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Brauer’s class number relation ' :
by

C. D. Warrer (Dublin)]

The main part of this paper proves R. Braner’s clags number re-
lation [1] in a ghorter and more natural way. Consequently it iz possible
to obtain Stark’s meneralization [8] with no extra effort and to obgerve
that the theorem may be applied using only the units of the oceurring
fields. Nehrkorn’s conjecture [61 that there exists a corresponding elass
group isomorphism iz also shown o be correct. .

I should like to thank Professors Cassels and Frohlich for many helpinl
suggestions, and Trinity College, Cambridge, for financial support.

1. Relation theorems. In this first section are derived some general
results fo describe relations in torsion modules and in torsion-free modules.
All the modules concerned will be finitely generated. |

Let D be a Dedekind domain contained in a field K of characteristic
zero and write D, = {ojfc K| aeD, feD —p} for its localisation at the
prime ideal p. Then a T-lattice M i a finitely generated torsion-free
D-module. M will be identified with its natural embeddingin KM = K Q.M
and M, will be written for D, Ry M.

If M and ¥ ave two D-lattices of KM = KN then the index [M:N]
may be defined through the local indices [, pi N, ] for the free D -modules
M, and N,. Let 6, be the determinant of a matriz which describes 2 basia
of ¥, in terms of onefor . Then [ M,: ¥ »] = Dpd, s well-defined and non-
zero. By taking free D-submodules of 3 and N with the same rank ag M -
and N it i8 clear that the 8, can be chosen equal for almost all p and that
the ratio of two 4, is always in the field of fractions % of D. Hence the
intergection over all primes p which defines the index; viz.

[M:NT] = O [M,:N,]

is the product of an ideal in D and an element of K. If M and N are iso-
morphie then [M: ¥] = D4 for the determinant § = K of the corresponding
automorphism of KM. Thus for D = Z and K = € this coincides with
the usual definition of the index viewed as an ideal, and when K — %
the definition coincides with that of Frihlich [2} It X[k is a. number
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field extension with norm NX , ©, is the ring of integers of %, and a, b are
- ideals of K then [a:b] = N% (a~'b).

¥ow let & be o finite group. A D[GJlattice is just a D-latbice
which is & D[G]-module.

TuEOREM 1.1. Suppose {e} is « finiie sef of idempotents in k[G1," 1
*is the character of K [Ge;, and 3 oy, = 0 for a; e Z. If M and N are iso-
morphic D[G]-lattices and KM = KN then

[ [ [M;:N,]% =D

where M; = MneHAM and N; = NnglIN.
Proof. Any two A[GF]-medules X and ¥ and & K [@]-auntomorphism a

of X induce an aufomorphism ey of HomMgg (Y, X), namely ap(f).

= aof. Clearly detay = A(e, i) depends only on e and the isomorphism
class of ¥, which iz determined by the character y of Y. If ¥V = ¥, Y,
then 0 3 detay = (debay )(debay,), and so

Ale, x4 22 = d{a, 1) A{a, 1a)-

Thus % — A{e, ) extends to a homomorphism from the additive group

of the virtual characters of @ into the multiplicative group of K. In
particnlar,

(%) | D iz =0 = HA(G, %)% = 1.

Let e be an idempotent of H[G] and y the character of ¥ = K [@]e.
Then there is & K-isomorphism f: Homgey (Y, X) - eX given by f i f(e)
with inverse z i— (f: ¥ ~» y2). Define a, ag the restriction of « to ¢X.
Then ¢,0f = foay from which 4{a, y) = deb{q,). If « is chosen so that
al = N then Ddet{a,) = [M;:N,;] and (#) proves the theorem.,

Remark (J.-J. Payan). From the local definition of index, the

theorem still holds if the D[@]-lattices M and N are just assumed to

be in the same genus, l.e. M, = N, for all p. :

