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where the combination of the 4+ signs is the saume as in the representation
of L{m--b). The rest of the argument is already as in the proof of the
Theorem 3. For O-estimates see [2].

If we have 2 region defined by a system of algebraic inequalities
then the order of the error term is usually determined by a single piece
of the boundary, that is by just ome of the inequalities. In this gense,
we will not be gefting mauch new.

et us also mention that all estimates still hold if we restrict our-
selves to lattice points with square-free (or cube-free etc.) coordinates
as considered by Lursmanafvii or Podsypanin.

Note added in proof by the editor. Similar results have been obtained
by B. Novik. However he has notified the editors that his paper Kemarks on
Jarnik Q-method in latlice poini theory, announced in J. Number Theory 8{1876),
p. 39, will not appear. -
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Weak equivalence of functions over a finite field
by

Gary L, Muriex (Sharon, Pa.)

1. Introdnction. In a series of papers [1], [3], and [8], L. Qarlitz,
8. Cavior, and the author studied right equivalence of functions over
a finite field. In [3] and [7] 8. Cavior and the author studied properties
of left equivalence of functions over a finite field, while in [3] Cavior
considered the notion of weak equivalence.

In this paper we study a form of weak equivalence which generalizes
all of the above types of equivalence of functions over a finite field. Fven
though we restrict our study to functions of one variable, it will be clear
that our results are readily extendable to several variables and in fact,
may be extended to funections from one finite set to anether.

In Section 1 we are concerned with preliminaries while in Seetion 2
we present the general theory of weak equivalence. In Section 3 the theory
of weak equivalence is applied in the case where the groups of permu-
tations are cyclic. In Section 4, as a special case of weak equivalence, we
present an application to similarity of functions over a finite field as
considered by Cavior in [3]. Finally in Section 5 we give several applica-
tions of weak equivalence to permutation polynomials over a finite field.

- Let K = GF(g) denote the finite field of order ¢ where g = p™ Let
K [z] represent the ring of polynomials over K. Two polynomials f, g & K[#]
are equal I they are eqnal as functions. By the Lagrange Interpolation
Formnula ([5], p. 55), each function from K into K can be expressed uniquely
as a polynorial of degree lesy than g so that K[z] consists of exacily
¢* funetions. The group of all permutations of K will be denoted by @ so that
@ is isomorphic to 8, the symmetrie gronp of order ¢!. That Q iz an arbi-
trary subgroup of & will be denoted by 2 < &, |£] will dencte the order
of @, and [$: Q] will represent the index of £2 in @.

2. General theory. We begin with

DErFNrTION 2.1. Let £2,, 3, < @ and f, g € K [#]. Then f is weakly
equivalent o g relative to £2, and 2, if there exists ¢, & 2, and gy & 02,
such that ¢,fp, = g. :
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‘We now Hst several special cages of the above definition.
Oase 1: & = {id.}, 2, = @  right equivalence of Carlitz in [1];
Case 2: @, = {id.}, 2, <@ rightequivalence of the author in [8];
Case 3: 2, =&, 2, = {id.}  left equivalence of Cavior in [3];
Case 4: 0, < @, O, = {id.}  left equivalence of the aunthor in [7];
Case 5: O, =0, 0, =¢ weak equivalence of Cavior in [3].
The above relation i3 an equivalence relation on K [w]. Let 2,f0,
and u(f, 2,, £2,) dencte the eguivalence class of f aund the number of
clements in the class of f relative to £, and Q,. Further, let 2(Q,, 2.
denote the number of egnivalence classes induced by the groups 2, and 2,.
One can easily observe that if fe K[z and f2, = {f =11, fsy -y fu}
where f 2, is the right equivalence class of f relative to £, as defined in [83,
then

(2.1) O f8, =2, fiu... v,

where @, f; is the left equivalence clasy of f; relative to £2, as defined in [7].
Bimilarly we have

(2.2) _ fly =g 0 .. g, 2,

where O f = {f = g1, g2, ..., ¢} I8 the left equivalence class of f relative
to @, and 4,0, is the right equivalence class of g, relative to 2,. Hence
every weak equivalence class can be deeomposed into a nnion of disjoint
left or right equivalence classes. For further details regarding left and
right equivalence classes, see [7] and [8].

