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Abstract. In the present article we study the relationship between smoothness
of a Banach space F and of its dual E*, and also give the following eriterion for the
Banach space E to be Hilbert: if both & and E* are H*-smooth, then F is isomorphic
to a Hilbert space. '

Introduction. Through whole this paper we consider real Banach
spaces, and understand differentiability in the sense of Fréchet.

DErFINITION 1. A Banach space E is called O"-smooth if it admits
& non-constant C".function ¢ (that is, a function » times eontinuously
differentiable) such that ¢(z) = 0 when [of> 1. -

Let p be a real number greater than 1, and % the greatest integer
strictly less than p.

DerFmITioN 2. The function f on the Banach space E is called an
HP-function (p-smooth in the sense of Holder) if f is % times continuously
differentiable, and, for any x < B, there is a neighbourhood U, of # such
that, for any y, z e U,, :

ID5f —DEFI< Clly —2P7%, :
where the constant ' depends only on the neighbourhood U,. (Here
ID}f— Difl| denotes the norm of the k-linear map DEf— DEf.)

DeginrrioN 3. The Banach space B is called HP-smooth (p-smooth in
the sense of Holder) if it admits a non-constant H?-function ¢ such that
o(w) = 0 when |zf > 1.

., The following consequences of these definitions are evident:

(a) if B is H”-smooth and p’ < p, then F is also H*-smooth,

(b) if & is C"-smooth, it is also H’-smooth,

(¢) if B is H?-smooth, it is also C"-smooth, for any natural number 7
strietly less than p, '

(d) & subspace of an H?-smooth Banach space is also HP-smooth.

Touching the smoothness properties of the spaces lyy 1< p < o0,
it is easy to see that 1, is H”-smooth, and, furthermore, that it is 0®-smooth
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if p is an even integer. For the proof, it is sufficient to consider the function
@, defined by
@ (@) = (=),

where v is a C* function of a real variable such that (0) = 1 and y(f) =0
when 8| > 1.

Let p not be an even integer, and  be the least integer greater than p.
Kurzweil ([5], Theorem 4) showed that under these eonditions the space I,
is not C-smooth. Bonic and Frampton sharpened Kurzweil’s result and
demonstrated the following theorem.

TemorEM A (R. Bonic and J. Frampton [2], Theorem 4). If p s
not an even integer, and p’ > p, then 1, is not H®-smooth. If p is an odd
integer, 1, is not CP-smooth.

When p =1, we obtain, using property (d), the simple corollaxry.

CoROLLARY. If the Banach space B is HP-smooth, where p > 1, then it
does mot contain a subspace isomorphic to 1.

From Theorem A it ig clear that, if # =1, and p + 2, then E and E*
cannot be (*-smooth simultaneously. It turns out -that such a statement
is valid in the general situation: we shall prove, in the second section
of this work, the theorem below.

TErOREM 2.1. If the Banach space B and its dual B* are both (*-smooth,
then B s isomorphic to a Hilbert space. »

The following result in the same direction was previously known:

TEEOREM B (R. Bonic and F. Reis(*); M. M. Rao, see [8], Theorem 1).
If the Bamach space E has a G*-smooth norm and the dual norm

lo*|| = sup " ()]
fafi<1 .

in B is also (*-smooth, then E is isomorphic to a Hilbert space.

(A norm is called C"-smooth if it is O"™-smooth except at zero.)

We shall present here a proof of Theorem B (based on Lemma 1.2%,
proved later), so as to illustrate by this simple example the methods
used below to establish Theorem 2.1.

Set p(@) = |z, p(@*) = lo*||. Take z,€ B, 27 € B* 50 that |z, = 1,
lmyll =1, and @ (z,) = 1. Applying Taylor’s theorem, we have

P(@o+h) = pl@o) + Dz, 9 (k) + D% @ (h, B) o (IRI),

(a5 +9) = v(ah) +Dop(9) +1D%v (9, 9) +ollglP).

Let G be the subspace of E* defined by the relation
@ = ker])‘*ym{m * (@) = 0}.

(1) The obiaining of this result i referred to in [2].
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_According to Lemma 1.2° below, one may find in ¥ a subspace X of

finite codimension such that
(¥) for any = € X there exists y € G, with y # 0, such that

y(2) = iyl il
Define H = Xnkerl)}nquerm:. It is clear that
codimX 12 < co.