TeworeM 1.2. Let 8§ = {¢;} be'a ftmte set of adem'potents in k[G] ond Dg
the subring of & generated over D by |G" and the coefficients of the ¢, € §.
Suppose y; is the character of k[Gle; and Doy, = b,y for some non-
negative integers a; and b, If M is a finite group ond ¢ Dg[Gl-module
then there is a Dg-module isomorphism :

Com L
@D gim(i)% PO el_M(i) for- M o M.
i i=1 ] i F=1
Proof. Again let Mp =D, ®pM for each prime p of D. Then M, is
& Dy [¢]-module which is trivial for almost all p and, in particular, for p
' leldJng the ideal ’.D{G] Ag M o~ @M we may assume without loss of

- generahty that B = - M, for some pnme p not d1v1d.u1g DIG.
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Let N; =D,[(Fle;. Then there is a D -mommphlsm Homy [g}{ , 2}

= o, M given by f o f(e;). Two B, [(]-lattices ¥ and N of the same ehar&e«
ter satisfy BN o~ k¥ and therefore the work of Maranda ([5], Theorem 4)
shows that N ~ 2=z ¥'. Combining these isomorphisms gives

u @.s

. a by B .
© @ o, M" = Hom( © ¥, M) = Hom(Q © ¥y M) = @ © o2V
i i d=1

i j=1 i j=1

2. Nehrkorn’s theorem. Lt K[k be a normal extension of algebraic
number fields with Galois group @. Suppose 1% is the character on &
induced from the unit character on @ subgroup H, and for a module X
on which @ acts let HX be the submodule fixed under H. Write_ﬁ for the
sum of the elements in H. As usual let ug define U to be the group of
wnity in K; W its subgroup of roots of unity; w(H) the order of HW;
and w,{H) the 2-component of w(H).

TEsOREM 2.1. Let C(HK) be the part of the ideal class group of HE
Sormed from classes whose orders are prime to |G If

Dla(@ng = s
H . H

where a(H) and b (H) are lmn—negaﬁﬂ@ integers then there is & Group isomor-
phism

& @ C(HEYD ~@ o C(HE) for COHEW ~ 0(HEK).

H j=1

Nehrkorn indicated in [6] that the above result holds but proved
it oniy for K /i abelian. It is immediate from Theorem 1.2 because of the

_natural isomorphism C(HE) o= HO{K) and because the character 1%

corresponds to the idempotent HJIH|.

Levra 2.2, Suppose M is a finite Z [G]«module fiwed qu a normal
subgroup N over which @ is eyclic. If Y a(H)1§ = 3 b(H)1E where a{H)
and b{H) are non-negative integers then there i8 a frivial group isomorphism

a(H) B(H) -
©® U 2@ @ AHD  for MDD~ M.
H j=1 H j=1 '
Proof. From >1%{g)g = |H|" Y gy " for both sums over g @

we deduoce that 15(gN) = |¥11Gy(g). Hence Yo(H) 1Ny = Sb(H) 1%,y
By Brauer [1], 8atz 2, or Rehm [7], Satz 1, this relation is trivial for G/N
cyclic. Thus the stated group isomorphism holds m'ma&ly as Misa Z[G/N]-
module with HM = (HN[N)M,
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THEEOREM 2.3 (Brauer [1}, § 5). If Ya(H)1E = 0 then

\aH) ()4
| Q w(H) g w, (H)

Suppose also thai W, is the group of 2-power rools of unity in K and E(W ) /%
s cyclic. Then '

[] wtE® = 1.

H

Proof. Let W, be the Sylow p-subgroup of W. Then, with the posgible
exception of p =2, B(W,)/k is cyclic and the theorem is a direct con-
sequence of Lemma 2.2 on taking orders.

