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ON THIN-TALL SCATTERED SPACES

BY

I. JUHASZ axp W. WEISS (BUDAPEST)

Throughout this article*, the usual set-theoretic conventions will
be used; undefined terms may be found in [2] or [4]. The well-known
Cantor-Bendixson process is as follows. If X is a topological space, define
I,(X) to be the set of all isolated points of the subspace X — {I,(X): a < B}.
The Cantor-Bendizson derivative is the set X — | J {I,(X): a < B}, where 8
is the least ordinal such that I,(X) = @.

A space X is called scattered (or dispersed) if every closed subspace of X
has an isolated point. It is easy to see that X is scattered iff the Cantor-
Bendixson derivative of X is the empty set.

It is natural to define an ordinal function, the Cantor-Bendizson
height, on the class of scattered spaces, as follows:

ht(X) = sup{a+1: I,(X) # 3}.

We can also define a cardinal function, the Cantor-Bendivon width,
on the class of scattered spaces, as follows:

wd(X) = sup {|I,(X)|: e < ht(X)}.

The following problem was first posed by R. Telgarsky in 1968.
Although never appearing in print, it has nevertheless been widely known
and was of interest to a number of mathematicians. We reformulate it
in terms of the definitions above:

Does there exist a locally compact, T',, scattered space X with wd (X)
= o and ht(X) = o, ?

The problem has recently seen four positive solutions. One is by
Ostaszewski [8] using ¢, which is countably compact and perfectly normal.
Another, by Juhész et al. [5], uses CH and is perfectly normal. The third,
by Rajagopalan, oral communication, uses CH and is countably compact.

* The second-named author ackowledges gratefully financial support from the
National Research Council of Canada and the hospitality of the Mathematical Institute
of the Hungarian Academy of Sciences.
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Furthermore, Rajagopalan [9] has given a positive solution using no
extra set-theoretic axioms. However, these constructions of Rajagopalan
are fairly long and complicated. We propose a short construction, without
using extra set-theoretic hypotheses, which gives a positive solution to
Telgirsky’s problem.

The construction resembles those in [8] and [5]. In fact, it is basic-
ally the same, without the use of and fruits of extra set-theoretic axioms.

THEOREM 1. There ewists a locally compact, T',, scattered space X such
that wd(X) = 0 and ht(X) = w,.

Construction. For this construction we need the following defi-
nition: if a is an ordinal, we let a be the maximum limit ordinal not greater
than a. The basic underlying set will be X = {r,: a < w,}, where v, 3 »,
for a < f < w,. We construct a topology v on X by recursively construct-
ing topologies 75 on X; = {w,: a < B}, such that

(1) <X, Tpy is locally compact and T,;
(ii) for all a < B, P(X,)N7 = 7,3

(iii) if @ < f and U is an open neighbourhood of #, in <Xy, 7,), then
{y <a: @, e U} is cofinal in a;

(iv) there exists a set B, cofinal in ﬁ, such that {w,: a € B} is a closed
discrete subset of (X,, 75).

If B is a limit ordinal, including f = w,, define 7, to be the topology
on X; generated by | {r,: a < 8}.

Suppose that (X,, 7;> has already been defined. By (iv) we have
a set B, cofinal in B, such that {(»,: a € B} is closed and discrete in (X, 7,).
Let us decompose B into two disjoint sets {a,: » < w} and B’, both cofinal

in B For each n, let U, be a compact open neighbourhood of #, such that
{U,: » < w} is discrete and
U{U,: » < 0}nB’ =9.
Write
Vi = {wﬂ}u U {Un: n = m}
and let 7, ., be the topology on X, ., generated by 7,U {V,: m < w}.

Clearly, if we put v = Ty then <X, 7) is locally compact and T’.
It is also straightforward to show that for every a < w, we have

I.(X) = {&3: wa<p<w-(a+1)}.

Thus X is scattered, and wd(X) = w and ht(X) = w,.

