A note on Friedlander's paper "On the class numbers of certain quadratic extensions"

b

A. MALLIK (Nottingham)

1. J. B. Friedlander [1] has recently proved the following

THEOREM. Let K be an algebraic number field of degree n for which $\zeta_K(\frac{1}{2}) = 0$. Let F be a quadratic extension of K having discriminant d_F and Dedekind zeta function $\zeta_F(s) = \zeta_K(s) L(s, \chi)$. Let $\varepsilon > 0$ be arbitrary. Then,

$$L(1, \chi) \gg |d_F|^{-1/2} (\log |d_F|)^{2-s},$$

where \geqslant indicates an effectively computable constant depending (at most) on an ε and K.

COROLLARY. Assume in addition that K is a totally real field and that F is a totally imaginary quadratic extension of K. Then, if h(F) denotes the class number of F,

$$h(F) \gg (\log |d_F|)^{2-\varepsilon}.$$

In a remark at the end of [1] he suggests it should be possible to improve the exponent of $\log |d_F|$ occurring in the above results. We show here that using an old method of Hecke a substantial improvement of the above Theorem is possible, viz.

THEOREM'. Under the same assumptions of the Theorem above,

$$L(1, \chi) \gg |d_F|^{-1/4}$$

where \geqslant indicates here (and below) an effectively computable constant depending on K at most.

COROLLARY'. Again under the same assumptions of the Corollary above,

$$h(F) \gg |d_F|^{1/4}$$
.

For the case K = Q Hecke proved that if $L(s, \chi) \neq 0$, for $1 - \frac{c}{\log |d|} < s < 1$, then $h(d) \gg \frac{|d|^{1/2}}{\log |d|}$. A proof appears in [2].

Using this method we are able to prove Theorem'.

2. Proofs. Let $\varkappa(F)$, $\varkappa(K)$ be the residues of $\zeta_F(s)$, $\zeta_K(s)$ respectively at s=1. Then since $\zeta_F(s)=\zeta_K(s)L(s,\chi)$ we have

$$L(1,\chi)=\frac{\varkappa(F)}{\varkappa(K)}.$$

Under the assumptions of the Theorem, $L(s, \chi)$ is an entire function, it follows that if $\zeta_K(\frac{1}{2}) = 0$ then $\zeta_F(\frac{1}{2}) = 0$. We use this fact to obtain a lower bound for $\varkappa(F)$, and since an upper bound for $\varkappa(K)$ is easily got we can prove Theorem'.

LEMMA 1. If K is an algebraic number field of degree $n \ge 2$, then

$$\varkappa(K) \leqslant 2^{2n} \pi^n \sqrt{e} (1.3)^{n+1} (\log |d_K|)^{n-1}.$$

And if K is a totally real field, then

$$\varkappa(K) \leqslant 2^n \sqrt{e} (1.3)^{n+1} (\log |d_K|)^{n-1}.$$

Proof. This is Lemma 2.1 of [4].

LEMMA 2. If $\zeta_F(\frac{1}{2}) = 0$, then

$$\kappa(F) \geqslant 2^{-2(n+1)} e^{-8\pi n} |d_{\pi}|^{-1/4}.$$

Proof. Take $s_0 = \frac{1}{2}$, N = [F:Q] = 2n in Lemma 3, p. 323 of [3]. Thus together Lemmas 1 and 2 give

$$L(1,\chi) \gg |d_F|^{-1/4}$$

and under the further assumptions of the Corollary we have from the first part of the proof of Theorem 4.1 of [4] (see (7)) that

$$L(1,\chi) \leqslant (2\pi)^n rac{h(F) |d_K|^{1/2}}{h(K) |d_K|^{1/2}},$$

and so

$$h(F) \gg L(1, \chi) |d_F|^{1/2} \gg |d_F|^{1/4}$$
.

References

- [1] J. B. Friedlander, On the class numbers of certain quadratic extensions, Acta. Arith. 28 (1976), pp. 391-393.
- [2] E. Landau, Über die Klassenzahl imaginär-quadratischer Zahlkörper, Nachr. Akad. Wiss., Gottingen, Maths. Phys. Kl. II (1918), pp. 285-295.
- [3] S. Lang, Algebraic Number Theory, Addison-Wesley, Reading 1970.
- [4] J. S. Sunley, Class numbers of totally imaginary quadratic extensions of totally real fields, Trans. Amer. Math. Soc. 175 (1973), pp. 209-232.

MATHEMATICS DEPARTMENT UNIVERSITY OF NOTTINGHAM Nottingham, England

> Received on 6. 7. 1976 and in revised form on 2. 11. 1976 (861)

Existence of an indecomposable positive quadratic form in a given genus of rank at least 14

G. L. WATSON (London)

0. Introduction. We shall prove the following

THEOREM. Let f be a positive-definite quadratic form with integer coefficients in $n \ge 14$ variables. Then in the genus of f there is at least one class that contains no disjoint form.

There is also (for $n \ge 12$) at least one class that does contain a disjoint form; see [4], pp. 75, 76, Theorem 47.

The constant 14 is best possible; to see this, we define genera each of which consists entirely of classes that contain disjoint forms. Twelve suitable genera may be defined by

$$(0.1) f \simeq x_1^2 + x_2^2 + \dots + x_n^2, 2 \leq n \leq 11 \text{ or } n = 13,$$

$$(0.2) f \simeq x_1^2 + x_2^2 + \ldots + x_{11}^2 + 2x_{12}^2 (n = 12).$$

In a number of papers, references to which may be found in [1], it has been shown that

each of (0.1), (0.2) implies $f \sim x_1^2 + h$, for some

$$(n-1)$$
-ary form $h = h(x_2, \ldots, x_n)$.

Denote by c(f) the class-number of f, that is, the number of classes in the genus of f. In the counter-examples (0.1), (0.2) we have c(f) = 1for $n \le 8$; 2 for n = 9, 10, 11; 3 for n = 13; 4 for n = 12. Many other counter-examples, with $n \leq 10$ and c(f) = 1, may be found in [5]. For the smaller values of n many examples with c(f) > 1 could be given. For example, with n = 2 and $f \simeq x_1^2 + 14x_2^2 \simeq 2x_1^2 + 7x_2^2$, we have c(f) = 2.

We shall use the classical formula, see [2], [3] for the weight of a positive genus. The weight, w(f), of the genus of f is the sum of the weights of its constituent classes. Temporarily, let w'(f) be the sum of the weights of the classes that contain disjoint forms; and define W(f) as w'(f)/w(f). Then trivially $W(f) \leq 1$; and the theorem may be expressed as:

W(f) < 1 for every positive-definite f in $n \ge 14$ variables: (0.4)