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On the order of Dedekind

Zeta-functions near the line ¢=1
by

W. 87ad (Poznan)

1. Denote by K an algebraic number field, by » and A the degree
and the dizeriminant of the field K, respectively, and by {x(s), 8 = o1,
the Dedekind Zeta-function (see [41).

Basing on some estimates of A. V. Sokolovskil connected with the
application of I M. Vinogradov’s methods to the theory of Dedekind.
Zeta-funetions (see [7] and compare [10]), vefined in [1] with respeet
to the constants of the field, we shall prove the following

-1
TEEOREM. If 1— —— o<1, ¢tz then
n+1

(11) T o

where ¢ is o positive pure numerical constant.

About possible application of (1.1), see [3L For the Riemann Zeta-
funetion £(s) the strongest estimate of the form (1.1) is due to H. B. Richert
(see [61 and compare [9]).

9. The Dedekind Zeta-function of an algebraic number field K is

“defined by the geries

Cxls) = O (Na)y™, s = o+it,
in the open half-plane ¢ > 1, the sum being taken over all ideals of K
(see [4]). The funetion lx(s) can be continned analytically to & mero-
morphic funetion with a simple pole at-s = 1.

It iz known that

2.1) Lels) = D D (¥a?),

[ -T=7

where the inner sum is taken over all ideals of K, belonging to an ideal
clags O (see [4], p. 57) and the outer sum s taken over all & ideal clasges.
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It is also _lmown that .
fols) = YNy =Ny D I¥(@)

asy w=t (moda’)

(2.2)

where the Iast swm.is taken over a complete systgm of pairwise mot
associated algebraic integers belonging to any ideal a” & 0! (see [4], p. B8).
If o, g, ---5 @, fOrm @ basis for o, then every element o of o’ ecan
be uniquely represented in the form o = gya;+ ... F @0, where a;,
§=1,2,...,n are rational integers.
Every element a € K can be congidered as an element of the n- dunen-
sional real space R"™:

#{a ) (@1goeos By s Y1y oo ey

where n = ¥, +-2r, (see [2], 1L, §3).

Denote by M the n-dimensional lattice in R” formed of images of
algebraic integers ¢ € K divisible by a’ and denote by V the fundamental
domain of E (see [2], p. 352). Then the summation in (2.2) reduces to
the summation over ratiomal integers ay, ..., , such that z(a)e Mn V.

Yrys B1a +r 0y z"a}

Denoting
N{a) == N(m(a)) = f#y 1oy “n)
we can write
(2.3) fol8) = N (&) 2 Zlf Gy ooy G)7°
' m(a.)ES]]'an
We denote by
o =g, e+ ... a0, i=1,2,...,n,

the conjugates of & so that o arereal if 1 <1< r, and of? are complex
conjugates of ol if r,+1<C 47, hence Na = o® ... o,

Denote further by ¥ the set which we get mul’oi.plying the elements
of V by images of all roots of unity helonging $o K. Then the series (2.3)
can be writen as follows
8—1’tloglf{u1 ..... M)

1
Jols) = Tn‘N(ﬁ")s 2 Iﬁ

1
w(a)ei 'F'

(2.4)

where m denotes the nmmber of roots of unity contained in K (see '[7 1
- p. 323). .

In the following we shall always assume that
(2.5 Na' < |41,

since 1n each ideal class ¢ there exists ab least one ideal satisfying (2.3)
(see [4], p. 42). ' '
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3. The proof of (1.1) will rest on the following lemmas:

Lmnvmea 1 (see [1], Lemma 4, and compare [7], Lemma 1). If ey, ..., &,
form a basis for a given ideal o with Nao < {4|"® and K7 denctes the set of
all systems of real numbers (Uy, ..., u,) with

max. fu] <X
1<i<n

where w®(s) + ... +u,0{a,) are elements of R® which belong to T,
for any system of real numbers (uq, ...
equality