CoROLLARY. There exists a compact, T,, scattered space Y such that
wd(Y) = o and ht(Y) = o, +1.

For the construction, let ¥ be the one-point compactification of
the space X of Theorem 1.
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In order to obtain spaces which answer Telgarsky’s problem and
have also additional properties, we can do the same basic construction
and add some additional inductive hypothesis. We illustrate this with two
examples.

THEOREM 2. There exvists a space X which i3 locally compact, submetriz-
able and scatiered so that ht(X) = w,, wd(X) = o and 8(X) = w,. (Thus
the width of X 18 sirictly less than the spread s of X.)

OConstruction. The construction is similar to that for Theorem 1
with the exception that we take X = {#,: a < w,} to be a subspace of
the Sorgenfrey square 8, described in [10], p. 103. We also require that X
has uncountable spread and that, for each limit ordinal y, the subset
{w,: y<a< y+w}isdense in 8. We use the inductive hypotheses (i)-(iv)
of Theorem 1 and add the following:

(V) 75 is finer than the subspace Sorgenfrey topology on X,.

The initial step and the limit ordinal step are the same as in Theorem 1.
However, at successor steps, we first choose a countable descending local
base {B,: n < w} for ; in the Sorgenfrey topology. We then pick {z, :
n < w} having the properties as in Theorem 1 and such that, for each
7 < o, ¥, € B,. We also choose U, to have the additional property that
U, < B,. Thus the topology 7;,, will refine the subspace Sorgenfrey
topology on X,.,.

Remark 1. Assuming Martin’s axiom and 2° > w,, we infer imme-
diately from theorems in [1] or [6] that the space X of Theorem 2 is per-
fectly normal.

THEOREM 3. Assume 2° = w,. Then there exists a locally compact, T,,
scattered, countably compact space X such that wd(X) = w and ht(X) = o,.

Construction. Again we perform a slight modification of the recur-
sive construction of Theorem 1. This time we let {F,: v < a < w,} be
a (not necessarily one-to-one) enumeration of all countably infinite subsets
of X such that B, « X, for each a < w,. We again use the inductive
hypotheses (i)-(iv) of Theorem 1, but now we add the following:

(v') for all e < B8, E, has a limit point in (X, 7).

The initial and limit ordinal steps remain as in Theorem 1. At the
(B+1)-8t successor step we check if Hj; has a limit point in (X,, v5). If it
does, we proceed exactly as in Theorem 1. If it does not, then we choose
our sequence {®, : n < w} to have infinite intersection with F,; and all
other properties. Thus & will have a limit point in (X,,, 75,,>.

Remark 2. If we assume Martin’s axiom plus 2® > w,, then the space
constructed for Theorem 3 does not exist. This is an immediate conse-
quence of the following theorem of Hechler [3]:

§ — Colloquium Mathematicum XL.1
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If Martin’s axiom is assumed and X is a countably compact, separ-
able, regular, T', space of cardinality less than 2°, then X is compact.

Since ht is an ordinal-valued function, it may be possible to construct
locally compact, T';, scattered spaces such that wd (X) = wand ht(X) > w,.
It follows from a result in [7], p. 288-298, that the cardinality of a locally
compact, T',, separable, scattered space is not greater than 2“. Thus
the height of such a space must be less than (2°)*. Hence, without extra
set-theoretic assumptions, we cannot hope to prove that it can be not
less than w,. This shows that our next result is, in a sense, best possible.

THEOREM 4. For every a < w, there i3 a locally compact, Ty, scattered
space X such that ht (X) = a and wd(X) = o.

Before we can prove this, however, we do some preparations. For
any ordinal a let us denote by &, the class of all locally compact, o-com-
pact, T,, scattered spaces X such that ht(X) = a« and |I;(X)| = o for
every f<a If X €&,, we fix {#): n e w}, a one-to-one enumeration
of I;(X) for every f < a. Now, if X € &,,,, then I°(X) is clearly a closed
discrete subspace of X. Since X is also o-compact (and, therefore, collec-
tionwise normal), we can separate the points 2 by a discrete collection
{U,: n € o} of compact open neighbourhoods, which we shall also keep
fixed from now on.

