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A dendritic continuum, or dendrite, is a continuum such that each
two of its points are separated by a third point. A (generalized) simple
closed curve is a Hausdorff continuum that is separated by each pair of
its points. An arc is a Hausdorff continuum with only two non-cut points..
If p is a point of the dendrite Y, then ¢(p) denotes the cardinal number
of components of Y — {p}. The point p of Y is a branch point of Y if ¢(p) > 3,
and p is an infinite branch point of Y if ¢(p) > R,. A map f of X onto ¥
is light if, for each point y of Y, f~'(y) is totally disconnected, and f is
non-alternating it {f~'(y) | y € Y} is non-separating, i.e., for each two
points y and 2z of Y neither of the sets f~'(y) and f~'(2) separates two
points of the other set in X. The cardinal of a set M is denoted by |M|.

We showed in [7] that for each dendrite Y there exist a simple closed
curve X and a continuous light non-alternating map f of X onto Y such
that, for each point y of ¥, c¢(y) = |f~'(y)|. It is the main purpose of
this paper to prove that for each simple closed curve X there exist a
dendrite Y and a map f of X onto Y having the above properties. Now,
the proof of this theorem is trivial in the metric case; indeed, ¥ may
be required to be an arc. However, in the non-metric case, it is by no
means clear how to obtain Y and f. For example, X may be so compli-
cated that no two arcs in X are homeomorphic (cf. [6]), or X may fail
to have a countable base at any point (see [5], Theorem 5, p. 61). Fur-
thermore, we shall show that the dendrite ¥ may be required to have
the property that the set of all its branch points is dense in Y. The den-
drite Y may also be required to have the property that each of its branch
points is infinite, which is of some interest even in the metric case, for
it then follows that Y is a universal metric dendrite. Finally, we shall
consider an application of the case in which, for some point = of X, X — {w}
is a Suslin space.

1. The main theorem. This section is devoted to a proof of the main
theorem. The proof involves a tedious transfinite induction and is broken
up into several lemmas.
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THEOREM 1. For each simple closed curve X there exist a dendrite Y
and a continuous light non-alternating map f of X onto Y such that the set
of all branch points of Y is dense in Y and, for each pointy of Y,c(y) = |~ (y)|.

Definition. Suppose that X is a simple closed curve, p and ¢ are
two points of X, and & is a collection of subsets of X such that

(1)‘the elements of & are pairwise disjoint,

(2) each element of & is finite,

(3) U& is perfect, .

(4) if U is a component of X —| )&, then 0U is a subset of some
element of &,

(5) & is non-separating,

(6) if H and K are two elements of &, then some element of & con-
taining at least four points separates H from K in X,

(7) if # = p or # = q, then either {#} €& or there is a point y of
X —{p, q} such that {z,y}eZ.

Then & is said to have property X,,.

LEMMA 1. If X is a simple closed curve, and p and q are two points
of X, then there exists a collection & of subsets of X such that & has
property X,,. ’

Proof. Let U and V denote the two components of X — {p, q}. Let #
be the collection of all ordered pairs (4, B) such that A is an are lying
in U, and B is an arc lying in V. We order £ as follows. Let (4, B) < (C, D)
if ¢ separates A from ¢ in U, and D separates B from ¢ in V. Then #
is clearly partially ordered by the relation <. Let # be a maximal chain
in 2. Let H be the union of all first terms of the elements of #, and let K
be the union of all second terms of the elements of #. For each (4, B)
in # let A" be the component of (U —H)UA containing A. It follows
from the maximality of # that there is neither a last element of # pre-
ceding (4, B) nor a first element of # following (4, B), so that A’ is an
arc. Let #' be the collection of all such ordered pairs (4, B), and let. H’
be the union of all first terms of the elements of .#'. Hence, if (4, B) € 5,
then each end point of A’ is a limit point of H' — A’. Now, for each (4’, B)
in #' let B’ be the component of (V —K)UB containing B. It follows,
a8 before, that B’ is an arc. Let #'' be the collection of all such ordered
pairs (A', B'), and let K’ be the union of all second terms of the elements
of #. If (A', B') e ", then each end point of B’ is a limit point of K'— B'.
We now define & to be the collection consisting of the following sets.
If (A’, B') € #”, then the set consisting of the four end points of 4’ and B’

isin &. If a e H —H' and a # ¢, then there is a well-ordered decreasing
chain {(4,, B;) | £< 4} in S such that the net {4, £ < 1} converges
to a. The net {B,, £ < A} then converges to a point b, and we let {a, b}
be in &. Thus, if p € H', then there is a point » of K', different from p
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or not, such that {p,r} e . If p ¢ F, then it follows from the maximality
of # that p € K', and hence there exists a point 7 of H' such that {p, r} e &.