3. Brauer’s theorem, With the notation of § 2 let us assume also that
bk =0Q; n(H) = [G:H] is the degree of HK over k; v, (H) and r,(H) are
the numbers of real and non-real infinite valuations of HK; r(H) is the
rank of HU/HW; R(H) is the regnlator and h(H) the class number of HK;
and 4{H) = 2 or 1 according as HK is totally complex or not. For some
fized embedding of K into the complex numbers € let ¢ be the Galois
“group of the maximal real subfield of K. Thus € is generated by the auto-
morphism. y which induées complex conjugacy on K.
Tet T and I* be Z[@]-lattices which make
0—+Z->Z1F0—~L -0 and 0-IL*>Z[G10-~Z-0
exact sequences of leff Z[G]-modules. Here the maps from and to Z are
given by # a6 and al -»1(a) respectively for the unit character 1.
Specifically, L and L* will be identified with Z[@]0/Z& and {u c Z[G10|
| 1(a) = 0}. Denote by a bar the natural maps U~ U|W and Z[G]—
> Z[G]/ZG and define maps A: U — CL and A*: U — CL* by

AE) = Zlogng-lsng,

2 10g]|g"‘ for £eT

(&) =
where || || is the absolute value of the chosen émbedding of X into C.
These are hoth Z[G] thOIﬂOl‘phlS]IlS and they are injections because
the ranks of A(T), 2°(T), L, I*, and T are all equal by the next theorem
and the Dirichlet unit theolem

TEEOREM 3.1. We have

_ [HL:AHU] = Zn(H)2 2@ R(H)
and
C[HIPAFAU] = Z6(H)2 P R(H).
Proof. Let HgC denote the sum of the distinet elements in
{hgel ke H, ¢ e 0} and |HgC| the number of such elements. If possible

icm
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choose g, €G such that Hyg,0 is a single coset of H dod otherwise take
any g,. Then 6(H} = |Hg,01/|H| and the slements HgC | HgC| |Hg,0|*HgoC
generate HI® over Z. For : e HU we have

28 = 3 loglg el HgC = 3 logly™ ell{HgC — [Hg0} | Byl Hgy)

for sums over double coset representatives g e I\ G/ 0. Hence
[HL*:2*HT)

Now [HL:2HU] = [HL:HL'|[HL*:J*HU] because CL*-»CL® is

an isomorphism. As a basis of HL is given by {HgC} for g € HN\NG/ ( with

g ¢ HgC so [HL:HL'] = Zdet{a,,) where a,, = & , -+ |HgC|/[HgO!
for the Kronecker delta & But 3 a,, = n({H)/5(H) gives a constant

= Z§(H)2~ ™ R{ H),

a
TOW by_ which [HgCl/|Hg,C| may be subtracted from each a,,. Thus
[HL:HL*] = Zn(H)]5(H) as required.
Levma 3.2. If Ma(H)1S =0 then
0= > a(d) = Y a(H)yr(H) = Y a(H)ry(H) = 2 a(H)r(H)

= Y a(H)n(H)

Proof. The gums are the evaluations of the relation at G116},
{1 -—-9Y2, O/|C] “G/!Gl, and 1 respectively becamnse

ri(H) = ]{9 e@ gygm e HYNE| = 15(»).

Levwa 3.3. If Ya(H)1SG =0 and M, M* < U are Z[Gl-isomorphic
to I, L" respectively then :
[[BE™® = [] (n(B)[HT: B = [ (3 (HT: 7 M* )=,

Proof. M and M~ exist because 1 and A" are injective homomorphisms
so that L, L*, and U all have the same character. _
Letw = [] (n(E)[HU:HM1R(H)"®. By Theorem 3.1
 Zi = [ [ @*PDHET A EM[ELATT) .
Hence Lemma 3.2
Z = [ HELAEMT® = [ (HL:HIAMT® =2

from L == AM. The other relation holds similarly. -
Application of the functional equation to the residne of the zeta
function gy (5) a6 s = 1 gives the well-known result

bms-"‘H)CIK(-S‘) = -—-]J,(H)R(H)]W( )

and Theorem 1.1 yield
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while the interpretation of {gx(s) as the Artin L-series Lz, 1%, K/Q)
shows that Y a{H)1§ = 0 implies []lgx(s)*® = 1. Equating va,lues at
s = 0 and using Lemma 3.2 yields (Kuroda [3])

[ @ RE) (B = 1.

