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In 1926 Darbi [1] and Bessel-Hagen (see [8], p. 302) found all normal
binomials #™ —a over the rationals @. Here is their list:

L: at—e (c .,—&ci)
@t +e? (e # 2¢))
m”" Rt 1(k>3)

B2 okl
a9 e (%

2862 (e # 36))
24366 (¢ 7 663

> 4)

{In all cases above, it is understood that ¢, ¢, £ Q) In 1975 Mann and
Vélez [5] considered the problem of determining all binomials #*—a
over O with the property that @(a) iz the splitting field for all roots «
of #™ - a. We call such binomials weakly normal. They obtained a complete
list of weakly normal binomials over @ which, of course, includes the
frredueible binomials above ag well ag the following reducible ones:

Lip: x:—e?
2 -+ 4o

a4 27 b
1% 1 (36 6*)5.

More recently, Norris and Vélez [6] have shown that the normal
binomials over a field K play a central réle in the general structure the-

ory of all radical extensiong of K.

The purpose of this paper is to determine all weakly normal (inchuding.
normel) binomials over an avbitrary real field. Our main results are con-
tained in Section 4 (in particnlar, Theorems 4.1 and 4.4) whers we obtain
binomials as explicit as those on the lists above. Tn SBeetivn 1 we present
some general results about weakly normal binomials forming a point of
departure for our study. Section 2 iz devoted to finding explicit (and
convenient for our purposes) generators for, and Galois groups of, certain
cyclotomic fields. In SBection 3, we use these technical results to obtain
@ precise framework for weakly normal binomials enabling us to complete

* The author was jointly supported by Fonds National Snisse deTa Recherche
Seientifique and Battelle Institute Grant No..333-205.
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our investigations in Section 4. We conelude the paper in Section 5 with
detailed examples and applications.

T am indebted to Henry Mann for suggesting thab the lists Ly and Ly
above might be generalized nicely to real fields.

1. Weakly normal binomials. We begin with some definitions and
potation. A polynomial p(z) over a field K is normal over K if p(x) is
irreducible and K (a) is the splitting field for every root a of p(22). A binomial
gle) is weakly normal (w.n.) over K if K(a) is the splitting field of ¢(z)
for every root a of g(=).

If K is a field extension of #, then we denote by [K:¥] the degrec
of the extension and by G{K [F) the Galols group if K happens to be normal
and separable over F. We denote by , a primitive sth root of unity. We
assume all fields are of characteristie 0.

1t is clear that @ binomial #* e over a field K is weakly normal iff
£, € K (a) for every root ¢ of 2" +a. If 47 - ¢ is weakly normal with root o,
let 5 = [H{a): K(Z,)] and call ¢ the parameter of ™ . The significance
of & is found in the following

Prorosrrior 1.1. If 2"+ a is weakly normal over K with parameter s,
then for any rool a

(1) s is the smallest infeger such that o® e K{Z,),

(2) K(a") = K(L,).

Furthermore, s-{K{(L,): Klln; in particular s|n.

Proof. Statements (1) and (2) are essentially Proposition 2.1 of [2].
The final statement is Lemma 2 6f [5]. m

From now on, we consider binomials 4"+ over a real field E by
which we mean a subfield of the real algebraic numbers. I ¢ € B and ¢ > 0,

n__
then Ve will always mean a real nth root. The following eliminates some
special eases.

ProrositIoN 1.2. Suppose 2" 4-a weakly normal over R. If a < 6,
- then mo==1 or 2. If n is odd, then n = 1. Furthermore, o*-+a is weakly
normal for ony a = B.

Proof. If ¢ < 0, then V——a genelfntes the splitting field of #*+-a.
But the splitting f:leld containing (,, can be real iff » = 1 or 2.

Similarly, if » i3 odd and & > 0, then —Va is a root that generates
the splitfing field. This can happen iff » = 1. &

In view of this proposition, we shall limit ourselves in what follows
to ¢"+a with &> 0, » even, n > 2.

no__
Levmma 1.3. If a> 0 and Va {real) e R({,,) for positive integers m,

m (m> 2), then Va = Vb for some be R, b> 0.

iom
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Proof. This is Lemma 1 of [5] &

PROPOSITION 1.4. Let o+ a be weakly normnal over R with n = 2+im
{m odd) and parameter s = Yy (mglm). Then

(a) thereis aroot § of ¥ L a such that f° =
(b) [R(L,): B(a)]1<2
() k1.