I K= {n,..,0 and feK[z] let 8 = {yecK| f(p) = ¢} for
1 =1,...,q Assume that the non-empty 8,5 are §,,..., S; where ¢ is
the order of the range of f. Then s, = {8 ¢ =1, ..., 1} is the partition
of f and ¢ is the order of m,. We now state several necessary and sufficient
conditions for the weak equivalenee of two functions in terms of their
respective parfitions. Using an argument gimilar to that given by Cavior
in [3] we have the following generalization of Theorem 5.1 of [3].

TEHEOREM 2.1. Let Q,, £, < @ and f, g e K[x]. Let

7‘1‘2{8&"5=17-'-;t}5 J8) =, 'i’:ls--'ata

mp={Ty i =1,..,7}; glT) =26, i=1,...,r.

Then [ is weakly equivalent to g velative o 0, and 0, if ond only if
U8 14 =1,..,1} is a permutation of {{T} 11 =1, coy ¥+ and there
exisis gy € 2,, @5 0y sueh that gu(T) = 8, (i =1,...,1) and e {y) = &,
(i =1,...,1 '

Using Theorem 2.1 of [T] we may state

THROREM 2.2, Let &, 2, < O and f, g € K [&]. Then f is weakly equiv-
alent to g relative o Q; and O, if and only if there exists Py € £y, v e80,
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such that sy, = 7, = {8;| 4 =1, ..., and g, (y;} = d; where fo.(8,) = 3,
and g(8;) =85, for i =1,...,L

Using Theorem 2.2 of [8] we may state

TrRoREM 2.3. Let 2,2, <@ and f,gec K[#]. Suppose thal =,
= {T,] ¢ = 1,...,t}. Then f is weakly equivalent to g relative to 2, and £,
if and only of there exists g, € Ly, 9. € Lysuchthat g, (T) = 8; fori=1,...,1
where 7y ;= {8;] ¢ =1,.... 1}

DrrmvrtioN 2.2, Let 2y, &, < @ and fe K[w]. H ¢, € 2, and ¢, 2,
then the pair (¢, ¢2) I8 8 weak automorphiem of f relative to 0, and 2,
it g fp. =1

The set of weak automorphisms of a function frelative to 2, and £,
forms o group A(f, 2., 2) of order «(f, £2,, 2,) under the operation
(915 ¥a) (01, P2) = (191 yape). Clearly if 0, 2, < & then A(f, £, 24)
< A(f, @, ®)and

Alfy 21, ) = A{f, D, )N (L) X L2,).
If o, fp, = g for some @y € 2y, g5 € & then
(2.3) Alg, By, ) = (¢4, g VA(f, 24, ‘Qs}(?’;la?’z)

go that v(g, 2, ) = »(f, £,, £2,). Thos the number of weak auntomor-
phisms of a function depends only upon the clasy and not on the par-
tieular funetions in the eclass.

The following theorem, whose proof we omit, generalizes the corres-
ponding results of Carlitz, Cavior, and the author. :

TEEOREM 2.4. Let £, O, < @ and fe K[w]. Then
(2.4} wlfy £y, Q)0 ({, 8y, 02;) = |841182,].

We now state a result which generalizes Lemma 2.3 of [7], Lemma 2.4
of [8], and gives a necessary and sufficient comdition under which a pair
(@, 92 18 & weak automorphism of a function f.

THEOREM 2.5, Let fe K(z]. If ¢, £y, gz € 2, then ¢.fp, =f if and
only if mpy =7 = {8;] i =1,..., 1} and g(y;) = &; where fou(S;) = y;
and f(8;) = 5;. :

Thus ¢.fp, =F if and only if for each 4 =1,...,¢ ¢(8;) = S:'s
and g (¥;) = §;. Theorem 2.5 will prove to he very useful in determining
the number of functions f such that ¢ifg. = f. It will be seen that the
number of such f depends only upon the cyele structure of ¢, and @,.
In order to count the number of such f, we will count the number of parti-
tions sz with the property that mg, = m. The number of such partitions
will depend only upon the lengths of the cycles of g, . For each such partition
x we will then determine the number of functions [ arvising from.z with
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the propexty that ¢ (y;) = §,. The number of such f will depend only
upon the number of cyeles of ¢, of various lengths.

If gy e 2y, 0,6 2, and @ f = fp, = f then ¢ fp, = f. That the con-
verse is not true in general may be seen by the following example where
K = GF(3), ¢,(#) = gp(0) =2, and f(z) = 2. We now determine the
number N (g, ¢.) of functions f such p,fo, = . f = fo, = I

TrBOREM 2.6. If @, has m(1) aycles of length one and g, has s cycles then

(2.5) Nps: g2) = [m(L)F.