Similarly, there exists a point s such that {g, s} € &. It i3 easily seen that
& satisfies all the conditions for having property X

Now let X denote a definite simple closed curve, and let p and q
denote two points of X. Let &, be a collection of subsets of X with prop-
erty X,,. Suppose that &, has been defined and has property X,,.
For each component U of X — (¥, let  and y be the end points of U y
let z be a point of U, and let & be a collection of subsets of U such that
if U is considered as a simple closed curve by identifying » and y, then &,
has property U_,. In what follows, 8, denotes |, and S denotes (&, .
The closure of a point set M will sometimes be denoted by C1M. If M ¢ &,
then C,(M) denotes the union of M and all components of X —§, With
end points in M, and if M € ¥y, then Cy(M) denotes the union of M
and all components of U —8; with end points in M. Let &,,, be the
collection of all subsets M of X such that either (i) or (ii) is satisfied:

(i) for some component U of X —8,, M e ¥y and MnoU = @;

(ii) M is the union of some element 8 of &, and all subsets 7 of X
such that, for some component U of X —8,, 0U = 8, T e ¥, and 8nT
# @; if no such T exists, we take M = 8.

Now suppose that y is a limit ordinal and that &, has been defined
and has property X, for a < y. Let &, be the collection of all subsets M
of X such that either (iii) or (iv) is satisfied:

(iii) there exist an a <y and a collection {M, | a < £ < y} such
that, for each &,

MieSey, (M| a<Ei<y} #0,
and

M = ClU{Me | e < E< 9}

(iv) for each &< y there is a component U, of X —8; such that
if M, is an element of &, containing dU,, then, for each a< &,

N{M; | a<&<yp} =0 and M =0N{U:]| £<y}.

LevMmA 2. If a< B, then 8, = 8.

Proof. The proof is by induction on B. Suppose that 8, = 8. It
follows from (i) and (ii) that 8, < 8,,,, and hence §, = 8;,,. Now sup-
pose that y is a limit ordinal and 8, < §, for each g such that a < < .

Let z be a point of §,. For each g such that o << f < y there is an element
M, of &, containing x. Hence

N{M; | a<B< 7y} #9,
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and it then follows from (iii) that
CQU{M; | a< < y}e¥,.

Therefore S, < §,.

Remark. It follows that the collection {U, | £< y} defining M
in (iv) is a decreasing chain, i.e., if a< <y, then U, 2 U,.

LeMMA 3. If y 48 a limit ordinal and, for each & < y, U, is a component
of X~ then 0(\{U: | E<y} < 8,.

Proof. Let U = M{U, | £ <y}, and assume that U s @. Suppose
that there is an a < y such that for each & with a < £ < y there is an
element M, of &, containing 0U, such that

N{M, | a<E<y} #0.

If M denotes ClU {M, | a< £< y}, then dU < M and it follows
from (iii) that M € &,. If no such a exists, then, for each &£ < y, each M,
in &, containing 0U,, and each a < y,

M{M, | a< i<y} =0,

and it follows from (iv) that 0U € ¥,. In either case, U < 8,.
LEvMA 4. If H € &#,, U is a component of X —8, with 0U < H, and
Ke%,,, is such that H = K, then U contains at most one point of K.
Proof. It follows from (ii) that there is an element L of ¥, such
that L = KnU. Hence 0U < L, and it then follows from condition (7)
for #, that U contains at most one point of L.

LeMMA 5. For each a, S, is closed and each element of &, is closed.

Proof. The proof is by induction on a. Let the lemma be denoted
by P(a). Now P(0) follows from the definition of &,. We ghall assume
P(a) and prove P(a+1). Let M be an element of & ,,. If M €%y for
gsome component U of X —8,, then M is closed in U and hence in X.
Suppose that, for each component U of X —8,, M ¢ ¥y, and assume
that # € M — M. Tt then follows from (ii) and P () that, for some element H
of ¥,, Hc M, M < C,(H), and since H is closed, for some component
U of X —8,, we have z € U. Now, since 8§, is closed, U is open, and hence
is a limit point of M N U. But, by Lemma 4, M N U is degenerate. Therefore,

each element of &,,, is closed. Suppose that x e 8,,,—8,,,. Since S,
< 8,1, there is a component U of X — 8, such that # € U. Hence x is
a limit point of S,,,NnU, since U is open. But it follows from (i) and (ii)
that S,.,nU = 8y —aU, and Sy is closed in U, and hence in X, so that
x € 9U, a contradiction. Therefore §,,, is closed.
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Suppose that y is a limit ordinal and P(e) is true for each a < y.
By definition, each element of &, is closed. If M €%, obtained
from (iii), then, clearly,

McClU{S: | E<y}.

