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On a question of Leh.mer and the number
of irreducible factors of a polynomial
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1. In 1933 D. H. Lehmer [5] posed the following quesbion:
Let a be a non-zero algebraic integer of degree n, ay= a, a5, ..., 4,
ity conjugaies over the rationaly and let

t
= [ [ max{1, 1o}
fex]
Is it true that for every positive ¢ there exists an algebraic integer a such
that 1< M{a)< 1482 '
Clearly, M(c) > 1 and Kronecker’s theorem [3] asserts that M (o) =
implies that a is a root of unity.

" In the ecase where a is not recxprocal (i.e. when o and 1/e are not
conjugate) Lehmer’s question was answered in the negative in 1971 by
C. J. Sroyth [8]. He showed that if §, denotes the real root of the equation
23—z —1 = 0 and e is not reciprocal, then either M (a) = #, or « is 2 root
of unity. This implies the well-known Siegel’s result that 8, is the smallest
PV-number. '

'In the same yvear, P. E. Blanksby and H. L. Montgomery [2] showed

" in the general case that if o is not a root of unity, then

. ' 1
Moy 2 L +52ﬂ10g6n .
An estimation on M (a) of the same order was recently obtained by O. L Bte-
wart [9] who used a different argument. Stewart’s proof is based on a
construction of an anxiliary polynomial with small coefficients.
In this paper we modify the method of Stewart and prove
TaEOREM 1. Let a be non-zero algebraic infeger of degree n. If € is an
arbitrary positive constant and n > ny(e), and

©_floglogm\¥ -
H()< 1+(1~«-s)(°§)g§ ) :

then o 48 @ root of umity.
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An easy computation shows that if we replace 1—¢ by 1/1200, then

the assertion of our theorem holds for all =.
‘With Lehmer’s problem is closely connected a conjecture of A. Schinzel
and H. Zcssenhaus [6] concerning ra_i == max[a]. They conjectured that

Iisn
there exist a positive eonstant € such that the inequality
¢
[af<1+

7

implies that a is & root of unity.

The result of Smyth gives the positive answer for non-reciprocal «-
In the general case our theorem gives

CoROLLARY, Let o be a non-zero algebraie integer of degwa n. If & is an
arbitrary posetwe constant and n > m(s), and

Ioglogn
o] < n ( logh )’

then o is a root of wnity. _

Let f be a polynomial with integral coefficients, Denote:

Ifi — the degree of f,

il — the sum of squares of its coefficients,

w(f) — the number of distinot irreducible factors of f )

£(f) — the number of irreducible faetors of f counted with multi-

plicities,

£2,{f)— the number of non-cyclotomic irreducible factors of f counted,

with multiplicities.

In [7] A. Schinzel conjectured that if f{0) == 0 then for an arbitrary
>0 '

(4) Q (f) O(f1* log if)'~*),

(B) () = Ofif1*(log IF)*~?),

(0 w(f) = o{|f1*(log If)*=*) (as |f} tends to mfuuty)

Also A, Schinzel observed that Theorem 1 1mp11es {A). Next the author
of this paper and A. Schinzel noticed that (B) and (C} are false In the
general case.

More precisely, we have

TEROREM 2. (i} If f is a polynomial with f (0) 30 and = is an owbz"tmwy
positive number, then

2(f) = O[If*(log [fI)**).

(ii) For every positive ¢< 3 and every n there ewists a polynomial f
with f(0) %0 and |f|>n such that ’

w(f) > /1 (log] N with o =o(e)>0.
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(i} For every positive ¢ there erists a polynowmial f with f(0) = 0
and |f| > ¢ such that

Q(fy> olf = (log |If1y'*.

The author is very grateful to Professor A. Sehinzel for helpful com-
ments which allow to improve the constant of Theorem 1 from 4 [2Tto1l—e.

2. The proofs are hased on three lemmas, the first of which is a.
slightly modified Stewart’s [9] version of Siegel’s lemma. For the con-
venienee of the reader we give full details.