Proof. By Theorem 2.5 of [8], fo, = f if and only if the cyeles of ¢,
refine the partition @y By Lemma 2.3 of [7], ¢, f = fif and only ifp(a) =
for all ¢ € By, the range of f. If §(s, #) denotes the Stirling number of the
gecond kind, then §(s,?) counts the number of partitions w of order ¢
for whieh the s cyeles of g, rofine = Let ¥, represent the set of fixed
points of ¢, and set m = m(1). Then for each partition z of order # there
are m{m—1} ... (m—1t-+1) functions f whose partition is = and for which
By F, . Summing over all t =1, ..., m we get

k)

Figi, 93) = D) 8(s, tymim—1) ... (m—1-+1).
=1

Xf ¢ > m then m{m—1)... (m—1t+1) =0 for > m. If m > & then 8(s, 1}
= 0 when 7> s. Hence

Nigs, @) = 3 8(s, hm(m—1) ... (m—14+1) = [m(1)]
. =1 .

by an elementary combinatorial argument.

We note that if g, = id., then m(1) = ¢ 8o that N (id., @) = ¢* as
m Theorem 2.7 of [8]. If ¢, =id., then s — g 80 that ¥{p, id.) = [m(1)]®
a8 in Theorem 2.4 of [7] when » — 1.

I p, and ¢, ate fixed permutations, we now determine the number
of functions f such that g,fp, = f where wf #f and fg, # f. By The-
orems 2.5 and 2.6 we must count the mumber of partitions m = {Ty <
=1,..., % such that {T;g,} is & permutation of {T;} with . the property
that for at least one 4, Typ, = T; where j # .

We first prove the following ' _

Levwa 2.7, Let = be a partition of K such that apy = If Texand T
infersects 'a cyele o of ¢y, then T must intersect o in o number of elements which
divides the length of o.

' Proof. Let m be the smallest positive integer such thab Ted = T.
Suppose Tng = {“!’17 ey ey} wWhere 4 << ... <<, so that @y = B
. Let aes and suppose a; 9% = a. Let % = mg,+r where 0<7< m.
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Since Tl = T we see that a e Tel. The sets T, Toyy ..., Toit~" are pair-
wise disjoint and they have the same number of elements. Thus mi =k
8o that Ik where & is the length of . This completes the proof of the lemma.

We have shown that if z is a partition such that apy, =mand T'ex
intersects two or more cycles of s, then T must intersect each cycle in
& number of elements which divides the length of the eycle. Further, if
Ty, ..., Tz partition a cycle o of length k, then the T's are cyclie in the
sense that T; = T, ¢!~ and the s form a cyelic partition of length 4 = E/I.

Suppose g, has s cyeles. Let P (s} represent the number of partitions
of s. Hach summand p; of a partition of s will be used to constructh pax-
titions which overlap into various eycles. For example, if & = p, & ... + Py
then for each ¢ =1,..., g the summand »; will be used to construct
partitions which overlap into some p; cycles. If these eycles are Tiys aes Oy,
of lengths %,,, ..., kg, then (ky, ..., kip,) will determine the type of overlap
which occurs. If p; = 1 then we will construct partitions which intersect
justthe cycle oy, '

Let B(s;py, ..., n,} denote the number of ways that s digtinet cycles
can be divided into g distinguishable classes containing p,, ..., p, cyeles
where & =p, 4 ... +p,. By an elementary combinatorial argument
we may Prove o

s!
Pilpal gl

If some of the p,'s are equal then (2.6) is to be interpreted as follows.
Suppose Piyy ooy Pyy 2ve distinet and that for j =1, ..., 4, ¢; denotes the
number of times that Py; oceurs. Then (2.6) becomnes

(2.6) _ B(8; 9y s py) =

st

(2.7) T )
LN o,
A (_‘pzj‘}:’ P'Lj

M)

Let p;+ ... +p, be a partition of s. For each i = L., glet oy .-
i3 O, DB the p; cycles of lengths kg, ..., k;p, under consideration. Wg
determine the nmumber A(ky,..., kip;) o partitions @ of onu ... Ulip,
with the property that ¢, permutes the subsets of z. To this end let 7(n)
denote the number of divisors of n. '

LeMwa 2.8. If p; = 1 and oy, 4s of lengih &y then
(2.8) ’ Bi(key) = w(ky).