Suppose now that ¥ is not isomorphic to a Hilbert space; then we
claim that

- codimH <

inf {|D2, p(k, W)|: he H and Jhj =1} =0.

For consider the bounded quadratic form DZ ,@(h, B) on the subspace H
of E. If it assumes on the unit sphere of H both positive and negative -
values, then, in view of the connectedness of this sphere, it must also
assume the value 0. If on the other hand its values on the sphere are all
Ppositive, but D7 @(h, b) > o> 0 for all h e H of unit norm, this would
signify that the Hﬂbertlan norm

ikl = [D3,@(h, k)]

is equivalent to the original norm | ||, and H would be isomorphic to
& Hilbert space. As codimH < oo, E would also be isomorphie to a Hilbert
space, which contradiects our hypothesis. The case where D2 Pk, B) <0
at all points on the unit sphere reduces to the preceding one on changing
the form D7 ¢(h, k) to — D o(k, ).

Take the number M so that ]Dﬁ.w(g, NI< Mlghe for all ge B*

1 . .
Choose k € H such that kb # 0 and }D%zp(h < <m IR, Using (*),’
1
choose g € ¢ such that [g|| = T03L ikl and i
g(h) = gl 1Al = 30 B

Then, for sufficiently small v, we have estimate for the numbers |z, zh||
and Jlzy + 9] as follows:

llzo+ il = @(2y+7h) <1+ (7RI 4 0(72),

200ﬂ[
14+ 3 M |lzg)f +o(72).

Furthermore, the definition of the norm of +zgll in E* entails

oy -+ zgll = oy +79) <

(@ -+ 79) (@4 7h) < g -] i +7hy.
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Therefére
* N = |h|? 2 < [[R
af (m) -+ g () < (1+ T ot >) (1+ I o),
and
14 = AP <1+ o2 | +o(w)
30M ' 100M : "

As [[B]| # 0, this last inequality canmot hold when = is sufficiently small.

The contradiction demonstrates Theorem B.

From Theorem A it is also clear that, if B = I, where p # 2n/(2n—1)
for any positive integer 7, then E* cannot be H%-smooth when g > p/(p —1).
Again, a similar result holds in the general case: in §3 we shall prove
the following theorem: )

THEOREM 3.1. If the Banach space B is HP-smooth, and its dual E*
is H%-smooth, and neither of these spaces is C°-smooth, then 1[p+1/q> 1.

T. Figiel read in detail a preliminary version of this paper, and con-
tributed a series of profound observations, which made possible a fun-
damental simplification of the arguments; in particular, Lemma 1.4 is
his. The anthor is deeply indebted to him, and also wishes to thank

B. 8. Mitjagin for much helpful advice and for his unfailing interest in
the work. :

1. Basic lemmas. In this section we discuss a few lemmas essential
in the proofs of Theorems 2.1 and 3.1.

Lemya 1.1 (Davis, Dean, and Singer [3], Remark 1 to Theorem 1).
If B, is & finite-dimensional subspace of the Banach space B, then, for any
&> 0, one may find a finite-codimensional subspace B, of B such that

(1) BynB, =0,

(2) the projection Py, in ihe subspace B;+4- B, of B, whose image is B;
and kernel B;, has norm less than 1-e.

(Hence it follows that the complementary projection in B;+ B,, with
image B, and kernel B,, PB2 =1p,¢5,—Pp; has norm less than 24-&.)
A proof of this lemma may also be found in [4], Lemma 2.3.

Levma 1.2. Let X be a finite-codimensional subspace in the Banach
space B. Then there is a finite-codimensional subspace Y of B* such that,
Jor each y e Y, there exwists a non-zero z e X with y(x) > 1yl llell.