If M =0N{U:| £<y} as in (iv), then, for each &¢<y, dU, < 8,
gince S; is closed, and hence M < ClU {8, | £< y}. It follows that

c ClU {8, | £< 7). '

Suppose that v € §8,—8,. For each &< y there is a component U,
of X —8; containing ». Let U = M {U; | £< y}. Then 29U, and it
follows from Lemma 3 that x € S,. Therefore §, is closed.

LEMMA 6. For each a and each component U of X — S, there s an ele-
ment M of &, such that 0U < M.

Proof. Let the lemma be denoted by P(a). Suppose that P(a) is
true and U is a component of X —8,,,. Then U is a subset of some com-
ponent V of X —8,, and hence U is a component of V —8§,. There is
an element K of &, such that 0U < K. If KnoU =@, then K e¥,,,.
If KnoU +# @, then there is an element H of &, such that 0V < H, and
since HNK # @, it follows from (ii) that HUK is a subset of some element
of #,.,. In either case, U is a subset of some element of &, ,. Therefore
P(a) implies P(a+1). Suppose that y is a limit ordinal and P(a) is true
for each a < y. Let U be a component of X —§,. For each £< y let U,
be the component of X — 8, containing U. Hence

U=MN{U;| E<v}.

It then follows from Lemma 3 that there is an element of &, con-
taining 4 U.

LeEMMA 7. For each a, 8, is perfect.

Proof. 8, is perfect by definition. Suppose that S, is perfect. Let =
be a point of 8,,,. If # € §,, then « is a limit point of 8, , since 8, = S,,,.
If # e X—-8,, then it follows from (ii) that, for some component U of
X—8,, €8y, and, since Sy, is perfect and Sy < 8,,,, # i8 a limit point
of S,.,. Now suppose that y is a limit ordinal and 8, is perfect for each
a < y. Let x be a point of §,, and M an element of &, containing z. First,
suppose that for some a < y there is a collection {M, | a < £< y} a8
in (iii) such that

M =CU{M, | a< <y}

Then, for some & 2z e M, or z is a limit point of M. Therefore, in
either case, x is a limit point of S,. Now suppose that for each &< 14
there is a component U, of X — Se as in (iv) such that

M=0N{U; | §<v}.
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If, for some ¢ <y, x €0U,, then xr € 8;, and hence is a limit point
of 8;. If, for each £ < y, 2 ¢ 0U,, then » is a limit point of J{0U;| £ < y},
which is a subset of (J{S: | £< y} by Lemma 3, and | J{S; | £< y}
c 8, by Lemma 2. It follows that « is a limit point of §,.

LeMmA 8. If &, is disjoint, then &,., is disjoint.

Proof. Suppose that H and K are two elements of &#,.,. If H and K
are subsets of different components of X —8,, then HnK =@. If H
and K are subsets of the same component U of X —8§,, then H and K
are in ¥y, and hence HnK =@. If H is a subset of some component
of X — 8, and K is not a subset of any component of X — 8., then it follows
from (ii) that HnK = @. Suppose that neither H nor K is a subset of
any component of X —8,. If L denotes either H or K, then it follows
from (ii) that L is the union of an element L’ of 8, and the collection .,
of all sets M such that, for some component U of X —-8,, M € ¥y and
LnM #@. Thus

Since H' and K’ are in &¥,, H'nK’' = @. Suppose that M € S, and
MnK' # @. Then, for some component U of X —8,, M € ¥, and M nH’
# O. Hence 0U is a subset of both H' and K’, a contradiction. Therefore
USfynK’' =0 and, similarly, USFxnH' = @. Finally, suppose that
LeSy and M e S are such that LnM + @. There exist components U
and V of X— 8, such that Le¥yand Me¥,. U =V, then L = M
and we get a contradiction as above. Hence U = V, and it follows from
Lemma 7 that UnV = 0. But L< U and M < V. Therefore,

UfunUsk =9,
and it follows that HnK = O.