(3.1)

where

then
)ty € EESNEY we have the in-

A X < e -, < 4,X, i=1,...,n,

Ay = exp(—dn|4P), A, = 2|40

Limvid 2 (see [1], Lemma 12, and compare [7], Lemmas § and '8).
Dencte

t 1
By vy ty) = —ﬂloglN(m(a)H = —ﬁlogif(aq, oy )] -
If
2 logt
my = [11‘”’+ e 1,
n logX
(3.2) 1< X« ATHME 4] = exp(—4n2|4]3),
t>exp(2-10°6" 147
then : :
, o et
G =I DN S SV g
u.<a1§a
(@ %)Ekzx\K_X
- where

Ay = oxp(4-10°n? |4}, A4, =10°7".

Temark, Lemma 2 is & slightly completed version of [1], Lemama 12,
t0 that effect that in the present version of the lemma under consideration
all the numerical congtants are counted out explicitly.

Lemma 3 (see [1], Lemma 13, and compare [7], Lemma 9). In the
region o= 1—1jn+1), t>1, s = o+it, of the complex plane, we hame,

the estimate _
(3.4) | Cr(8)— Fm)ym™* | < expfle,n|d])

1gmettt!

where ¢, is & pure numerical positive conslant,
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LEMA 4 (see [87, p. 188). In the region —1 <0< 2, —oo << -00,

of the compler plane, we have the estimate
(8.5) (s — 1) Exle)] < A(It] +1)%8; & = o4,
where
Ay = A", Ay =in+2,
and ¢, 18 a pure memerical constand,

4. Proof of the theorem. Denote

oy = K

(see Lemma 1) where £, = exp(log’?f), ¢ integer, i3> 0. Owing fo (2.1),
(2.4) and (3.4) we have in the region o 2 1—~1/(n 1), {> 1, the estimate
(compare {7], . 350)

b
@1) ) <eplawt AR H1APE 3 D (Ne (@t +
i=1 " (ag,...0n)Ep ¢, ’

Ta
+|Ape Zﬂ D e (a)
i= 11}1 {@3,...,ap)cE; tn\Ki Lty
0<|Nm(a)[<Naji“+1

where q; are ideals belonging to the inverse clagses O;7' and are chosen
in such a way that Nuj< |A4"® (see {2.5)) and % is the class-number.
For h we use the simplest estimate

(4.2) . b | A

- mentioned in [51, p. 160. '

We estimate the second term of (4.1) as follows.

Denoting I, = Kﬁ?, m=10,1,2,... (se¢ Lemma 1) we have

@s) | Y N Y W@+
(“1""1“11)EK0,t0 . (@50 Gy )R
i
+ | W (e () [~°
= (B0 Uy ) EE g K 1

10g2/3
log 2

Estimating the firgt term on the right of (4.3) frivially, and the second
term by the use of Lemma 1, we simply get the inequality

(4.4) uu””ZI > W)
a _

17+ ’an)EKO,fu

where m, = [ ] t>e, since f, = exp(log™®s).

n{l~a)
< 9 gin? Fle tlog2logl/3t log‘lfﬂ

valid in the region ¢ =1 —1/(n 41}, 1= ¢, of the complex piane.
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3. We shall now estimate the lagt term on the right of the inequality
(4.1}, It is eagy to notice that

(3.1)
o= 2 Z lN(iﬂ(G))i“s= Esk,i

(&g “n)EKz 10\1‘1 -1, k=l (@1 ..i0p)EBp ¢ k=1
0<| (i) SNa AReFL 0 <INz} gxa;.zﬂﬂ

where Bj, ; is the seb of points (a4, ..., a,) & Ky NK;_, 4 such that

P < <2y, 2R g, < “'2?_1%
o] < oy o] < — 8y
|a'n,] < & Ianl S
(F=1,2,...,n) (k=n+1,...,2n).