Proof. Let X* =Z in B*. Applying Lemma 1.1 with ¢ =1, we
may choose & finite-codimensional subspace Y of B* such that ZnY =0

and the projection Py in ¥-Z with kernel Z and image ¥ has norm
less than £.
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Let y ¢ ¥, and choose a functional # on ¥ such that ] =1 and
#(y) = ly|l. Then the functional #-Py is defined on Y +Z, is zero on Z,
and has norm less than ;. Extend it by the Hahn-Banach theorem to B*
without increasing its morm; we obtain a functional in B**. By Helly’s
theorem ([9], Chapter 4, §6, Theorem 5), there exists # « B such that
2(x) = 0 whenever z €Z, y(z) = lly]l and |of < 3. Evidently, therefore,
2 e X and y (=) > §ly] =l

LEMMA 1.2%. Let Y be a finite-codimensional subspace of B*. Then
there is a finite-codimensional subspace X of B such that, for any s e X,
there ewists a non-zero y € Y with y() > iyl lzll.

Proof. According to Lemma 1.2, one may find in B* a subspace x,
codim ¥ < oo, such that for each #** e X there it a non-zero y ¢ ¥ with
#**(y) > 1Jo™] llyll. Let ¢: B—~B™ be the canonical embedding; then
the conclusion of the lemma is valid for X = i~ (Xni(B)).

TEvva 1.3. Let the Banach space B be H?-smooth and let B* be H?-

smooth, where p > 1 and q> 1. Suppose thal (x,) is & sequence of ,}oomts

all lying either in B or in E*, such thet the set of partial sums Z; &, %,
n=
is bounded for all positive sntegers N -and sequences (s,) taking values s, = +1.
o0

Then, for any such sequence (s,), the infinite series > ealt, cONVETges,
' N n=1
and the set of all possible partial sums D Ealty, for N =1,2,... and
all possible (z,), 48 compact. ne=l :

The following well-known theorems will be of use:

TeEOREM C (Bessaga and Pelezynski [1], Theorem 5). If the Banach
space B does not contain a subspace isomorphic to ¢, then every weakly
absolutely convergent series in B converges unconditionally.

(Recall that a series ) @, is called weakly absolutely convergent

N n=1 0
if, for any f e B*, the numerical series ), |f(x,)| converges; and is called
A=l

unconditionally convergent if, for any sequence (s,) taking values ¢, = +1,
the series ) &,a, converges.)
n=1
TaEorEM D (Bessaga and Pelezyfiski [1], Theorem 4). Lei B* be
the dual of the Banach space B. If B contains a subspace isomorphic 0 o,
then B contains o complemented subspace isomorphic to 1y.

Proof of Lemma 1.3. If B contained a subspace isomorphic to ¢,
it would follow easily that E* has a subspace isomorphic to 1,; whilst,
if we assumed E* to contain, a subspace isomorphic to ¢,, we should have
from Theorem D that B has a subspace isomorphie to I,. But from the
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éorollaa:jf to Theorem A, neither 7 nor E* containg a subspace isomorphic
to 1,.

Now, if the partial sums of the series Y &,2, are uniformly bounded

fn=1
for all sequences (s,), it is obvious that the series is weakly absolutely
convergent. Thus, aceording to Theorem C, it converges for all sequences

(€a); &, = £1. From this it follows easily that, for given &> 0, there

exists N such that, for all sequences (s,) with values =1, | D em,) < e
N n=N

Hence the set of all partial sums 3 g,,, N =1,2,3,...,¢, = 41,
n=1

is totally bounded, and its closure is compact.

Lz 1.4 (Figiel). Let Q;,§ = 1,2, ..., m, be o finite class of bounded
symmeiric bilinear forms on the Bama,ch 3paoe B, such that for oll ze B
the following inequality holds:

1 ) lolf* < sup{|Q; (@, o)
Then E is isomorphic to a Hilbert space.
‘We shall exploit the theorem below:

TeroREM E (Kwapiedi [6], Proposition 3.1). A Banach space B is
isomorphic to & Hilbert space if and only if there ewist positive constants
A and B such that for arbitrary @, o, ..., @, € B the inequality

4 (gﬂ: flaw; iiz}< fl ” 5: @;7;(t) Hgdt < B(Zn’ “501'“2)

8 satisfied, where r; denotes the classical i-th Rademaaher Jundtion r;(t)
= sign (sin (2°xt)). _
Now, using Holder's inequality and condition (1), we obtain

@) (uf Hémm(i) det)zgﬂfl”éwﬂ'i(t) Hd'dt ,,
<uf (én; % (Zﬂ x‘ir‘(t)’;’ ”f"i(t)))dt

From the properties of Rademacher funetions we have the equalities

f@;(y!f’r (?), Zwr(t)

i=1

[P I<ji<<m}.