Proof. By Lemma 2.7, we know that if a set T intersects g1,y 1 must
do so in I;; elements where I, [k,;. Let d = i fly and suppose o = (AP
-3 0, ). We construct a partition of ¢, containing 4 subsets each of
order 1. Define '
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. Ty = {1y tgpas-iv; af;ﬂ—dﬂ}:
(2.9) Ty = {as, Ogpay .-, alcil—d+2}:

.................

Clearly Ty, ..., T; have the same number of elements, TynT; =@ if
i Ty =T, for 4 =1,...,d—1 aud Typ, =T,. Thus the par-
tition {T', ..., Ty} has the property that g, permutes the T%s. Conversely if
{8, ..., 8, } pattitions oy; and is sueh that foreach i =1, ..., m, S0, = 8,
then {8, ..., 8} must be of the form (2.9) for some I; dividing %,,. Since
there arve T(k;) divisors of k;, the proof is complete..

Lenva 2.9 Suppose p; > 1 and ay, .
where {kyy, .. o k) =1 Then
BelBins ooy By ) = 7(lyy) .o vk

( hfg:r,,;) +'1 *

- Ogpy WF¢ O lengths Ry, ..o, ki,

(2.10)

Proof. Let = be a partition of o, U ... Uy, with the plopefty that
qp, = o Suppose T' ez intersects all of the cycles oy, ..\, cr,pi Let m be
the smallest positive integer such that Tl =T. From Lemma 2.7 we sece
that mly; = k; for § = 1, ..., p; where I; denotes the number of elements
from a,;j in 7. Thus mlky for all § so that l; = ky. Hence the only set
which intersects all of the o’sis T = oy 0 ... Uy, . The remaining par-
titions are such that each subset intersects a sinéle oy. By Lemma 238
there are (k) partitions of o;; for j =1, ..., p; from which (2.10) follows,

Note. In the proof of Lemma 2.9, we need not con&der the cage where
a-set intersects less tham p, cycles because that ease wﬂl be: tqken care
of by a different partition of s.

Levnia 2.10. Suppose p; > 1 and oy, ...

s G, 7 of lengths By, .. K
where (B, ..., & ;) > 1. Then P = RIEREY)

in;

(211 LMY S { P S

+ Zi:p,; )

—i_ ki;l:l;)

.Bs(ku’ L_p,,') =
Lpt o By o g by by (Rt e
Ljtkg ‘

Proof. Let = be a partition of o, u ... Loy, with the property that
g, = m. Suppose T en intersects oy in I; elements for § =1,...,
where I;fk;. Let m be the smallest positive integer such that Te™ = T,
The sets ', Ty, ..., Tei~" are pairwise disjoint and they each have
bt oo+, elements. Henee Ml 4 .o +lyp) = ka-b ... kg, 80 that
(T v Tlm I S w)‘_7"1,';1 ). )

There are (& .. Fip) [Ty - 1)) Ways to construe T sineo from each
oy there are kyfl, ways to choose the desiredl; elements. Once T is
chosen, the remaining sets are uniquely determined. Sinee the numbering
of the sets is immaterial, we divide by the number of sebts which ig
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(Bt oo k) i(ta + ... +1y,). Sunming over all 1, + ... + iy, Where Lk,
forj =1,...,p; yields (2.11).

TuroreEM 2.11. Let s = p -+ ... +pg. Fori =1, ..., g consider the p;
cyeles Gy vy Oy of lengths Lu, e . The total number of partitions =
of K such ﬁzat 7 arises from this pmmwn of s and z has the property that
g, = @ 18 given by

(2.12) H Bilker, s ki) —1—a [ [ =(ky)
11Ky
i<y
where , _
(9.13) a — 0 if all p; =1 or for some i, p;> 1 and (By, ..., k) > 1,

I if for all ¢ =1
Prooi, The product

yeees @y By oy ’ipi) =1.