Proof. Suppose #™+a is weakly normal with paranieter s. Then

:ﬂkﬂv’ﬁfw someb e R, b= 0
2 and [R(L,): B] =27 for some ¢ = 1

n__ n__
B =Clpsp¥e is & root and f =, (Vay. By 11, R(f) =R(Z,)

no_ n__ —
and eonsequently (Vay e (). By the lemma, (i’l ay = Vb, This proves (a).
To prove {b), note that §* = bS, . end thus R(f*) = E(iz). Hence
[R(L,): B{{,)]< 2. Snce [R({,;}: B] 1s & power of 2, 0 i3 [R(C R].
Fmally, if & = 0, then §°is real and generates B(Z,). This is impossible
if >2 Thus kx=1. m

COROLLARY 1.5. If 2" -1 a is weakly normal over B and K is the mawimal
exiension of the rationals Q such that K = QL) and [K: Q1 is odd, then
e R

COROLLARY 1.6. Let #" | a be weakly normal with parameter s and k, j,
1, Wy as in 1.4, Then 2"+ a is irreducible iff my = m and [R((,): B] = 2F.

Proof. The binomial 27 +a is irreducible iff for every root [E{e): RB]
=un. But [R{a): R] =s-[B({,): B] = 2'm,-2¢ (by 1.4). Thus m, —m
andg =k B

2. Generators of eyclotomic fields and sgnare roots. In this section

we will develop some rather explicit information about certain subfields
of RB(Z,). In some instances we determine formulas for generators of these
subfields; in other instances we pin-point exactly where Vb (b>0,beR)
can He. Many of the items in this section are well-known; ofhers may be
new. We have made no attempt to separate the two.

As before, we denote by £, a primitive #th root of unity. Let n,= {,+
+¢7tand &, = 4 —4;. Thus ¢, is a root of w*—n,2+1 = 0 and we have

Liearata 2.1, (a) 5, 4 real and, _rif > 2, |n,| <2 and & > 0.
(b) £, = (b iVED/2.

{¢) R{n,) s the mazimal real subfield of B({

(d) B(Cum) = By L) if (n,m) =1.

(e} R(C,) = R(iVE,), nodd.

() £( z'k) = R( s M) s B 22 20

(@) Bllg,) = B, 15, VEn ), k22, m odd.
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Proof. Parts (a), (b), {d) and (f) are easy. Paxt (¢) follows from the
facts that K(y,) is real and [, satisfies a quadratic over R{s,).

To prove part (e), note that R(&,) = Rix,, V&) from (b) and (c).
We will have finished if we can show 7, e B(iV ¢, ). However, &, € R(il/g,:)
and &, = 4—n =4~ (5 + 70 =2 — (22272, Bub n odd implies that
a, &y aTe conjugate and, thevefore, n, and &2 4-¢,° are eonjugate. Thus
% € RGVE,).

Part (g} foliows from (d), (e) and (f):

¥ills

a¥m

) = R(Czk:cm) = R(i, 712.!:1"": &yl @
LEMnra 2.2, With respeet to the paritcular choices

L = exp(2wi/2%),

Jor all k221,
we have
C,f“; =Lz (k>1)

and

(8) Myss = Ve +2 for all 215 5y = —2;

(b) é-e'.gl.:+1 = 4“‘“77;!:-;-1 =2—n = (7?2k+2)§§k+1 ;T.:l (k>2); in par-
doubar, £,,1 = (9, +2)7r* where v € Gy ,);

(€) C2k+1 =N (1+m)/2 where r EQ(T@)-

Proof. (a) Webave 75,y = {3 + 50 +2
Thus 7., = 1/772:;-5‘2'-

(b) By (a), ¢

2

= LG+ =gy t2.