LEMMA 9. If a< B, M €&, and &, is disjoint for a < &< B, then
there exists a chain {M, | a < & < B} such that M, e, for each & and
M, = M.

Pioof. The proof is by induction on §. Suppose that {M, | a < £ < B}
is a chain such that M, € ¥, for each &£ and M, = M. Now M, is a subset
of some element M,,, of #;,,, 80 that {M, | a < & < f+1} is the desired
chain. Now suppose that y is a limit ordinal and, for each g with a < 8 < v,
{Mf | a< &< B} is a chain such that M} e, for each & and M: = M.
Now, for a < £ < 5 < y and for each & MinM} # @, and hence M = M].
For each g such that a < 8 < y denote M2 by M,. Hence {M; | a < &< y}
is a chain. Let

M, = UM, | a< &<y}

It follows from (iii) that M, e&,, and hence {M, | a << <y} is
the desired chain.
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LemMMA 10. If &, i3 disjoint and M, P for a<é<y and
CQU{M, | e<é<y}ed,, then {M; | a< £< y} 18 a chain.

Proof. By Lemma 9, there is a chain {M; | a < £< y} such that
M; e, for each & and M = M,. Then, since M,nM; # @, we have
M, = M,.

LeEMMA 11. If He¥,, K € %,,,, and H c K, then C,(H) 2 C,,(K).

Proof. Clearly, there is no component U of X — §, such that K € &
and KnoU = @. It then follows from (ii) that K < C,(H). Let V be
a component of X — 8, such that 0V < K. If 0V < H, then V is a com-
ponent of X —8,, and hence V < C,(H). Suppose that v € 0V — H. Then
x € K — H, and it follows from (ii) that there is a component U of X — 8§,
such that 0U < H and € U. Now V is a subset of some component
of X—8,, and since UnV # @, we have V < U, so that V < C,(H).
Therefore C,,,(K) < C,(H).

LeMmA 12. For each B and each two elements H and K of L,
Co(H)NCy(K) =0
and iof a< p, He¥,, K € %5, and H = K, then
C.(H) =2 C4(K).

Proof. The proof is by induction on . Denote the lemma by P(f),
and suppose that P (&) holds for each &< 8. Hence, for each £ < 8, &,
is disjoint. Suppose that H € &#, and L € #;,, are such that H < L. By
Lemma 8, #;,, is disjoint. It then follows from Lemma 9 that there is
an element K of &, such that H < K < L. By Lemma 11, C;,, (L) = 0, (K),
and P(p) implies that Cs(K) < C,(H). Hence

Cpr(D) < Co(H).

Now suppose that H and K are two elements of ¥;,,.

Case 1. For some component U of X —8;, we have H =< U and
K = U. Hence both H and K are elements of & ;. Now, if V is a component
of X — 8., such that 0V < H, then V < U, since U separates X, and
0U is a subset of some element of &;,,. Hence V is a component of U — 8y,
and 0V < H. It follows that Cy(H) = Cp,,(H) and, similarly, Cy(K)
= Cp,,(K). Since ¥ is non-separating,

Cy(H)nCOy(K) =

Case 2. For some component U of X —8;,,, we have H < U and
0U < K. Then KnU € ¥y, and some element L of &, separates H from
KU in U. It follows that L separates H from K in X, and since L € &;,,,
L separates C,,,(H) from Cp,,(K) in X.
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Case 3. For each component U of X —§;, neither H nor K is a subset
of U. It follows from (ii) that there exist elements L and M of ¥, such
that L < H and M < K. Then

Cpr1(H) < Cp(L), Cppi(K) < Cp(L), and Cyp(L)nCy(M) =

Thus we have shown that if P(£) holds for each & < 8, then P(8+1)
holds.

Suppose that y is a limit ordinal and P(£) holds for each &< y.
Assume that a< y, H € ¥,, and K €&, are such that H < K.

Case 1. For each &< y there is a component U, of X —8, such
that K =0{U,; | £<y}. Hence H< U,,,, and since U,,, = U, and
Hc X—U,, there is a point x of U, such that H = {z}. But it follows
from Lemma 6 and P(a) that dU, < H.

Case 2. There exist a § < y and, for each & with § < £ < y, an element
K, of &, such that

K =0U{EK; | B< E<y}.