H

Comparing this with the limit of [Jipz(s)*® =1 as s —1 shows that
the corresponding product of diseriminants iz also 1. However, combining
it with Temma 3.3 and Theorem 2.3 immediately provides Braner's
theorem ([1], Satz 4):

THREOREM 3.4. If the submodules M and M* of U are Z [&]- zsomorphw
to L and L* respecm'bely cmd if Ma(H)1% = 0 then

[T (Ey® = H {n (HY oy (H) [H T M
_ H (H Yoy (H) [H T : HM ],

Remark 3.5. SBet § ={H| a(H) #0} and let Uy be the group

generated over Z[G] by {HU| H e 8}. Then ﬁ; may have smaller rank .

than T so that more units need to be calculzted to obtain a module M.
However, suppose Ly i8 a Z[@]-modunle satisfying HL < Lg « L for
all Held and M’ = U is the corresponding submodule of M. As HM
= HM' for all H € § we may replace M by M’ in the theorem and by
Theorem 1.1 the subsgtitution of any modwle My = T which is Z[G]-
isomorphic to Lg is also valid. In particular, the minimal choice of Iy
ensures that My = Ug. A module Mg can be defined analogously. It 4
therefore possible to apply Theorem 5.4 when only the unils of the vocurring
subfields are Inown.

Remark 3.6. The full extent of Theorem 1.1 has not yet been ex-
ploited but we expect that When the value of

o{y) = ]_11113"(")13(8, 1, £/Q)

has been calculated for #(yx) = x(C/|0| —&/|G|) and any character y then
the same techniques will produce a relation similar to Theorem 3.4 (see
Lichtenbaum [4]). An intermediate result can be obtained. If the charac-
ter g is irreducible over @, containg an absoluteély irreducible character

of degree d(g), and a(H) € Q@ are chosen to satisly ¢ = Za )1, then
the methods above give

(o) » . h{H) at)
= 2-e<1jt>fz[Lg:zM@]"d@ ];[ {n(H)fw(H) [HU:HM]}
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where L, = Lne,CL and M, = Mne,CM for the central idempotent
¢, of Q[G] corresponding to ¢. In [B) Stark derives edsentially the same
formula by generalizing the methods of Brauer,

L]

4, Change of ground field, It remains to inferpret Brauer's theorem
in terms of the Galois group ¢ of 2 relative normal extension /4 within
K|, # will denote a subgroup of ¥, % the unit group of X, and &G(£)
and G(of) the Galois groups of H/# and K ¥ Then ¥ =G (AL is
a Z{%]-module whose precise strueture will be determined below.

THEOREM 4.1. Suppose }a{#)1% = 0. If the submodule # of ¥ is
Z[% J-isomorphic to ¥ then

TRy = [T in(or)wy (o) [ #0004
Jor n(#) = p# A £].

Proof Put H = G(f)&f’ Then C[@}J?’ and OF( .{)]H are C{¥1-
igomorphie under .# «H. So they have the same characters, i.e. 1%(g)
= 15#)(g) if 7 € @ is the image of g € @(#). Hence the character relation
Za.(H JG ()1 = ¢ holds and Theorem 3.4 may be applied. Evidently
HU = #% and HM = s#.4 for H = Qo) and & = G{oF)H. When
these have been substituied Theorem 1.1 allows any & =~ 2 to be chosen
hecause 4 =~ %, and Lemma 3.2 permits the new value of n(#).

The generators HgC of H Z{G}'éf may be identified with the normal-
ised infinite wvaluations

Bpel@) = g7l (@ e HE)

of HK where f — |HgC|/|Hi and || || is the absolute value for the chosen
embedding of K into €. So the subgroup

%; = (9:097 NG (£)) G (X)

of # which fixes G(A')g;C in the decomposition group in ¥'/# of the
corresponding infinite prime. Thus the double coset decomposition

a :i‘G(;)g,:G

i=1

determines up to conjugacy a decomposition group ¥, for ezch infinite
prime of £. _
The exact sequence defining L restricts to

0> Z > G(H)Z[G)E ~ G(A)L > 0.