Bl = 2 — 1. Furthermore,
Spenfien = @2 ) = =0 e =) = &l

To prove the second part of (b), it is sufficient to show that £ . 18 a square
in Q{n,,). We do this by induction on k. If & = 2, then ¢ = 4. Assume
true for m 5o that £, ='s* s e Q(n,,) and &0 = 9,y £y §7° = square
n Q("l‘zn+1)a since Tont1s £2n+1 EQ(’Tzn—:-l)'

(e) Finally, £y = (mpp =1V, 002 (by 21 (b)) = el +14) /2
{by (a) and (b) above). &

CororrARY 23. If ¢ b, € B(n,;) and (nu+2)0 =7r%, then there
ewists 5 € B{n,) such that b — 8% +2)e.

Proof. Let s =r&;,, &3 and use 2.2 (b). m

Lmvma 2.4. Let K be o fidld with a,b e K. If E(Va).= KE(V5), then
& = kb for some ke K.

Proof. Wellknown snd easy. m

icm
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Leavma 2.5. Lel B be a real field such that n,cB but 5 4., ¢ R.
Then i i

(2) B(n,q.,) 28 cyclic of degree 2% over R;

(by if R(nﬂ,) = R(n,), then either p = q or p, g << 4;

ey if beR, b>0, ﬁeR(n‘&Hl) and l/f}_¢ B(ny), then ¢ =4 and
h = -1:-'(172_4+2) Jor some r e R,

Proof. (a) @(n,44,) I8 cyclic of degree 27 aver O(y ,4). Furthermore,
i 8 =ENQ(n,1,), then §=0(z,,). For certainly Qx4 < 8 and,
it 8 £ Q(n,4), then 8 =@y 4} (for some I with ¢=1>1) since
Q(n,4.4) 18 cyclic over Q(y, ). But this implies 9, ,,; € R, & confradiction.
Thus S = Q(7,,4) and (a) follows by a translation argnment (4], p. 19).

(b) If p> ¢ and p > 4, then by (a) B(nw) is cyclic of degreec 2774
and E(7,q) is eyclic of lower degree.

() I Vb e B(n,g.1); ¢ B(n,), then ¢ 4. However, since R(y,.,)
is cyelic over R of degree 29+~ R{n, ;.1) 18 the unique guadratic exten-
sion of R contained in R{n,,.,). Since R(]/E) is also a quadratic exiension
of B contained in RB(n,.), R(VD) = R{n,.,). Thus
b= ¥3(n,4-+-2) for some 7 € B by Lemmas 2.2 (a) and 2.4. &

Lmawa 2.6. If 7, b e R, v 5 0, b > 0, then R((L+ri)Vb) = B(i, Vb).

Proof. First, [(14+#Vb]2 = b(1—r*+2ri). Then ¢&R((1-+ri)Vd)
and thus R((1+#)Vb) = Ri, (1 +)Vb) = R(, VD). m ~

LEMMA 2.7. Let m be an odd integer, b ¢ R (b > 0) and F = R{L4,, Vb).
Then F is an abelian extension of B and

g=A and

B, WZE}'fb_a VE.;.) >3,

F o= Rily, 2V0) = \R(VE, VE,), 1=2,
R(z,,, VD), 1=0or1.

Proof. Bince B({,)and B (}/E) are abelian extensions, sois B{l,, I/I_J).
Thus F, a subfield of the latter, iz also abelian. :

To complete the proof, let § = ngml/t: Then R(ﬁ"’z) =B(,) 1= 1
and R(8%) = R(£,)i11 = 0. In any case Z,, € F 50 that F = R(Ly,, L2lnVb)
~ R{(,,, ta¥'D). The rest is obvious by Lemma 2.1 (e) in case I < 2. TE L > 2,
then 2, ; e F and F = R(L,, taVb) = R{iVE,, i, pa(l+ )b, 7, for
some r ey, ;) by 2.1 (g) and 2.2 (e). Thus F = R({1, l/é-‘m,nzﬂ/-l;) by
Lemmsa 2.6. m

Remark. In case £, = exp{2xifn), 7, = 2cos(2n/n) and ]/En
= 2gin{2x/n).
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3. Necessary and sufficient conditions on weak normality; associated
binomials. In this section we will offer applications of some of the lemamas
of §2 to the study of weakly norinal binomials. Recall that in Proposi-
tion 1.4 we showed if #2"*/m 4 ¢ is wealdy normal over B with parameter
§ = 2'm,, then the binomial has a root § with p° = 2;641]/5 for some
positive b e R.ﬁ Turthermore, by Proposition 1.1, R(f%) = E(gzk i)
Thus B( ,,Hl/b B({,x44,) The following gives necessary and suf-
ficient conditions for when this latter equation can hold.