¥

(2.14) [ B:tkas o T o)
i=1
counts the number of partitions = such that mg, = = which arise from the
given partition of 5. There is one partition 7 counted in {2.14) which arises
when for all ¢.and j,1; = k. This partition = has the property. that the
cyeles of g, vefine s and is thus already counted by Theorem 2.6. -

If all p, = 1 or for some 4, p; > 1 and (Fy, ..., fip,) > L then we let
a = 0 sinee in this cage each partition arising from (2.14) will have hecn
counted exactly once. Suppose that for all § = 1, ..., g, (B, .-y by} = 1.
Let # be a partition with the property that each set in x intersects a single
cycle . Any such partition @ will have been counted in the partition of s
when all p; = 1 since in that case each set in the partition intersects just
one cyele o. There are

: ” T(kij)

(2.15)
Lissy
175D,

sueh partitions . Hence we take ¢ = 1 and the proof is complete.

We now determine the number ¥ (p,) of partitions = = {Tyl i =1,

., 6} of K with the property that mp, = o and for some i, Tip, = Tf
W]lere j 4.

THEOREM 2.12. ;S‘uppose @, has § cycles. Then

N(tpg) = E Z(H'B* gy voey 113

Dytee. o= i=

y—1—~a kd)

I<1<g
L=ty

(2.16)

where the owter sumn is over all P(s) partitions p;+ ... +p, of &, the inner
sum is over all (s!)[p,! ... p,! ways that s cycles can be divided into g dis-
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tinguishable classes containing p,, ..., p, cycles where Pyt
a is given by (2.13), and the ks are lengths of the cycles of ¢,.

Proof, We sum (2.12) over all

CAp, =8

s!

(2.17) —_—
Pil e p,!

ways that ¢ eycles ean be divided into g distinguishable classes containing
P1s .-y Py cyeles where p,+... +9, =8 If the p’s are not digtinet
then (2.17) is to be mterpwted a8 follows. Suppose Diyy -y Py, ave distines
and that for j =1, ..., &, ¢; denotes the number of times t]mt Py, occurs.
Then (2.17) beeomeq

1
(2.18) il

13

,-Q (P4, )p;;

Summing over all P(s} partitions of s completes the proof.

We note that if p, —id. then N(g,) should be zero since ¢, fixes
every subset in a partition. If g, = id., then all ky =1 so that (2.12)
becomes zero and thus N(g,) = 0 by (2 16).

THEOREM 2.13. Suppose p, has s cycles. Then the number of pariitions m
with the property that np, = x is given by

(2.19) D B8, )+ N(ps)
=1 .

where S(s, t) is the Stirling . number of the second kind and N (ps) ts given
by (2.16).

Proof. 8(s, #) counts the number of partitions z of order ¢ for which
the ¢ cycles of p, refine = Fach such partition x has the property that if
Ten then Tp, =T from which (2.19) follows.

As an illustration of the above theory, let K = GF(5) and suppose
that n cyelic notation g, = (01)(23) 50 that s = 3. The lengths of the
cycles of ¢, are k, =k, — 2 and k, =1 so that z({k, )r(kg) (ks) = 4.
For simplicity of notation let ¥ be the value of {2.12), We list in (2.20)
all partitions = with the property that np, = =.

Consider the partition s = 3;

Bi{kyy Bgy Bg) =5, a =1, and N = 0.
~ Consider the parbition s =24 1:

Bk, Eo)Ba(ls) =3, a =0, ¥N =
are my and =,.

' Bulley, By)Balls) =6, o = 1, ¥ =1 and the corresponding partition
1§ 715,

2 and the corresponding partitions
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Balks, kg) Ba(ky) = 6, @ =1, N =1 and the corresponding partition
is «,.

‘Consider the partition ¢ =141+1:

B1(k) Bulba)Bs(lts) =4, @ =0, ¥ =3 and the corresponding par-
titions are =y, =, and =,.

Bach of the partitions w; (¢ =1,...,7) has the property that g,
moves &t least one subset of the partition and thus N(ps) = 7. There are
five partitions =, (i = 8, ...,12) listed in (2.20) with the property that g,
leaves each subset fixed so that by (2.19) there are a total of 12 partitions =
such that mp, = .

= {{Os 2}, {1, 3%, {4}}! Ty
[{053}: {1:2}:{4}}: Ty
{{2}: £}, {0, 1, 4}}7 Ty
{{0}: {1}: {2: 3, 4}}7 T
{
{

1

{0}, {1}, 23, 8%, (&},
{{0 1,2,3, 4}}
{{0719-’:3} {4}}
{

{

{

i

H
I

{2.20)

II
I

0,13, 2,3, 43,
g e {0,1},{2},{3},{4}}, 2581 {9 3}, {0,1, 4}}
{2, 3}, {0}, {13, {4}, {0, 13, 2, 3}, {4}).

