt dor
o o™ o™ ~
g Omr iy F s s oyt ) =
we obtain the desired function and the desired estimate for any m.

r<ay.

Adding up the terms for (am
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