PrROPOSITION 3.1. Letbe R, b> 0,k jmeZwithk>1,j=0 and m
odd. Then R(L,; _HV'E) = Bl H-m) iff one of the following holds:

(2) %> 2 and B(y,.,,Vb) = 77-,;;-;_;: Vs

by k=1, j—Oa%dR(l/_ R(VE,),m > 1;
(e} k=1 4721 and I/Em,l/b e K.
Proof. On the one hand, by Lemma 2.1 (e} and {g),

Bl gy VER), B +iZ2,
R(VE,), ktj =1, m> 1.
On the other hand, by Lemma 2.7,

(Czk+1ﬁ) _ B ,ﬂzk,[..ﬂ/b),
R(iV),

(Czk,.;.jm) =

B>2,

B =1.

The proposition follows by comparing maximal real subfields in case k = 2,
uking Lemma 2.4 in case k =1, § = 0, and doing both in caze k& = 1
izl =m

The following is an analogue to Capelli’s Theorem (for irreducible
binomials) for weakly normal binomials with parameter s. Tt and the Cor-
ollary which follows will enable us to reduce, in pamt, que,stlons of weak
normality and irredueibility for 2*** 4 to those for &%+ a.

ProposvioN 3.2. The binomial p(x) = 2y g i wealkly normal
with paremeter s = 2m, and wﬂh & = [B{L 4,4,): B(E LH)] (Proposi-
tiom 1.4 says ¢ =1 or 2) iff a == b2 mmg (b e R, b> 0) b is not a g-ih
power for any glm, (g>1) and q(z) = —Hﬁ’” is weakly normal
with parameter s, = 27 sueh that for any 7001 3 ofq ), R(F¥) = R{¢ P 8
(We call »(z), q(w} associated binomials.) .

7

Proof. (=) By Proposition 1.4, there is a root « of p{x} such that
al = ¢ k+1|/b for some positive beR. Thus ¢ = ¥ ™™ If s clear
that b cannot be a gth power for any g[m, otherwise the odd purt of s

would be smaller, contradicting Proposition 1.1 (1). Now if 8 is @ root
2:3+1

of q(a), then f = afr*ﬁl 1/5 for some odd k. Also, ﬁ"? = Ckﬂl/b.ge.n-
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evates B({,,; ) over R. Thus ﬁ*i ar ﬁ“zi generates R(E h_,) and hence
g(z) 1s weakly normal. Consider a special root y of q( ) with 'y == ;n,ﬁll/b
If & =2, then clearly R(Lux) = R{I ki) = AC ]) and thus s, = 27
I e —1 then s, = 2% for some g<j and 3 = o®™. Also R{V‘m)
= R({ B(L gy, ). Thus g =j.

A

(<) Tet & be & root of p(z). Then 5™ — ;ﬂi_:_;;‘:f.n,ﬂlfg for hy odd.

2?»-1-})

Furthermore, by Lemma 2.7,

R(ézjmo) =R (C::fm[p é.gk‘i'l"' b)
= R({ m,-mo,ﬁ for some root 8 of g(z)
= B({eg,)

+im
Thus p (%) is weakly normeal with parameter s,, say. 1t is clear that s, = 2han,
for some k= j since b is not a gth power for any imo, g > 1. For ease,
let o« be a root of p(wx) such that a2 = ¢ ;”H]fb =y for some rook
of g(). Then it is easy to see that ¢ = »** and thus B(y?") = R{Zps4, )
Tt follows that h =3j. &

COROLLARY 32.3. Let p(w) = 22"tIm o be weakly mormal and g(w)
= g Lo the associated weakly mnormal binomial of Proposition 3.2.
Then p(m) is irreducible iff m, = m and g(@) 48 frreducible.