Hence

St =| Y Nie@
(@5 0er Op) €8 5
o< |V {z@)] <Nc[;t"'+l

= X X We@l)

o=l ecay <alfy 1l ioplsty

Following [7], p. 331, we geb by partial summation and by the use
of Lemma 1 and Lemma 2, with

X, = t, = exp(log”*t) < X = 2%, < [4[Priin,

in the region

1 ‘ o
_<o<l, tzexp(2-10°47|4F)
%+l1 = ] = P( H

the estimate i)
log*(2%, og2 1 32
— ) dg——— . iy n{l-0)=Ag {0 + 1A
(B2) ISl A2y = Ay(2') (“IwJ

where
(5.3) A, = explen*d’), A== (10694~

Denoting for the sake of brevity

lﬂgq 1
(5.4) o = at) = = Yogt’ g =p(t) = Tz’
we get ‘
. . )
(5‘5) iﬂlil AT(Z’Ltﬂ)ﬂ(l—- U)—Ag(ai'?'ﬁ)

<
B e i L e L
= =1

7 — Acta Arithmetica XXXV.2
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We estimate the second factor of (5.5) ag follows. Consider the polynomial
pw) = n{l— o) — A a?z® —24, aﬁmﬁ‘

This polynomial has a maximum &t the point

—4A,af V16 A2+ 12 Apa’n (1l o)
6A,0f '

Xy =

It is easy to realize that the above maximum of ¢(2) is absolute
for @ = 0. '
From the obvious mequah’sy-

0 1 Vall=q)
= g I/E’E‘; a )
we get -
1 (n{l—o))*”
@) < o=
YT ysd,  w

Therefore, owing to (5.4), we have

= (nu )i

3. Aguﬁ’b" < t ]/

(5 . 6) 21: (- d‘)“i*—Asuzi

Owing to (5.4) and the definition of &, we have for the first factor of

(5.5) |
n{l—-a)

(57) -6:3(1"'”)“1‘3.32 :g tlaglpt .

Therefore, from (5.5)(5.7) it follows

(5.8) 1Syl << Ay 08 b —

For the remaining |8, ., b = 2, -y 2n we geb snmlar estimates. Hence
from (5.1), (5.3), (5.4) and (5.8) it fo]lows

3
CRINVIED N5 N D IR by 10 [

S RN A Lo 0\K1_1 £
0<|1\(1(a}):<?\7’aj£”‘+1

— 3
n{l—a) i,zz(ml_m)am

<6 s 1P g log!f3e oy 1 Oguja

- Owing to (£1); (£.4), (5.9) we get in the region

1
(5.10) : . ] < O‘{ 1’ t} 82-105n7|t1l2
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the estimate

(3.11)  [Cxlo+it)| < exp(en*|AP) +

N nfl—a)
+ Zexp (Bt |A)g 108 e gy .
—G 3
H(ll 3] i — n2{na— a2 .
- 6, 0Xp (o5 0t )Py 1081 ¢S log2*3.

We split the region (5.10) into the two following regions: .

D, 1“]HE§37'§‘<“ o<1, 12 exp(2-10°07)4 %,
D1 — 1 <o i 5,71 412
ar- — ) =05 -Hog_mf’ t;exp(?-ll)% 1‘{”-‘)

From (5,11} it follows that in D,
(5.12) ({04 it)] < exp(gnt 141 log™ 1.
Analogouslty in I, we get
(513) ]CK(U"'“J“ ’bt}l < exp (6,7%4]A|£)iﬁ-mzﬂg(n(lm01)31’210g2;'3t_
Hence from (5.12), (5.13) we get in the region

1

1-——<o<1,

g} > exp(2-10° 07 4
the csbimate
'(5.14) &k (0 )] << exp{egn®| 4210 ("““"’}wlogﬂfst

Owing to Lemma 4, for

TR +1
we have simply
(5.15) el < GXP( ey’ 141

From (5.12) and (5.13) the theorem fol_lows.

<ogl, egi<exp(2-105714P,

References

[11 X.M.Bartz, Onatheorem of A, V. Sokolovshit, Acta Arith. 34 (1978), pp.113-126.