LEMya 1. Let by (I<<i< N, 1<j< M) be algebraic integers in
@ field K, such that for each ] not oll by (L<{i< N) are zero. Let [K:Q7
= n and let 0y, 0y, ..., o, denole the embaddmgs of K in the complex numbers.

If N> Mn, then the system of equations

N
Dby =0 (1<j< )
=1

has a solution in rational integers ®,, &, ..., @y, not all of which are zero,
whose absolaute values are af most

( 1/5 l\T+l (ﬁ Hﬂlax i O'k( 11}1)1!':1.&1’)””!(3\7*“3!)

i=1 k=

Proof. Letoy, 65y ..., 0, , be the real embeddings of K and a,,1+1, cey O

be the complex with o, 4., ; = "ﬁﬂ fori=1,2,...,rand n =, +-9r,.
Put
o for I<igry,
Reo; for 1y << K Ty,
Ime; for rdr,<i<gn.

Let0 <y, <Y ford =1,2, .., Nandy = {¥]— ¥ +1> 0. For (¥ +7)¥
N-tuples we have

~
ITA- ( _): by ?li
=1

for k. =1,2,...,nand § =1,2,..., M.
N )
Thus the numbers 7, Y b y;} lie in the intervals I, = [ — A, 4,57
=1

£ NY max|r (b)) = Ay

1g¢’N

with lengths 2.4,,. New divide each of the intervals I, into L; equal
parts. If

o [I<mon
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then by pigeon-hole principle there exist two different N- tuples (Yyi Yoy -nn
<y ¥y) and (3,9, ..., Yy) such that

SEREARE

=1 i=1
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max. |z, (by)|

for 1<k nmnd1<g < M.

Put @ =y, —y; for 4 _1,2,'..‘.,N. Then nlax_[ivilgy and not

13
all &'s are zero. To prove the lernma it remains to show that

vaw‘ =0 for

On the left-hand sides we have algebraic integers and thus it suffices to show
that absolute values of their norms are less than 1. For &k <{r; we have

o S = s Sraed < =

k>

j=1,2,.., M.

max AR
For ri+ry =

! crk(zi: b,:jm,;) Optry (Z by mi)

_ (Re o ;bﬁm{))z n (Im o gbﬁmi))z

ANY
< 2( ) max l%( 1j)°'k+r2(bif)[‘
‘i
Put
. YN /nd }
L= =3 max |ay (by) |
H [Tmaz oy (bl | %=t '
=] i

and Iy = [L,] for § =1,2,..., M.
NOW (1) is satlsfled ‘md mu- choice of ¥ assures that all the L; are
positive numbers, The Ghmce of ¥ implies also the relations

2V2Y nmax oy (B {,)g”“> 1> L~
Kl

and

2V (N+1 Y H max lc,c(bi,)[”“—u--l =0.

k=1
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Hemnce

. R SV o) o [ 2VEN
N o (Z b”"”)! = l o ( by rl)i 5 R (» ) !7 nx oy (b
Lj Ir=1 f

! L=1 i

< (1 + Lt (21/21\-‘ ¥ max log (b ‘”’" — L-)))i

2
b=

( Sy (DI/M N +1) I]Y mfn: logiby;) ——?j))l = 1.

LEnaa 2. If a is a non-zero algebraic integer of degroe 1y then either
(1) of # a} for rational infegers v > ¢ 1, 1 <4< ny, T<lj<n,

and
)] ()

lgign
lSi=n

= P" for prime numbers p

hold or a is & root of unity.