By Lemma 10, {K, | $ < é< y} is a chain, so that we may take
B > a. Thus, for each ¢,

K, c Cs(K,) < Co(H),

and hence K < C,(H). Let U be a component of X — 8, such that 0U < K.
For each £< y, U is contained in a component U, of X —8,, and 9U,
is a subset of some element L, of &, . Suppose that, for some { < y, K, # L,.
Now

E=C0U{E, | {<&<vy}
and, for each &, K, < C.(K,), so that U < K < C,(K;). But
Us U< C(Ly),

and C,(K,;) and C,(L;) are disjoint closed sets. Hence, for each &< y,
K, = L, so that U < C;(K) < C,(H). Therefore C,(H) = C,(K).
Now suppose that H and K are two elements of &,.

Case 1. For each £ < y there exist components U, and V, of X — 8,
such that

H=0N{U,| &<y} and K =0N{V:| &<y}
For some a< y, U, # V,, and hence U,nV, = @. Clearly,
C,(H)s U, and C/(K)cV,.

Case 2. There exist an a < y and, for each £ with a < £§< y, ele-
ments H, and K, of &, such that '

H=CU{H, | a< §<y} and K =OlU{K,|a<§é<y}
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For some f such that a < < y, we have H; # K;. Then
C,(H) < C4(Hp), OC,(K)< Cs(Ky), and Cy(Hp)NCh(Kp) =0
Case 3. For each &< y there is a component U, of X —8, with

H =0N{U: | <7},

and there exist an a < y and, for each ¢ with e < § < y, an element K,
of &, such that

K =OU{K, | a<E<y}.
Since
N{H; | a<é<y} =0 and N{K;|a<é<y} #0,
there is a f such that a <f <y and Hy; # Kz. Then
C,(H) < C4(Hp), O,(K)<c Cs(Ky), and Cz(Hp)nC4(K) =0

Therefore, in any case, C,(H)nC,(K) =0
LemMMA 13. For each a, each element of &, is totally disconnected.’

Proof. Clearly, each element of &, is totally disconnected. It follows
from Lemma 4 that if each element of &, is totally disconnected, then
each element of &,., is totally disconnected. Suppose that y is a limit
ordinal, M € ¥, and, for each a < y, each element of &, is totally discon-
-nected. If

M =oN{U: | E<v},
then M consists of at most two points. Suppose that
M=ClU{M,; | a< &<y}

and L is an arc in M. It follows from Lemma 12 that M < O,(M,) for
each ¢ such that o < &§ < y, and since M, is totally disconnected, there

is a component U, of X — &8, such that U, < M, and L < U,. Hence
Le N{U: | a<E<y}, o
and since 9 {U; | a < £< v} €&,, we have
L N{U:| a<< &<yl

But if z is an interior point of L, then # is not a limit point of
U{M, | a< &<y}, and hence x ¢ M. Thus M is totally disconnected.

LEMMA 14. For each a, no element of &, separates two poinis of any
other element of &,.

Proof. For each a and each component U of X —8,let J denote
the simple closed curve obtained from U by identifying the end points

3 — Colloquium Mathematicum XXXVIIIL.2
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of U. Let P(a) denote the lemma. Clearly, P(0) is true. Suppose that
P(a) is true. Assume that H and K are two elements of .7,,+1, and # and ¥
are two points of K such that H separates z from y in X.

Case 1. For some component U of X —8§,, H and K are subsets
of U. It is easily seen that H separates x from y in Jy. But H and K
are elements of & .

Case 2. For some component U of X —8,, we have H < U and
K¢ U. If x and y are in X — U, then X — U is a connected subset of
X — H containing x and y. Suppose that one of the points # and vy, say z,
is in U. Since KnU is degenerate, ¥y € X — U. But then H separates x
from 0U in Jy, H € ¥y, and 0UV {r} € ¥y.

Case 3. For some component U of X —8,, we have H ¢ U and
K < U.Itis easily seen that Hn T separa.teswfromy indy. But HNU e ¥y
and K € #y.

Case 4. For each component U of X — 8, neither H nor K is a subset
of U. Hence there exist two elements H, and K, of &, such that H, < H
and K, c K. It follows that H < C,(H,) and K < C,(K,). If v € K,, let
2 =ux If ¢ K,, then let U be the component of X — 8, with boundary
in K, containing « and let 2’ be a point of dU. Let ¥’ be defined similarly.
Since

O.(H,)NO,(K,) =@

H separates 2’ from y’, and hence H, separates #' from y’'. But =’ and y’
are two points of K,, which contradicts P(a). Therefore P(a) implies
P(a+1). )

Now suppose that y is a limit ordinal and P(e) is true for each a < .
Assume that H and K are two elements of &,.