Proof. This follows from Capelli’s Theorem {[3], .
proposition. B

In view of Propositions 3.1 and 3.2
program should be clear:

Determine which binomials aszz+c are weakly normal over K and
which are mormal over R.

Find necessary and sufficient conditions on R and b so that, in case

k=2 R 77.,Ic+1]/b "?»A—rﬂ 14 Em)
In the next seetion we will carry out this program.

4. Classification of weakly mormal bimomials. Let 4 be a positive
integer such that n,, e R bubt 9,44, ¢ R, if such exists; otherwise let
A = o0, :

TramorEM 4.1. A binomial 2 + 6 is wealkly normal over B iff for some
r & R it is one of the following:

§0f) and the

and Corollary 3.3, our future

1 x2—r _

9. 2™ 4%, h< 4

3 g (1 +2P 7, 2Ky < 4
4. w"h ' 12h ? A-l-l,

5. 2" ( 9y s AL
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Those weakly normal binemials are also irreducible.
(a) For all A:
B2, Vr éR.
(b) For A =32
at 7, ]7] 21,
mqh+ ali— ,h23
P 2-* =4
(¢} For 4>
wﬂh’ 1 ji’ ]/-IF;¢R. A>

0.1+

w20,

Proof. We use a theorem of Schinzel ([7], Theorem 1) concerning
binomials which are products of normal tactors. It follows directly from
that theorem that a binomial &° —ra: over & real field R is a product of
normal factors iff it satisfics one of the following for suitable integer ¢
and re R:

) @t =

(i} 8 =+ h<

(iil) & = (773&4—2)2'1—1 A h o= A+1, 2

(iv) @ = (n_+27" " X > A1,

A weakly normal blnomml must correspond to one of the binomials
on thig list. It is not diffienlt to see that (i), (iii), (iv) correspond to 2, 8, 5
{respectively} of our theorem and to show thai these are indeed weakly
normal. (See also remark preceding Lemma 5 in [T].)

It remains to consider 2 binomial satisfying (i). If » = 1, then we
obtain our case 1 which is cIechly wealkly normal Now suppose h>1
and a? = #**. Then ¢ = ir .In 01der tham w —1—a be weakly normal,
6 = ++""" (by 1.2). Tf a is a root of &*" 19", then o — = {4Vl and
B{a*) = B({,). Thus this binomial iz weakly normal and corresponds
to our cages 2 and 4,

The list of normal binomials follows from Capelli’s theorem ([37,
p. 60} and the list of weakly normal hinomials above. ®

Remark. Notice that the Iist of normal binomials for 4 =2 is
exactly the same as L;. Note also that the list of normal binomials for
A4 =3 iy quite small compared with that for 4 =

As we promised at the end of §3, we next determine necessary and
sufficient conditions on b and B so that in case k22, 1 >0 R( (Mo HVb

= B "721+J:]/§m) {m odd, m > 1), Part of this is accomplished in the

next two propositions; the rest is done in the proof of the clagsification
theorem that follows.

g

< g < 4,

icm
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ProrosiTioN 4.2. Suppose k=2 and k+i<< 4. Then

(1) R(n,,Vb) = Blng.ss VEL)

iff BUVE,) =

for some positive c € B and

rie, F< A,
r2e(y,s+2), kB =4.

Proof. Since k+j<d, nyye® and Rl Vi) = RIE,).
If k<A, then 5,4, €R and R(y,.,Vb) = R(Vb). Thus (1) holds iff
E{l/!;) :R(}/E_,,;). "The result then follows by Lemma 2.4. I k=4
then (1) holds iff R(y,,.,Vb) = R(VE,) iff R(VE,) = R(Vc) for some
ceR and b = rie(n, 4 +2), some r £ 0 ¢ R, by 2.3 and 2.4. m

PROPOSITION 4.3. Suppose § = 0 and k > A, Let B be largest such that

T}OBER(}/E;). Then R(ngi_.“lfb) R(?}qh,] &-’ ) iff one of the following
holds :
:rE
f = —_ fg = b = !
(a) k = B—1, R(V&,) = Ry, end rla2);