Proof. (i) If of = = af, then af and of are conjugstes and there exizix
a aeGal(K/Q) {whele IL Q(ah Qay .oy i)} sUCh that o(a]) = of.
Furthermore, there exists a rational integer k such that o = i . For thl\ ]L
we have
@ = M) = (e = (b
which means that e is a root of unity.
(i) Detine

1(a§k*1)}"’ N ——

2z

it

f@ =[] (x—ey ana g H (X —a?).

i=1 A
Then f(X} = f,(X)-+-pg(X), g(X) e
[T @ —ap = [] Uity +pg1a) = 27 [T gt

1<Cin i=1 f=1
lisn

Z[X], and-

If a is not & root of wnity, then by (i) ﬂ( af —a;) #£.0 and Hg of) s

7
A non-zero rational integer and its absolute value is at least 1
Levma 3. If o is an algsbraic number of degree n and
= {p: deg(a®)< n}
(the letier p being reserved for prime numbers), then
logn
log2~

1Pl <

9 — Acta Arithmetica XXXIV.4
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Proof. For integers ¢ and j (1 <j< n), write

T(s,7) = {¢: af = o}
The sets I{s,j) have the following properties:
() [T{s, P = (s, 4)] for 1<iKm, 1CFS
I{s,i), i =1,%,...,n, are digjoint;
(i) if (r,8) = 1, then [L(r,9)nI(s,J)I <1
(iii) if {r,8) = 1, then |L(rs, )} = I(r, ))i-L(s, DI
Hquality (i) is obvious, To prove (ii) observe that

< n, and different sets

E,lel(s,inl{r,d) »aﬁy::a? and o = of

=>'aS:‘s) =) o> =a = k=1

o obtain (iii) eonsider the inequality

‘UISH

iel(r,g)

[ I(rs, i)

By (ii), each component of the sum on the right appears exactly one time
and, by (i), these components have the same cardinality [I(s,4)|. This
proves (iii). ‘

Finally,
o™ [T, o <|I([ ]2, i) < ns
pel” Dk
hence
P logn
i ]\{T@n'

3. Proot of Theorem 1, Assume that a is not a root of unity.
Pot in Lemma 1:

logn TP . logn
P . L M=g|et oo
) ¥ ﬂ[ log logo-a] ! [6 luglog-n]’
&= | |
——= (&) for j>1, .
by=1 Q& pea : £=1,2,...; N,
o ! for §=1,
ie,
1 0 0
a 11 ... 0
[b‘ij] == o 2a ey 0
& (N 1) N (N—1)(N—=2). . . (N— M-+1a"
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Lemma 1 then assures the existence of a nen-trivial integer solution
@y, Ty . .vy By of the equ&tlom

Ebi}'mf- =0,
io1

i=1,2,.., 1,
which safisfy

(3} max. || <
1<t N

(21/_ N+ V(M 0y (a)N!n)n_’l!]{\ ad)

Now we seb

and

Our ‘selection of b; assures that _

Fla) = FU(g) = FB{a) = ... = P D(g) =@

which means that ‘
HEYP(X).

Assume without lost of generality that

logl 3
= _A_(n) (mg_g—ogﬂ)

{(4) log M{a) Togn

with  A(m)< 1.
Then (3) gives \
(5) ¥< N.’!s—l-[-a(l)

where o(1) denotes & function of n tending to 0.
We assert that for each prime p from the interval

logn \* 2—¢ (legn)?
6 <p<
(6) (10glogn) P (n) loglogn’
we have

F{”(al’) —
for every m > ny(e) and every » from the interval
loglogn e

7 LrL 2 =L —pe A {n)——p ——.
{7 07 L2 —1—pe A(n) fogny 4

Indeed, suppose that FW(a?) = 0 and r satisfies (6). Since
FLOMFO(X),
we have by Demnie 2 '

[I j;:(rlfan ]]7 j(uf))‘if r; ->P M-}

i=1 y==1
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Ou the other hand,

| H FOa)| <

=1

(N XYM (a)?

and we get

My

w
YN (a) 2P
Hence by (4), (b}, and (6)

(M —n)logp < (r+1+2e 7 +0(1)) logN—kpl?\Z log M (a)

< (4T —efd 4 0(1)) logn.
On the other hand,
(M —7)logp = (4e7' —0(1)) logn
and we get a confradietion for » large enough.