Case 1. We have
H=0N{U;| §<y} and K=0N{V,]| &<y}
For some a, U, # V,, and hence En—ﬁ =@. Since H < 1_7: and

Kc _V_a, neither H nor K separates two points of the other.
Case 2. We have

H=0N{U;| €<y} and K =ClU{K; | a<é<y}.
For each & such that a< <y, U;nK, =0, and hence
N{U: | §<y}nK =0.

It follows that neither H nor K separates two poinfs of the other.
Case 3. We have

H=CU{H, | a<é<y} and K =CIU{K, | e<E<y}.
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Suppose that H separates two points # and y of K. Then for some g
with a < < y there exist two points #’ and y’ of K, such that H sepa-
rates 2’ from y’. For each & such that 8 < £ < y, #’ and y’ are in K, and
hence H, does not separate z’ from y’. Therefore, for each such & there
exists a component U, of X —H, containing =’ and y'. Let

U=N{U: | bK< E<y}.
Thus

U X-UH: | B< i<y}

Now U contains an open set V such that V is an arc from 2’ to y’.
Then V ¢ X — H, and hence H does not separate z’ from y’, a contra-
diction.

LEMMA 15. For each a and each two elements H and K of ¥,, some
element of &, contains at least four poinis and separates H from K.

Proof. Denote the lemma by P(a). Clearly, P(0) is true. Suppose
that P(a) is true, and let H and K be two elements of &, ;.

Case 1. For some component U of X —S,, we have H < U and
K < U.Some element L of & contains at least four points and sepa.ra.tes H
from K in U. Hence L separates H from K in X.

Case 2. For some component U of X —%,, we have H < U and
Kc X—U. Now dU separates H from K in X, and some element L
of &, contains at least four points and separates H from dU in U. Hence L
separates H from K in X.

Case 3. For some component U of X —8,, we have H < U, and
KnOU #@. There is an element K of &, such that U < K' < K.
Some element L of & contains at least four points and separates H
from K' in U. Hence L € &,,,, and L separates H from K in X.

Case 4. For each component U of X — 8, neither H nor K is a subset
of U. There exist elements H, and K, of &, such that H, < H and K, < K.
Some element L, of &, contains at least four points and separates H,
from K ,in X. Thus L, is a subset of some element L of &,,,. Now L,
separates C,(H,) from C,(K,) in X, and hence L, separates H from K
in X. Then, since &,,, is disjoint, L separates H from K in X.

Now suppose that y is a limit ordinal and P(a) is true for each a < y.
Let H and K be two elements of &,.

Case 1. We have

H=C0U{H; |l a<fé<y} and K =ClU{E, | a<£i<y}.

Some element L, of &, separates H, from K, in X, and L, is a subset
of some element L of &,. It follows that L separates H from K in X.
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Case 2. We have _
H=0N{U,| <y} and K =0N{V,]| <y}

For each £ < y there exist elements H, and K, of &, such that dU,
< H, and 0V, c K,. First, suppose that, for each ¢ <y, H, = K,. For
some a<y, U, # V., and hence U,nV, = Q. Since

ﬂ{He l a<§<y}=ﬂ,

I'd

for some g such that a < g <y we have Uy < U, and ﬂg V.. Then H,
contains at least four points and separates H from K in X. Thus H, is
a subset of some element L of &#,, and hence L separates H from K in X.
Now suppose that, for some o <y, H, # K,. Some element L, of &,
contains four points and separates H, from K, in X, and L, is a subset
of some element L of &,. It follows that L separates H from K in X.

Case 3. We have
H=0N{U:| é<y} and K =ClU{K;| a<é<y}.

For each £ < y let H, be the element of ¥, containing 0U,. There
exists a f such that ¢ < B <y and H, # K,. Some element L, of &,
contains four points and separates Hy from K, in X, and L, is a subset
of some element L of &,. It follows that L separates H from K in X.

We are now in a position to prove Theorem 1. Clearly, for some
limit ordinal 4, X = (J&,. It follows from the lemmas that &, is a non-
-separating collection of pairwise disjoint closed totally disconnected
subsets of X and, furthermore, &, is saturated, i.e., for each M in &, and
each z in X —M some element of &, separates # from M. It then follows
a8 in Whyburn [8] that &, is upper semi-continuous, the decomposition
space Y = &, is a dendrite, and the natural map f of X onto Y is light
and non-alternating. It also follows from Lemma 15 that the set of all
branch points of Y is dense in Y. It remains to prove that, for each y
in ¥, ¢(y) = If ')l .