[2] 8. H. Bopesuw u Y. P. Madapenuy, Teopus uuces, Mocksa 1972.

[8] G. Haldsz and P. Turdn, On the distribution of roots of Riemann Zeta and allied
Sunciions I, Journal of Number Theory 1 (1969), pp. 121-137.



]
<
b2

[4] E. Landaun, Binfilwrung in die elemeniare und analylische Theorie der algebra-
isshen Zoklen wnd der Tdeale, New York 1949,
[5] R. Remark, Blementare Abschdizungen von Fundamenial-Einkeiten und Regu-

latore eines algebraischen Zahlkidrpers, J. Reine Angew. Math. 165 (1931}, .

pp. 159-180.

[6] H.-E. Richert, Zur Abschitzung der Riemannschen Zelafunliion in der Nihe
der Verticalen ¢ = 1, Math. Ann. 169 (1967), pp. 79-101.

[T1 A.B.Coroxcrcruufll, Teopamna o nyany dsema-dynryun Jedenunda u pacemoarnue
aeotely j,cocednymu” npocmutau udecaamn, Acta Arith. 13 (1968), pp. 821-334.

[8] ~W. 8tad, Uber eine Anwendung der Methode von Turdn auf die Theorie des Rest-
gliedes im Primidealsatz, ibid. 5 (1959), pp. 179-195. v

[9]1 — Uber das Verhalten der Riemannschen -Funkiion und efniger wverwoniler
Funktionen in der Nohe der Geraden o = 1, ibid. 7 (1962), pp. 217-224.

[10] M. I0. ¥VpOanue, Pacnpedesenue npocmux aazebpauvecrus wuced, JIOTOBerMi
maremarmiecrult eGopamx 5 (1965), pp. 504-516.

INSTITUTE OF MATHEMATICS
OF THE ADAM MICKIEWICE UNIVI}RSI"}.‘Y
Poznari, Poland

Received on 19. 9. 1976 (893)

g
W. Stas icm

ACTA ARITHMETICA
XXXV (1979)

On a paper of Baker and Schinzel
. by
D. R. H.EATI_{—BR()WN (Cambridge)

1. Introduction. Lef D be an integer, positive or negative but not
a square. It was shown by Baker and Schinzel [1] that every genms of
primitive binary quadratic forms of diseriminant D represents a positive
integer, prime to D, and less than O(e)|D[¥+%, where e> 0 and O(e)
depends only on e; and they conjectured that in fact the bound could
be replaced by C(s)|D{°. The object of this paper iz to prove the following
sharpening of their rvesult.

THEOREM. Bvery genus of primitive binary quadratic forms of discri-
manant D vepresents @ positive infeger, prime to D, and less than C(g) | DA+,

Our theorem may be uged in place of the result of Baker and Schinzel,
in the work of Moller [4], thereby improving his results somewhat. In
particular it follows from our theorem that the smallest prime which
splits in @ (V —d), but does not Tamify, is less than ¢'(e) | D"+, where D
is the discriminant of the field, and so all the ‘numeri idonei’ of Euler
are less than (20(s))V%, for any ¢ with 0 < ¢ < 1/4. Thus if C(e) were
effectively computable then all the numeri idonei could in principle be
explicitly determined. But unfortunately, as in [1], the constant C(s)
i ineffective; this is due to the use of Siegel’s lower bound for L(1, y)
(see [57). |

Our improved bound results from the use of estimates of Burgess [2]
in place of thoge of Burgess [3] as employed by Baker and Schinzel [13.
Apart from this our argument follows that of [1] closely, but there are two
further differences; the first involves the employment of a medified path
of integration and the second involves the replacement of a finite sum by
the corresponding L-function. The Iatter change is mot in fach essential
but we believe that it leads to & more elegant exposition.

I would like to thank Professor A. Baker for his help in the prep-
aration of . thig paper, and also to thank the Science Research Council
for their financial support while I was engaged on.this research.

2. Bounds for L-fapctions. In place of Lemms 2 of [1] we prove
the followmg S