Since P (g") = 0 for all primes p from the interval {6) and all r
from (7), F(X) iz divisible by f,(X)7» with

I
Vo = IVQS_I—PE"JA (m) oglogn 5]

(logn)® 4]

By Lemma 3 the degree of f,(X) is equal to # for all primes p with no

1
more than {og'n
Io

9] exceptions.

4

Henee

AT
¥ )y

—1

o s loioes_e] s

% i (logn)* 4 10g9
Ho;\:n)- {p{.:‘)i!.-.i ﬁ.og‘ﬂ]z
(}nglogn, A{n)logloga
\., (27 —1—ef4)[2—s—0(1)) (logn)®
- 24.(n) {loglogn)*
. . 1 2
PN s e R0
44(n)*  (loglogn)
and we. get

Az l—etedi8—06(l)

which proves Theorem 1.
The assertion of the Corollary follows for reciproeal o from the ine-
quality '

a*? = M(a).

For « non-reciprocal the assertion follows from Smyth’s result [8].
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4. Proof of Theorem 2. (i) Assume that f(0) 5 0. Put
M (f) = a,fn max {1, |a;}
A==}

where a,, a,, ..., @, are the zeros of the polynomial f listed with proper
multiplicity, and a, is its leading coefficient.
Let

(8) FT) = folX) [ [ R(T)

where f; arve for ¢ > 0 distinet non-cyelotomic polynomials and f,is a prod-
uet of cyclotomic factors.
Then

m

u(fy =[] MiF)%

=1

If f; is not a monic polynomial, then
M(f) = ar>2.

If f; i monie, then Theorem 1 gives

M)S (where ¢ > 0).

log |fil

Thig result however is non-trivial only for |f;] > 2, but if |f;] < 2, theu

=1 —H/E) /2. Hence in all cases we have
1 1

ogifiF ” TAE

On the other hand, Liandau [4] showed that

M(f)< A

M(f;-);lw(

direct computation gives M(f,)

(9) log M(f;) >
Thus (9) gives

By compuzison of the degrees of polynomials in (8) we get

Wi

If = _21‘ gt
f=
PFinally, Holder’s inequality gives

lmwg’m\_ (ﬁwm)(m) (Zﬁ»'ﬂ)(ﬁif)

=1

< L fIf(logyfiy=s
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(ii) We use Lemma 1 to construct a suifable polynomial F divisible
by a high power of the polynomial &—1. To this end, put

N =M43M, a=1, 5n=1
in formula (3) (Section 3). We get a polynomial F with

(w—1)M|F(X), |F| =N
for which

R(F) € (V2N F1) VORI 437 and B € 48007,

Liet @, for a prime p, denote the pth cyclotorie poi} nomml We have

p-1

m=]]a-

1=
where £, are the primitive ;pth roots of unity. Henoe if @, F, then
1i--1

ECR

On the other hand,

p-1
|[[]ra)| <

s f=s]

7i +1)h(F))” L (3M)HED,

Thus p = 6, M where ¢, is an abaolute positive constant and @, |F for ¢
prime and less than ¢, M and

QF) > ol > z(e, M) > M{log M)~
> M*(log M)~ > [F(log | |~
provided that 0< &< 1/2.
(iii) Let
.
flo) = [ ] @ —1y¥-n,
ne=l
We gha-]l prove that f(e) fulfils desired conditions. For N tending to
infinity we have the following asymptotic formulas:
(10) [l ~5 2,
‘ N
(11) CQUf) = Y (N —ml)dn) ~1 N log ¥
. a=l"

where d{n) denotes the number of divisors of .
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Furthermore,
N-1
= (N-n)
(12) hﬂ‘ =— ( fd0 < max|f(2)]2 = max| *! T2
2w J |zi=1 lel=1
11 ...1
. . N1
= ma d P N 2
= MAX (#—=&)] =maxjdet | 1 .o SN |2 o AN
Bl=1 ' NEE> L [#1=1 [
1 ot 2= 1

The same estimation for maxif(z)| was obfained in a different way by

lg=1
F. V. Atkingon in [1].
(10), (11), and (12) prove (iii).
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