Let M be an element of &;. If M is finite, then ¢(M) = |M|. Sup-
pose that M is infinite. Since the boundary of each component of X — M
is in M and each two components of X —M have at most one common
boundary point, ¢(M) < |M|. Let P(a) denote the statement that, for
each infinite set M in &,, ¢(M) = |M|. Since each element of &, is finite,
P(0) is true. Suppose that P(a) is true and M is an infinite element of
Fay1- If, for some component U of X —8,, M € ¥y, then M is finite.
Hence, for some element L of &,, L < M. If U is a component of X — I,
containing a point of M, then U is a component of X — 8, such that
dU < L, and hence U contains at most one point of M. Therefore ¢(M)
= ¢(L). It also follows that |M| = |L|, so that ¢(M) = |M|. Now sup-
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pose that y is a limit oydinal and' P(a) is true for each a < y. Let M be
an infinite element of &,. If

M =oN{U, | §<}, \
then M is finite. Hence there exists a chain {M, | a < & < y} such that if

L=U{M: | a<é<yl}y

then M = L. Since M; = M and M < C,(M,), we have ¢(M,) < ¢(M).
Then

Ll = sup{IM,| | a< &<y} = sup{e(My) | a< &< 9} < e(M).

Let « be a point of M — L. For each £ let U, be the component of
X — &, containing x. Suppose that, for each £, 0U < X —§;. ThenoU €%,
and since z € L, we have x € 0U. It follows that M = U, which is a
contradiction since M is infinite. Hence for some § such that e << g <y
there is a point y in 0UNS,. It follows that 6U = {x, y}. The interior
of U is then a component of X —M with x as a boundary point. Thus
each point of M — L is a boundary point of one and only one component
of X - M. Hence |M — L| < ¢(M). Then

M| = |L|+ |M —L| < 2¢(M) = ¢(M).
Therefore | M| = ¢(M). This completes the proof of Theorem 1.

2. Universal dendrites. Let ¥ be a class of dendrites. We say that
the element M of € is a universal-dendrite with respect to € if each dendrite
in ¢ is homeomorphic to a subdendrite of M. Menger [3] has shown the
existence of universal dendrites for the class ¢ of:

(1) all metric dendrites;

(2) all metric dendrites with only finite branch points;

(3) all metric dendrites X such that, for each point 2 of X and for
each integer n > 2, ¢(x) < n.

Menger also proved that a dendrite M is a universal metric dendrite
if the set of all infinite branch points of M is dense in M and gave an
elegant construction for a universal metric dendrite in the plane. We
indicate in the sequel how to modify the construction used in the proof
of Theorem 1 to obtain a universal metric dendrite. Universal dendrites
for classes of (2) and (3) may also be obtained by suitable modifications.

Let X be a metric simple closed curve. In the definition following
Theorem 1, replace condition (2) by the statement that each element
of & is countable and closed, replace condition (6) by the statement that
if H and K are two elements of &, then some infinite clement of & sep-
arates H from K, and replace condition (7) by the statement that {p} e &
and {g} € &. Define &, only if a < w, and if 0 < a < w, require that each
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element of &, has diameter less than 1/a. The decomposition space &,
is then a dendrite having a dense set of infinite branch points and is
therefore a universal metric dendrite.

It would& seem to be of interest to consider the existence of universal
dendrites for other classes of dendrites. The construction used in the
proof of Theorem 1 should be useful in such considerations.

3. Propositions related to the Suslin conjecture. A space is separable
if it has a countable dense subset. We shall call a space paraseparable
if it does not contain uncountably many disjoint open sets. Thus a Suslin
space is a fully ordered space which is connected, non-separable, and
paraseparable in its order topology. In [1] Eberhart proves that a den-
drite is metrizable if and only if it is separable and asks whether every
paraseparable dendrite in which each arc is separable is metrizable. He
conjectured that an affirmative answer to this question is equivalent to
the non-existence of a Suslin space. Miller [4] proved the conjecture to
be correct. Miller called a non-separable paraseparable dendrite in which
each arc is separable an Eberhart continuum. In this section we shall
give an alternative proof, based on Theorem 1, of the hard part of Miller’s
theorem, stating that the existence of a Suslin space implies the existence
of an Eberhart continuum. We shall also obtain another metrization
theorem for dendrites which avoids the Suslin question.