Il

5’ 921, Qs (@1, @) f r(t Y7 (07 (8) 7y (8)

1klm==1

(2 Qs(z;, 1)) +2 2 Qi (z, ).

k=1
k—‘l
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Hence we get

®) f & (3 anto), 2w<t))dt<3ue,1 (Z o)

=1 i=1

Let M = max HQj}! From inequalities (2) and (3) results the
=1,

estimate from above

f I Zn] ayry(t) | de < (3m) M (g o)

Now we obtain an estimate from below for the integral. We have
n

2” o2 < D) (f 103 (25 @)

< mmax ) 1Q; (@, 7) | =m )19, (@i, 02|
i i=1 =1

for some j;, between 1 and m inclusive. )
Lot It = {i: @ (@, 2)>0}, I” = {i:

the first place that ;
Q@ ) > — ) Qg (@ @)-
el

qel+
<om 3 Qjo(-'”i: &
el +

Relabel the @, for ¢ eIT, a8 &y, Tay .-y

k
Z o < 2m (2 Q, (@, )) - 2mf Q, (2 o), ;‘ a;,-r‘(t))dt

<2mMDf HZwm(t) sztszmM 2%1 Zk & r
sl ” _2meHZw(t n dt.

The last inequality in this chain results from the observation that, for
any # and y in B, o4yl le—yl* =2 lel®
If, on the other hand,

D) @y, 2) <

ielt

Q{35 @) < 0}. Suppose in

n
Then we obtain > lia|?
i=1

o, SO that

< 2mM Z o

- 2 LRCITE ) PR
el ™ .
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Al

then, writing the form —@; as R;, we shall have the inequality

Dlmlr<om 3 B
=1 el

o (a;iy wi) .

Transforming this inequality as above, we obtain in this case also

S <2t f I oo w
i=1 0 i=1

CoroLLARY. Let the Banach space E not be isomorphic to a Hilbert
space, and let H be a finile-codimensional subspace in E; let @, Q,, ..., Q,,
be bounded symmeiric bilinear forms on . Then for any &> 0 there is an
h e H, with bl =1, such that, for all § =1,2,...,m, |Q;(h, b)| < &.

2. Proof of Theorem 2.1. As ¥ is (%-smooth, there exists on H, by
definition, a non-constant C?-smooth function g, such that g(z) = 0 when
lle] > 1. Take 2z e F such that ¢(2) = a # 0. Let f be a nonnegative 0%

. function of one real variable, such that f(a) = 0 and f(0) = 2. Set ¢(z)
. =f(g(2m+z)). It is easily verified that ¢(z) > 0, ¢(0) = 0, and ¢(z) = 2
when |iz]| > 1. Analogously, on E* as well exists a (2 function y such
that p(0) =0 and ¢(o*) =2 when Jz*||> 1.

Congider Ex E* with the norm [z, #%)] = |lz]|+ |&*] and the €2
function @: ExE*—+R, defined by &z, 2") = p(x)+y(#*). From the
definition of @ it follows that & (0, 0) = 0 and D (g, «*) > 2 when max ([,
") = 1.

LeMMA 2.1. Let K be o compact set in the Banach space B and facCt
function on B. Then

F@+) = f(@)+ DL (k) + DI (h, W) +r(f)(a, B),
tore T (@ 1)

T -0 as h—0, uniformly for z e K.
This lemma is an immediate corollary of Taylor’s formula in the
form given in [T], Chapter I, 4,

fla+h) = f@) +Dif(h) + [ (1—4) D2 uf (, B)dt.

Let us assume that F is not isomorphic to a Hilbert space. Then
the following lemma holds. =

Levwma 2.2. Let K and E* be compact sets in B and B, respectively.
Suppose that F = K and F* < K* are finite sets, and H, @ are fzmte €0~
dimensional subspaces in B and B* respectively. Denote by Q(F, F* H,G)
the set of pairs (b, g), where he H, ge@, [ <%, lgll < %, which sutisfy
the inequality .