Now, let X € #,,, and Y € & be such that XNnY =@ and define
the space X @ Y as follows. The underlying set of X ® ¥ is XU Y\I,(Y);
a basic neighbourhood of a point p in X is a neighbourhood of p in X,
while if p € Y\I,(Y), then a basic neighbourhood of p is of the form V*,
where V is any neighbourhood of p in ¥ and

V* = [V\I(Y) VU {U,: ¥V e V}.

It is easy to check that this indeed defines a topology, which is T',,
since clearly VAW = @ implies V*nW* = @. It is also easy to see that V*
is also compact if V is. Hence X ®Y is locally compact and, moreover, X
is an open subspace of X ® Y while [Y\I,(Y)]JUI,(X) a8 a subspace of
X ®Y is homeomorphic to Y. Since X and Y are o-compact, 80 is X QY.
Finally, it can be seen that X ® Y is scattered with ht( X ®Y) = a+ 8,
and
Iy (X ) lf 4 S a,

I,(Y) ify=a+dfor1<d<p.

In short, we have X @Y € &, ;4.

Next, assume that X € &,, where cf(a) = w. Then we can fix a sequence
{a,: n € w) of ordinals which converges to a in a strictly increasing
way. Let T = {t,: n € o} be a set of distinct elements not occurring in X.
We define the space H(X) on the underlying set XUT as follows. Pick
P € I, (X) for each h € w. Then {p,: h e w} will be closed and discrete

I(XQY) =
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in X. Hence we can pick a discrete collection {W,: h € w} of compact
open neighbourhoods of the points p, in X. We also fix a decomposition
{8,: n € w} of w into the disjoint infinite subsets 4,. Now, any neighbour-
hood of a point p e X in X will serve as a basic neighbourhood of p in
H (X), while the sets

Valty) = {839 J{W;: k €a, and k> m}
will be the basic neighbourhoods of ¢, in H(X). Quite similarly as above
we can see that H(X) is locally compact, ¢-compact, T',, and scattered.
Moreover, X is an open subspace of H(X), ht(H (X)) = a+1, I,(H(X))
= I,(X) for y < e, and I,(H (X)) = T. In particular, H(X) € &, ,.
Proof of Theorem 4. We can actually prove more, namely that
Far1 70 for every a < w,. We shall do this by induction on a. Thus

assume that &;,, # @ for every g < a. The cases in which cf(a) < w are
very easy, hence we omit them. Thus we assume that cf(e) = w,. Then

we have
a = Z B,

y<ay
(ordinal addition!) with 0 < 8, < a. Let us put
a, = Zﬁ,, for any » < w,.

u<y

By the inductive hypothesis there existsa Y, € &, ., for every» < w,.

Now we define, by a subinduction on » < w,, spaces X,e ¥, ., such
that the following inductive hypothesis is satisfied:

(i') I u <, then X, is an open subspace of X, such that L (X,)
=I,(X,) for every y < a,.

Put X, = ¥,, and then suppose that » > 0 and that X, has already
been defined for every u < » in such a way that (i) holds. If » = u 41,
then we can put X, = X, ® Y,. If » is limit, i.e. ¢f(») = w, then let Z
be the direct union of the spaces {X,: u < »}. Then it is clear from (i)
that Z e &, , and since cf(a,) = cf(v) = w, we can put X, = H(Z). Having
completed this subinduction, by (i) we can take X = | J{X,: v < w,},
again with the direct union topology. Then X is locally compact, T,,
and scattered with ht(X) = a and wd(X) = . Let X be the one-point
compactification of X; clearly, the topological sum of w disjoint copies

of X is a member of & a41- This completes the induction and the proof.
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