THEOREM 2. If X is a non-separable paraseparable simple closed curve,
Y is a dendrite such that the set of all branch points of Y is dense in Y, and
f 18 a continuous light non-alternating map of X onto Y such that, for each
point y of ¥, ¢(y) = |f*(y)|, then Y is an Eberhart continuum.

. Proof. Since X is paraseparable and f is continuous, Y is para-
separable. Suppose that Y is separable. Then Y is metrizable [1], and
hence the set K of all branch points of Y is countable. Since Y is para-
separable, for each point ¥y of ¥ we have c(y) < 8,. Let

H=U{'® | cy)>2}.

- Hence H is countable. We show that H is dense in X. Suppose that
we X and U is a connected open set in X containing w. Since f~*( f(w))
is totally disconnected, there is a point «# of U such that f(w) # f(®).
Let wr denote the arc in X from w to « lying in U, and 16t V denote the
set of all interior points of the arc in Y from f(w) to f(x). Since f(wwx)
is a continuum containing f(w) and f(z), and Y is dendritic, we have
V < f(wz). Now, if V contains no point of K, then V is open. Hence V
contains a point v of K. There i8 a point # of U such that f(u) = v. It
follows that H is dense in X. Therefore Y is non-separable.

Now suppose that 4 is an arc in Y. Let K be the set of all branch
points of Y belonging to A. For each point y of K, let C, denote the com-
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ponent of X — A with boundary point y. For each y in K, C, is open,
and if # and y are distinet points of K, then (0,nC, =@. Hence
{f~1(C,) | ¥ € K} is a collection of disjoint open sets in X and is therefore
countable. It follows that K is countable. Furthermore, if K is not dense
in A, then A contains an open set having no branch point of Y. Therefore,
each arc in Y is separable.

A continuum will be called Suslinian if it does not contain uncount-
ably many disjoint non-degenerate continua. This term was introduced
by Lelek in [2] for metric curves. Note that a dendrite'is Suslinian if
and only if it does not contain uncountably many disjoint ares.

THEOREM 3. The dendrite Y is metrizable if and only if Y is Suslinian
and each arc in Y i8 separable.

Proof. Suppose that Y is metrizable. Clearly, each arc in Y is metriz-
able, and hence separable. If Y /s not Suslinian, then for some &> 0
there is an infinite sequence of disjoint arcs in Y each of diameter greater
than ¢, and we easily get a contradiction to the fact that Y is dendritic.

Suppose that Y is Suslinian and each arc in Y is separable. Clearly,
Y is paraseparable. Let A, be a maximal arc in Y, and let &, = {4,}.
Suppose that &, has been defined for a < f. Let

Yﬁ =CIU{U?G | a< :3}1

and let &, be the collection of all maximal arcs A such that A has one
end point p in Y, and A —{p} < X — Y,;. Let & be the union of all such
collections &,. It follows that if 4 and B are two arcs in &, then either
AnB =@ or, for some point p, AnB = {p} and p is an end point of
one of the arcs A and B. Moreover, each point of Y —( J& i8 a non-cut
point of Y. Since each arc in & contains an arc in its interior and Y is
Suslinian, & is countable. Hence, if Y has uncountably many branch
points, then some arc in & contains uncountably many branch points
of Y, so that Y contains uncountably many disjoint arcs. Therefore,
Y has at most countably many branch points. It then follows from Eber-
hart’s theorem that Y is metrizable.

REFERENCES

[1] C. Eberhart, Mem';ability of trees, Fundamenta Mathematicae 65 (1969),
p’ 42'50. .

[2] A. Lelek, On the topology of owrves II, ibidem 70 (1971), p. 131-138.

[3] K. Menger, Kurventheorie, Leipzig-Berlin 1932.

[4] G. G. Miller, Dendritic continua, Doctoral Dissertation, University of Missouri,
Kansas City, 1968.



212 B.J. PEARSON

[5] J. Novak, On partition of an ordered continuum, Fundamenta Mathematicae 39
(1952), p. 53-64.

[6] B. J. Pearson, Mapping an arc onlo a dendritic continuum, Colloquium Mathe-
maticum 30 (1974), p. 237-243.

[7] — On the existence of rigid arcs, The Journal of the Australian Mathematical
Society 18 (1974), p. 306-309.

[8] G. T. Whyburn, Analytic topology, American Mathematical Society Colloquium
Pablicationks 28 (1942). ' ,

UNIVERSITY OF MISSOURI
KANSAS CITY

Regu par la Rédaction le 10. 11. 1975