We now consider a partition z with the property mgp, — = and for
some T; em, Tiw, = T; where j 5= ¢. We will then determine the number
of functions f such that =; = z and ¢, fp, = f where ¢, is a fixed permu-
tation. The number of such f will only depend upon the number of eycles
of ¢, of a given length.

DErniTION 2.3, We say that a partition = has a eyelie pam: of length j
relative to g, if there ave sets T',..., T; en such that Typ, = T, for
4=1,...,5j~1 and Tp, =1T,.

We denote by ¢(j) the number of cyclic parts of length j even though
this number depends upon the permutstion g,. We now prove

TrBOREM 2.14. Suppose p, has m(j) cycles of length j. Let m be o partition
such that mp, =z, for some T;em, Tp, =T; (j 1), and suppose =
has ¢(j) cyclic parts of length . Then the number of functions f such that
@1fps = f where w, = 5 is given by

H 70 [ () m(5) —1) ...

]

12

(2.21) (7 (5) — (e(5) —1))]

where the product 43 over oll distinct lengths § of eydles of @,.

Prootf. Suppose 'y, ..., T are sets in & partition w; where pfp, = f.
If f(T;) = o; where ¢; 0 a cycle of ¢; and f(T,} =y, then p,{y) = g
80 that y = ¢ ,. S1mﬂa,r1v f(T;,) =y, .eey f(Ty) = o;. Hence we must
define f so that the sets T, ..., T; geb mapped by f to a cycle of ¢, of
length 4. For each of the m(j) cycles of g, of length j there are j choices
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tor f(1,). For each distinct j there are
PO (m(H—1) .. fm(i) — fe(i) —1))]

ways to define f on the ¢(j) cyclic parts of length j from which (2.21)
tollows.

We note that if z is a partition arising from Theorem 2.12 then the
cyclic parts of = are each of length j = (Bt oo Fhad (B oo +1)
for some 7. Theorems 2.6, 2.12 and 2.14 can then be applied to determine
the total number of functions f with the rroperty that ¢, fe, = f.

3. Cyclic groups. In this section we apply the results of Section 2
i the case where 2, and 2, are cyclic groups whose orders are relatively
prime. We determine the number of equivalence classes of a given ordél*
and in particular the fotal number of classes. '

Let 22, and 0, be eyelic groups of orders iy and m, where {m,, m,) = 1
so that £ x 2, is a eyclic group of order 9y My For eaeh jm; (4 =1, 2)
let H,(t) denote the subgroup of £; of order #; so that H,(t,) X H,(t,)
ig a subgroup of 0, x Q, of order t1,. Let W(t,, t,) denote the numbér-
of functions f sueh that A(f, Oy, ) = H, (1) x Hy{t,). :

U O = {py for © =1,2 then H,(t) = (u™h). It g; & 2, define
AL (91, g2) to be the number of f such that ¢, fp, = f. For any pair (¢1, ®s),
Mg, g;) depends only upon the cycle structure of @, @, and can be
determined from Theorems 2.6, 2.12 and 2.14. '

TeEmorREY 3.1. For sach 3ty
(3.1) Wity ta) = M(yTa's, gy SV (1, )

where the sum is over all u, , u, such that Uthg My Mgy b3 o)ty Uy, and 12, 52 Uy g

Proof. M(ypat, yTole) counts the number of functions f such
tha,lt Hl(tl)xﬂg(?2)<_4(f, £, 2,). There are W (uy, 1) such f tfor
which the containment is proper for each w,u.m,m,, Bytgly s and
bty &y,

CoROLLARY 3.2, Por each bitalmy my there are 4,6, W (1, Lo) [y, classes
of order mym,ft,1, and

(32) 22, 0 =

bt Wty &),

CoROLLARY 3.3. Suppose feHiz], mp = {8 i = L, ., 8 and f£(8,)
= O;o Them »(f, 0y, 2,) = t,1,, or equivalently u(f, 2., 2,) = M1 My [T ;2
if and only if H.(t) x H, (Lo} 45 the largest subgroup of 2, x Q, such thwtlz'f
(1 p2) € H, (1) X Hy(ts), then Ty ==y and . gy =6, (i =1 th
whero fra(S) =y T
We now extend Definition 3.1 of [T]and [8] to
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DEFINITION 3.1. Let © = 0, x 2, and 2" = 0] x &, where 2, ©,, 2,
and 2; < @. Suppose that @ and 2’ decompose K [z] into the weak equiv-
alence classes 4., ..., 4, and By, ..., B,. Then 2 and & induce equiv-
alent wealk decompositions of K [x]if {14} is 2 permutation of {|B,|} where
{4} denotes the order of the set 4. Otherwige, the decempositions are
inequivalent.

