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1. The Lagrange spectrum of a set. As usual, let @ denote the rational
numbers, Z the integers and N the positive integers; also let 0% denote
the nonzero rationals. Iet & he an irratiomal number and let

& = [ey, 15 02y -]

be its continued fraction expansion. The Lagrange constant L{£) of &
is the least upper bound of the %’s for which the inequality
' a] 1
i E_ 4 < 5
R INETS
has infinitely many rational solutions afq. It is well known that L(£) > V5
and that L(£) can also be defined by either one of the two formmulas:
1) - L{%) = limsup(glg&H™

[r s g

where |z} = minjz —=|, and

neZ .
(2) L(§) = limSHP {25 €1y A0, 60y Ggy e es 01])‘
Faxo
For rational & we define L{§) = + oo.

Let 8 be a set of real numbers. The Lagrange spectrum L{8) of 8
is the set

L(8) = {Li(§)] ée8}.

The purpose of this article is to establish a simple property of the spectrum
and to apply it to the case of real quadratic number fields.

THEOREM 1. Let £ be a real number and let n = 1 be an inieger. Then

max L (————wdlf—i-a) = nli(£)
d,

dyds,a



288 T. W. Cusick and M. Mendés France

where the maximwm is taken over all divisors d, and dy > O of n such that
didy = n, and over all integers a.

As a copsequence, we have the following result.

CoROLLARY. Let § be a sef of real numbers such that @* -8+ 0 c 8.
Then

L{8) = |UJ aN.
z=L(8}
When & is a real quadratic number field, say Q(}/E) (d = 2, aquare-
free), we can specify the structure of X:(8) to some extent.
THEOREM 2. Let = 2 be a squarefree integer.
(i} There exists ¢ set A = A(d) of positive rational numbers such thal

L(Q(V) = VadN.
(i) If I(VE) ig the ring of indegers of the field Q(I/é), then

ViN  if 4 =1 (mod 4),

LIya) =1 _
VAN . if =2 or3{mod4).

To give a complete characterization of L(Q(l/é)) seemd to be rather
diffieult. We do not even kunow if the set A {d) can be finite, which would
imply that L{Q(Va)) is a discrete sot. We conjecture that L{Q(Vd)) is not
discrete, so A4 (d) is always an infinite set. () It is possible fo determine
some members of 4 (d) for a given d by computing the chaing of reduced
indefinite binary quadratic forms of diseriminant kd (F=1,2,..))
and then looking for those chains of forms a; 2% +-bary + ey? for which
mint |a;] does not divide k. (See Dickson [2], Chapter VII, for the rel-
evant theory of quadratic forms.) For example, we find that 4 (b)Y = {1, 7/3,
13/6} in this way; the latter two numbers arise’ from (—134-7V5)/6
= [0,2,8,1,4] (k=21) and (—25+13V5)/10 = 16,2,2,5] (k =13),
respectively. ,

For arbitrary squarefree d, even the determination of the smallest
member of L{0Q(Vd)) seems difficult. Tt wonld also be interesting to know
whether there exists a constant B such that for every real quadratic field,

L(Q(ﬁ)) containy a pumber < B. We conjecture that such a econstant
does exist. '

2. Proof of Theorem 1. We first establish some lemmas.
Lrants 1. (i) Let a,b,¢,d be four integers such that ad—be = 1.

(1) 4{d) is infinile. See Appendix.
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Then for all &
at-+b
L = L(&).
) -

(ii) For any integer I =0,

LihE) << R L(E).

Proof. (i) The ﬁumbers E and (af--Bbi(eE--d)”! are eguivalent in
the sense of confinued fraction theory ([3], p. 141). Bguality (2) then
implies (i), (ii) Obvious from formula (1). ®

Lmvwma 2. Let d, and d, be two positive integers. Then for oll & and
all integers a

£
L(dl‘zl' “)g a,d, L(E).

2

Proof, Using Lemma 1,

] dy ) . ( 1 )
- < &L
L{ a, ) L(algw s 4 Eta

= dy L{d; E+a) g did, L(§). =

In order to establish Theorem 1, it is cnough to prove the following
result.

Lemuia 3. For all real & and for all integers n = 1, there exist divisors
of n, dy and d, = njd,, and an integer a {0, 1, ..., n~1} such that

L(dlé"}_a);ﬂL(S).
dy

Proof. We prove the lemma by {nduction on the number of divisors
of n. We suppose £ is irrational.

Step 1. Assnme n = p is prime. Using an idea of Davenport [1],
let 5 (0, L(&). By definition of L(£), there exist infinitely many ¢,/q,
sueh that .
1

<—.
ngﬂ.

Ca
-
U g,

Snppose p divides infinitely many g¢,’s. For those g%, g,= 94,
hence '
1

g2’

] E Gﬂ
R

and .
' L(pE) = pn.
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Ag y is arbitrarily close to L(&),
(3) L{p&) = pL(§)

as was to be shown.

Suppose, on the contrary that p is coprime to ¢, for all sufficiently
large n. For all those »'s, there exist a,e{0,1,...,p—1} and r, e Z
such that

Cp = —Opfy + ul-

Let we{0,1,...,p—1} be 2 cluster point of the infinite sequence (a,).
Then for infinitely many n's

Cp = — Gl + 7P
$0 that
lgt+a Ty 1
. | » 0| g
Therefore
]
57
7 np

and, as above

(4)

Elo
L = pL{&).
(£5%) g

Combining inequalities (3) and (4) we have then proved that among the
numbers

£ &41 E+p—1
{PE:'E)‘; P [ARRS f: }

one at least, say &, sabisfies
L{E) = pL(&).
Lenuna 3 is thus established when = is a prime.