1P(zdh, 0" +9) - Bz, 2%)| < g(h)
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for all eF and " e F*. Define
a(F7F*: H,G) =sup{g(h): (k,9) EQ(F’F*’HyG)}'

Then there is a constant ay(K, K*), depending only on E and KT,
such that a(F, F*, H, G) > o(K, K*) > 0.

Proof. Let G = @Gn ﬂ kerDi..zp By Lemma 1.2% there is a finite-
codimentional subspace X of B, such that
(*) for every x e X, there exists a nonzero g e @ such that
(@) = lgll wll-

Tet H = HAXN \kerDip, M = sup{|Diyl: 2" e K"}, We may
P

without loss of generality assume that M >1. By Lemma 2.1 there
exists 8, 0 < 6< %, such that if A< 6 and llgll < 8, then
7(g) (,h) < IhE and  r(y) (@ 9) < llgi©*

100M IOOM

for all # e K and 2" e K™
By virtue of the Corollary to Lemma 1.4, there is an h e H, with

|8} = &, such that ]D;cp(h, R < 4% for all » e F. For this vector b,

1001
choose g €@ so that
1 1
gl = o770 2nd g(h) > ¥ligll bl > = =7 0%

" Then, for # € F and o* ¢ F* we have the inequality

|B(@Lh, a*+g)— D=, 7)|
= [}Dio(k, h)—l-%DzﬂP g, 9)+9‘(<P) (z, £h)+ryp) (%, £9)|
F 1. st NP S S
<%o0m ° " ‘)OOM OOM 1000 100M°
3
A2 2 h .
<71o0ar " <soar & <IW

This demon-

1
Thus we might take the number Y] 82 for ao(K,KE").

strates Lemma 2.2.

Let us proceed du'eetly to the proof of Theorem 2.1. On the basis
of Lemmas 1.3 and 2.2, we shall construct a contradiction. We define
inductively a sequence of vectors {h,}m., in E and a sequence of functionals

{gntnmo In B
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Set hy =0, g, =0. Now, suppose that h, g, for 0 < k<< n have
already been constructed, and denote by F, and F), the sefs, in ¥ and B*,
respectively,

k3

By ={ Y ehii o = +£1, 5 =0,1,2,...,n},

k=0
n

T, ={2 st & = £1, k =0a172’-~-:“'}-

k=0

Let H = ﬂkerg“ G = m{$ * ) = 0}: Qn+1 = Q(Fns F:, HmGn)y
A1 = a(Fm F:s H,,4,), wd choose (hn+17 gn-{-l) € Qn+1 50 that In1 (hn+1)

> gy [2.
Notice that these constructions ensure fulfilment of the conditions
(1) gr(h,) =0, when & 3 n;

(2) gx(Py) < 1.
o0 (-~}
Let us show first that D g,.(h) > 2. I } g,(k,) < 2, then
k=0 k=0

N N
4 (Z ephy, Z Ekgk)
k=0 k=0
-1 k+1 k 1 k k . N
2 ]@ (2 8" ny ngn) (2 “"nhu! Z angn),< ng(hk) <2.
k=0 n=0 n=0 n=0 k=1

Consequently, }LZ; gl <1, [’[GZ &, sl| < Lforall N and {e;}, where s, = 1.
= =0

By Lemma 1.3, there are compact sets K in E and K* in F* such that,
for all , ¥, = K and F, = K*. Thus, by Lemma 2.2, «,> «,(K, K*).
As g, (h) > q,2> an(K K*) 2> 0 for all m, this contradicts the con-

vergence of the series Z’yk(hk)
Now take N so that 1< Z m(hy) < 2. Then, from the definition
of the sequences {h,} and {gm}, we have

(thZ )< 3 i

m=0 m=0 m=0

50 that f th” < land ]] 2 ]| < 1, whilst ( 2 T (2 )=
This eontradlemon estabhshes Theorem 2. 1

ng(h

3. Proof of Theorem 3.1. In the same fashion as in §2 we may construct
a function ¢': Fx E*-R, enjoying the following properties:
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(1) &' (z,2*) = p(@)+p(»*), where ¢ is HP-smooth on F and ”
H%smooth on H, - '