By Lemma 4.1 of [87 we may define the cyeles of a cyelic gronp to
be the cycles of any generator of that group. Hence we may state

THEOREM 3.4, Suppose O, O] ave cyclic groups of order m, and 2,, £,
are cyclic groups of order m, where (m,, m,) = 1. Lel H, (1} and H(i;} denote
the subgroups of 2; and Q; of order t; for i =1, 2. If for each t,%s\m,m,,
H () and H (1) have the same namber of cycles of the same length and H,(t,)
and Hy(t,) have the same number of cycles of the same length then 0, x O,
and 2 X Q, induce equivalent weal decompesitions of K [x].

We illnstrate the above theory in the case K = GF(5). Suppose
that in ecyclic notation p, = (012), ¢, = (01)(23), and 2; = {y)> for
© =1,2 80 that [£2,x £;) =6. For 4 =1, 2,3 and 6 let ¢(¢) denote the
number of equivalence classes of order ¢ iInduced by 2, % ;. I M@y, @s)
represents the number of f such that ¢, fg, = f, then by Theorems 2.6,
2.12, and 2.14 we see that

M (g, w2) = 8,
M {1py,1d.) = 82,

go that by Theorem 3.1

Mlid., ) =125,
M{id., id.) — 3125

W(3,2) =8, W(1,2) =117,
W(3,1) =24, TW(1,1) = 2976
Hence by Corollary 3.2
e(l) =8,  e{3) =39,
o(2) =12, ¢(6) = 496

and. thus by (3.2) A(£,, 2,) = Bdb.

4. Application to similarity. In [3] 8. Cavier studied similarity of
funetions over o finite field, We extend his definition in

DrrmvTrioN 4.1, Let 2 < @ and f, ge K[w]. Then f is similer to g
relative to @ if there exists ¢ £ & such that ¢~ fo = g

CLet Q70 and p'(f, Q) denote the class of f and the number of

clements in the class of f relative to £. Let V' (2} denote the number of
classes induced by 2.

DEFINITION 4.2. Let 2 < @ and fe K[z]. It ¢ & £2 then g is a similar
automorphism of f relative to 2 if ¢7'fp = f. :
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The set of similar automorphisms of a funetion f relative to 2 forms
a group S{f, 2) of order »'(f, 2). One may easily prove that if Q< &
and fe K[x] then

(41) w0 (f, Q) = 121,

Suppose now 2 is cyclic of order m. For each tjm let H(t) denote
the nnique subgroup of 2 of order i so that if Q = {p)> then H(t) = {yp™">.
Let §(i) denote the number of funetions f such that S(f, @) = H ().
If ¢ € 2 define M(p) to be the number of f such that ¢~ fp = f. For any
permutation ¢, M{p) can be determined from Theorems 2.6, 2.12 and 2.14.

Proceeding as in Section 3 we may prove

ToeEoREM 4.1. For each tm
(4.2) 8it) = M — Y 8(u)

where the sum is over all w such that wlm, fu and t + .
COROLLARY 4.2. For each tim there ave tS(1)/m classes of order mft

1
Q) =;;;2zsu).

tm

a5

(4.3)

Corornary 4.3. Suppose @, and 2, are cydlic groups of order m. Let
H{t) (1 = 1,2) denote the subgroups of Q. and 8, of order t where t|m.
If for each tim, H, (1} and H,(t) have the same number of cycles of the same
length then 2, and Q, induce equivalent similar decompositions of Klx].

We illustrate the theory of similarity with the following example
where K = GF(5). Suppose that in ¢yelic notation p = (0123)and 2 = {p>.
For ¢ =1, 2 and 4 let ¢'(4) denote the number of equivalence classes of

order 4 induced by £. If M (¢) represents the number of f such that g fp

= fthen by Theorems 2.6, 2.12 and 2.14 we see that H(yp} = b, M(yp?) =25
and A (id.} = 3125 so that by Theorem 4.1 §(4) =5, 8(2) =20 and
8(1) = 3100. Hence by Corollary 4.2, ¢’ (1) = 5,¢'(2) =10and ¢'{4) = 775
80 that by (4.3) 1'(£2) = 790.