This is also exact as fixing by a subgroup i8 a left exact functor and any
pre-image of an element in G(H)L is necessarily fixed by G(Jf' }. How-

i
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ever, G(AVZ[G)0 = @ Z[¥)¢, under the Z[¥]map oG (¥)gl
=1
- P28, for x, e Z[¥]. Hence

LeMma 4.2. If {€,} is the set of decomposition groups for one prime
divisor in A of each of the r infinile primes in £ then ¥ satisfies the exact
sequence '

0 Z>PE[IIE;~ L0

i=1

where ne & — n@,-(g.

Refereacen

[11 R. Brauer, Bezichungen swischen Klassentahlen von Teilkirpern eines galoisschen
Horpers, Math. Nachr. 4 {1951), pp. 158-174.

{21 A. Frohlieh, Ideals in an extension field as modules ever the algebraic integers
in & finile number field, Math. Zeitschr. 74 (1960), pp. 29-38.

[3] 8. Kuroda, Uber die Klassenzablen algebraischer Zahlkorper, Nagoya Math.
J. 1 (1950), pp. 1-10. ' _

[¢] 8. Lichtenbanm, Values of z¢ic and L-funclions af zéero, Soc. Math. France,
Astérisque 24-25 (1975), pp. 133-138. ‘

[6]1 J.-M. Maranda, On the cquivalence of representations of finite groups by groupe
of aulemorphismze of modules over Dedekind rings, Canad. J. Math. 7 {1955),
PPp. 516-526.

(6] H.Nehrkorn, Uber cheolute Idealklassengruppen und Einkeilen én algebratschen
Zohlkorpern, Abh. Math. Sem. Univ. Hamburg 9 (1933), pp. 318-334.

{71 H. P. Rehm, Uber die gruppeniheoreiische Sitrukiur der Relationen ewischen
Relativnormabbildungen in endlichen Galoisschen Karpererweilerungen, J. Number
Theory 7 (1976), pp. 49-70. _

[8] H.S8tark, L-functions al 8 = 1, II, Advances in Maths. 17 (1875), pp. 60-92.

DEPARTMENT OF MATHEMATICS
UNIVERSITY COLLEGE
Belfield, Dublin 4, Treland

Received on 13, 2. 1976
and in revised form on 2, 11, 1976 (814a)

ACTA ARITHMETICA

XXXV (1979)

Kuroda’s class number relation*
. by
C. D. Waurer (Dublin)

Rureda’s clags number relation [5] may be derived easily from that
of Brauer [2] by eliminating a certain module of units, but the technigue
is applicable to a much wider class of relations which are obtained from
norm relations. The main aim here i3 to tweat the case in which several
radicals of the same prime degree are adjoined to the rational field.

1. Norm relatiens. Lef & be the Galois group of a normal extension Kk

of algebraic number fields and H the sum of the elements in 2 subgroup
H. Then a relation of the form

(1.1) NomAE =0 GBI cQ)
H

is called @ norm relation. These have been studied by Rehm in {7] and are
so-ealled because Artin has established in [1] that the relation holds
precisely when

n (_Z\TKIHK((U)}WE) = 1 for all o EK*.
H ’ .

Here HE is the subfield fived by H and ¥ is the relative norm. Tt 1§
denotes the character on & indnced by the wnit character on H then the
equation _ -

(1.2) D18 (g)g = 1HIT Y gHy™
e gst¥
may be used to convert the norm velation (1.1} into the eharacter relation

(1.3) D b(H)|H1E = 0.
H

The most interesting relations satisfy two further conditions:
(1.4) Durmriion. Yb(H)H =0 is called a direct norm relation if

* Work completed under a Rouse Ball stndentship ﬁom_ Trinity Cellege, Cam-
bridge.