Step 2. Let » be & composite number. Assume the truth of the lemma
for all m < w. Let mand m’ = n/m be two divisors of n such that 1 << m < n.
By step 1, there cxist §,, 8, = m/8, and a such thet

& ta
B2 s,
Again, using step 1, there exist §;, §; = m'/d; and o’ such that
[0 |
dl(—}.%ﬂ) + a’ .
L 4___,_2_I_______ ; m'L al—éti -
5 3
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Define d; = 6, 8;, d, = 6,6, b = a'd,--ad;. Then
a5+
L(Jaﬂ);mm(alﬂa

2

) =al{f). w

o

3. Proof of Theorem 2. To prove Theorem 2 (i), let £ e Q(Vﬁ)‘ The
continued fraction expansion of & is periodic from some point on, say

& = [Cg; Oyyonny Oy By Agy -ony )

By formula {(2),
L(§) = max (L5 @yiay oevs gy ] 10, Giaery Gipagy -onr &)
l<iss

We mav assume without loss of generality that

CT{E) = [B1, By -y G110, By Gg yy v, 4]

Now a = [dy, --., @] EIQ(]/E), 5ay a = (a+bV’E)/c for a,b,ccZ.
By the theorem of Galois about eonfinued fractions with reversed period,

we have for the algebraic conjngate o* of a:
o = _[O;EM Bg_yy-eny tn] = ('a’_‘b]’/&”c‘

Henee L(£) = a—a* = 2bVdje e VdQ. Combining this resuls with the
Corollary of Theorem 1, we obfain Theorem 2(i).
To prove the second part of Theorem 2, we need the following lemma.
LenmMA 4. Let d =2 be o squarefree number.
(i) Let a and b be iniegers. Any number equivalent 1o a-+bVd can be
represented as
oo ,

&, 0 eZ.
¢

(i) If d=1 (mod 4), any number equivalent to

L_]_z,b_@’ a =1 (mod2) b =1 (mod2)

can be represented as

o LbVa
’ 1
¢

a', ' e,

where ¢ is even. N
Proof. We conzider (ii) first. Suppose (a”+b”l/d)[c" iz equivalent
0 {a4-5Vd)[2, where a and b are odd and 4 =1 (mwod 4). Then there
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©xish inbegers A, B, C, D such that 4D —BC = +1 and
o' +5Vd  Ala+Wd)+2B  a,L20Vd

¢ ClarwWd12D | o

where

Gy = {Aa+2B)(Ca+2D)— A0*d, ¢ = (CoL+-2D)2— (2b24.
e have ¢, = 0 (mod 2} and ¢; = 0 (mod 4), so if we define ¢’ = 4.4,/
and ¢ = f¢/2, the conditions of (i} are met. A similar bubt simpler
caleulation proves part (i) of the lemma. ®

We now proceed to establish Theorem (i),

First case: d =2 or 3 (mod 4). Tet o eI(VE). Then ¢ = a+bVd
where a and b are rational integers. We shall assume b > 0 disvegarding
the trivial case b = 0. The continued fraction of ¢ is periodic from the
beginning provided the integer a is suitably chosen, say a = [a,, @, ..., @],

Define

a; = [ty @igq,y -

andlet off (1<ig

o Byeer] (IS IC5)
s) denote the algebraic conjugate of ¢;. By formula (2),

o) = max (¢;~a)).
Isiists

Since the a; are equivalent, Lemma 4 implies o, = (ai+bﬁ 1/e; for some

integers a, ¢;. Henece
(5) L(a) = 20¥'d/min c,).

l=ti<s L
’Obviogsly ey =1 is the minimum of the |¢j, s0 L(a) = 2bVd. Hence
LIV 3) = 2VaN.

Second case: d =1 mod4. Let o eI(l/cZ—). Then either ¢ = ¢ 1-bV @
or ¢ = %(a—i—b]/ci) with @ and b odd. The former sitnation can be treated
as above, so we only consider the latter one. As above, we find that (B)

holds. We have ¢, = 2 and by Lenma 4, e, is always even. Thus La) = bl/cl
S0 we have L{I(Vd)) =VAN. wm

Appendix

H. Cohen and 8. M. J. Wilson have independently answered the
question whether 4(d) is infinite: A{d) is indeed necessarily 'mfmzte
With his kind permission we reproduce Wilson’s proof.

Let d be a squarefree integer. Let 6 be the fundamental unit in Q Va),
leb 7, = (6" —67"2 and
L YR, +4)
2
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where b divides 7,
checks that
(i) & = (6"~ 1)} ¢ Q(Vd),
(i) @ = [,/b, B] and
Vralra+4)
3 .

and where b2< 7, to ensure (iii} below. One easily

(ili) L (a) =

Now let p and g be two primes sneh that p < ¢ and (p, 4d) = (g, 4d) = 1.
Choose n = (p*—1){¢*—1} and now p and g divide r,. Define * by
_p"ii(ﬂ“—@‘“)/l/d and take b = p**! {a possible choiee). Then

D(a) = Vi, .
P

where ¢ is some integer not divisible by p. Hence A(d) is infinite.

Added in proof (March 1979): In 2 recent paper of A. C. Woods {The Mar-
Eoff spectrum of an algebraie wumber field, J. Austral. Math. Soc. {A) 25 (1878),
7p. 486-488), it wae proved (by lcoking at the corresponding problem for the Mar-
koif speetrum) that L(Q(V’E)) is not a diserete sef. After seeing this paper ST
Wilson was able to generalize the work and prove that L{Q(¥d)} is nof a discrete
set. This sefiles the conjecture stated after Theorem 2 above.
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