5. Permutation pelynomials. In this section we present several
applications of weak equivalence to permutation polynomials over a finite
field. A general theory of permutation polynomials has already been
discussed in the literature, see for example [5], [9], [10], [11], [12] and
their references. If f & K [#] is a permutation polynomial and g is weakly
equivalent to f then g is also a permutation polynomial so that the class
£.f 2, consists entirely of permutation polynomials.

THEOREM 5.1. If f & K [#] then f is a permutation polynomial if cmd‘;only
if f is weakly equivalent to o relative to the groups @ and ©.
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Proof. The sufficiency is clear. For necessity suppose f is & permu-
tation polynomial and f(e) = g, where K = {a;,..., a}. Define ¢,
by paloy) = a; and ¢ (e) =a; for i =1,...,q Then pifpa(ny,) = @,
so that ¢,fp, = .

Thus the group of permutation polynomials eomprises exactly one
class relative to the groups @ and @.

TEEOREM 5.2. Let f ¢ K [0] be a permutation polynomial. Suppose 2,
£ < @ where (12,1, |2,]) = 1. Then B(fy s Do) = [,]] ).

Proof. Using (2.1) we have

(5.1} & = Qfiu.. v,

where fQ, = {f = f1, fa, ..., f,} is the right equivalence clags of f relative
to &2, and £,f; is the left equivalence class of f; relative to £2,. Since b
1§ a permutation polynomial, by Corollary 9 of {9] the number of elements
in £f;is || fori =1, ..., n. Thus |,k = ulf, £2,, ,) where & denotes
the number of distinet left equivalence classes in the decomposition of
0.f0, from (5.1). Hence 10yu(f, O, Q). Similarly (Q]u(f, 2,, 2y)
from which the theorsm follows.

Comrorrary 5.8. Let &y, O, << @ where (1424], |£2,) = 1. Then the proup
of permutation polynomials on K is weakly decomposed by Q,x Q, inio
[Px®: Q) xL,] weak equivalence classes each containing |02,1Q,] el
ements.

COROLLARY 5.4. Let £2,, Q,, O, Q) < @ where (12,1, |2.1) = (121, |23}
=1 If [£;x 02y = |2 x Q] then 2,x 0, and 0] x 2, decompose the
group of permutation polynomials on K into the same number of weak equiv-
alence classes of the same size.

We note that the results of this section correspond to the resulis of
Bections 3 and 4 of [9].
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Omn normal radical extensions of real fields
by

o

Davip Gav* (Geneva)

In 1926 Darbi [1] and Bessel-Hagen (see [8], p. 302) found all normal
binomials #™ —a over the rationals @. Here is their list:

L: at—e (c .,—&ci)
@t +e? (e # 2¢))
m”" Rt 1(k>3)

B2 okl
a9 e (%

2862 (e # 36))
24366 (¢ 7 663

> 4)

{In all cases above, it is understood that ¢, ¢, £ Q) In 1975 Mann and
Vélez [5] considered the problem of determining all binomials #*—a
over O with the property that @(a) iz the splitting field for all roots «
of #™ - a. We call such binomials weakly normal. They obtained a complete
list of weakly normal binomials over @ which, of course, includes the
frredueible binomials above ag well ag the following reducible ones:

Lip: x:—e?
2 -+ 4o

a4 27 b
1% 1 (36 6*)5.

More recently, Norris and Vélez [6] have shown that the normal
binomials over a field K play a central réle in the general structure the-

ory of all radical extensiong of K.

The purpose of this paper is to determine all weakly normal (inchuding.
normel) binomials over an avbitrary real field. Our main results are con-
tained in Section 4 (in particnlar, Theorems 4.1 and 4.4) whers we obtain
binomials as explicit as those on the lists above. Tn SBeetivn 1 we present
some general results about weakly normal binomials forming a point of
departure for our study. Section 2 iz devoted to finding explicit (and
convenient for our purposes) generators for, and Galois groups of, certain
cyclotomic fields. In SBection 3, we use these technical results to obtain
@ precise framework for weakly normal binomials enabling us to complete
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Seientifique and Battelle Institute Grant No..333-205.
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