(@) '(0,0) =0, and &'(z,a*)>2 when max (||, [=*]) > 1

Leva 3.1. Let K be a compact set in the Banach space B and f an
H®-function on & neighbourhood of K. Then there ewist 8, M > 0 such that,
if b < and ze K,

f(w+h h)+

+r(f)@, k),
where k is the greatest natural number strictly less than p, and |r(f)(z, h)]
< MnlP.
Lemma 3.1 results straightforwardly from Taylor’s formula, as
given in [7], Chapter I, 4,

= J(@)+ DA+ 5 DR, W+ ..+ D, By ey

1
Sfle+h) =f($)+Dif(h)+aDif(h, k) +
F - )
(k—

In §2 we proved Lemma 2.2 for the funetion @, on the hypothesis
that B and E* are (*-smooth, and, furthermore, that F is not isomorphic
to-a Hilbert space; now, however, we shall demonstrate the conclusion
of Lemma 2.2 for the function &', on the hypothesis that 1/p+1/g< 1
and that neither of the spaces B, B* is (°-smooth. In the proof we shall
employ the notations of Lemma 2.2.

If both p and ¢ exceed 2, then by Theorem 2.1 we know FE is iso-
morphic to a Hilbert space, and consequently O®-smooth, which con-
tradicts the hypothesis of Theorem 3.1. Accordingly one of the numbers
P, g does not exceed 2. Let us suppose first that p < 2.

Let k be the greatest integer strictly less than g¢. Then

9’ (@R, 0" £ g) — P (2, ")
= IDip(£R) +7(g) (@, £h)+Pu(£9) +7(v)(@" £9),

Sty D s by

= 1) Dy af(hy ..., W)dt.

FRORS
b

where
1
Poulg) = Dpy (g)+ Dowlgs )+ - + 57 Dev(@: 955 9)-
Set H = Hn(\kerDlp. By Lemma 1 we may choose in B* a finite-
ze

codimensional subspace Y such that
(*) for - any g e Y there exists a nonzero h e H such that g(h) > %]ly[] 1A
Take G = GnY. )


GUEST


122 V. Z. Meshkov

Let us now show that for arbitrary positive g and e there exists
goe@ such that [, = p and, for any &* e F*, |Po(Lg,)] < s. For this,
consider the ¢ function f on G

flgy = Y (Pa
TreF*
Tt will suffice to show that inf{f(g): g e &, lgll = g} =o.

Certainly f(0) = 0. Therefore, if inf{f(g): ¢ e@, gl = B} were posi-
tive, @ would be C™-smooth, and as @ has finite codimension in B,
E* also ‘would be (-smooth, which contradicts the hypothesis of Theorem
3.1.

(9)+Po(—9)-

From Lemma 3.1, there exist positive M and ¢ (with 6 < ) such
that 7(g)(a, k) < MW and |r(y)(s*, 9)l < Mgt for all e K and
2" e K*, provided |a| < é and [g < 8. Without loss of generality we
may suppose that M > 1. If 1/p+1jg <1, then p(¢—1) = ¢+y where
y > 0. Take p > 0 so that the following conditions are satisfied:

(l) B< 9,

2) 10Mp g

( ) M(10M) ﬁ"<1

Take g €@ such that lig] =  and, for any #* e F¥, 113“,*(;): DI B
By virtue of (%), let us choose h e H such that ]]h|] = 10MpA7! and g(h)

Llglh bl = R MPL Then, for any e F and z* e F*,
18 (@b, 2" 19)— P (2, )| < Ir(9) (&, £h)+Po(L£9)+7(y) (@ £9)]
< Mib|F+ p* 4 M gl
< M(103) Pﬂ“ﬂ?+ﬁ"+Mﬂq
<ﬁq+ﬂq+Mﬂ‘l< ML
Therefore in place of ay(K, K*) we may take the number ?M p?. This

proves the lemma for the case where p < 2. The proof for the case where
g <2 differs from this one only in employing Lemma 1.2 in place of
Lemma 1.2%

In §2 we concluded the proof of Theorem 2.1 by extracting a contra-
diction, on the basis only of Lemma 1.3 and Lemma 2.2. For the proof
of Theorem 3.1 it remains only to repeat word for word the arguments
used to complete the proof of Theorem 2.1,
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