(b) k = B, [R(VE,): Rln,g)] =2, R(VE,) cydic over E (of degree
gfi+i-4y ) gR and VD lies in one of two quadratic eslensions XK of R
with K < R(VE,, Np.1) but E # R(n,451) ) B

Proof. (=) 3uppose E( 275—1—1]/_) = 1;2k,1/§_n,). Thus Vb eR(nik‘H,}/Em}

and either {a) Vb & R(ny, V&) or (b) Vb & Rin, VE,)-

In case (a),
2) Nepr € By, Vn)-
Thus k< B and
(3) [B (1, VEn)t Rly)] = 2.

R(9,.1) or, Which
B and b is either

The relations (2) and (3) then imply R{ny, VEa) =
iy the same, B ]/E;) == R(7,,41)- Thus also k-{-l =
a square in B or is equal to r*(n,, +2).

Tn case (b), let B =R(VE,). Then ¥be R (ng,.) and Vo ¢R (ny)
implies % = B by Lemms 2.5 (¢). Thus R(n, V&, ) = E(VE,). Further-
more, [R (]/_—) B(n,zp)] = 2 since, if the two fields were equal, we would
have Vb € B(1,p41); ), Vb ¢ R( 7,5 contradicting the fact that B =k> 4
and Lemma 2.5 (¢). By similar reasoning we also have f% B(n,541)-
Of course we also have Vo ¢ B ]/:Em ). We are thence led to the following
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diagram of fields:

(=) Y Ny h

We have that & (R(VE,, N,m41) (B (1,5)) = %, Z,. Thus there iy a unique
field L ag in the diagram and Vb & L. Furthermore £{np,.) is cyclic of
degree 28411 gver E and thus G(R(l/fm, Nypi) [B) = Za X Z gy .
Congequently, exactly one of R !/M;) and L is cyclic over R. Bub if T
were cyelic (of degree 27174, then Vb e I implies Vb & R( (7,441) cODbTA-
dieting the fact that Vb ¢ R( (#,541)- Hence B I/Em) is cyclic and G(L/R)
=Z,xZ 5 4. Therefore I contains exactly three quadratic extensions
of B: one is R(r,y,,), the others must be B(Vb) and B(Vbn,,,,).

(<) If the conditions as given in (a) in the statement of the prop-
osition hold, then

Blne0Vh) = RingVb) = Rin,z)= R(VE)= Rinp_;, VE) = R(n, V&,

if the econditions in (b) hold, then diagram (x) holds and

Ringi,V9) = B0, VD) = R(VE,) = R(VEn, n5) = B(ng, Vin). u

Remark. The conditions j = €, & > 4 and R(y k+11/b B(7,, I/Em)
of this proposition arise from the weak normality of mzk”%]— bﬂh Tmimy  yith
parameter m,. The ¢ of Ploposnmn 3.2 is- 2 and the associated weakly
normal binomial iy 2* —[—bz with parameter 2. This is case 4 of The-
orem 4.1,

Trom the regults of 1}]313 section together with Propositions 3.1 and 3.2,
we are able to obtain a complete list of weakly normal binomials of type

h’"—;—a Thig is glven in the following

THEOREM 4.4. Let m € Z, m > 1, m odd. Then a binomial q(z) = o™ t-a

Normal radical sxtensions of real fields 283

is weakly normal over B iff q(x) is one of the following for suitable mglm and
7, ¢ € R (a binomial in number # or %, below has its associated binomial —
aceording to Proposition 3.2 — in number # of Theorem 4.1; the asterisk (*)
denotes the cases where ¢ e R, ¢ 3> 0, R{¥'¢) = R(VE,) and Ve ¢ R).

1. @™ pmime Ve e R

1, BT (Rl

2, ot mm E R B AL

2,. @™ (2 c)“h"g’”"mﬂ Azh>g220 Ad>h>1=¢"™
Bao @+ [0, ),

8. @ T [+ 9T, VE, € R(n), 2<g < A
4, mﬂhm—{_ LY 1/5 ER(’Z’ h) he A1,
4y, gt y2mimo R(}/E B(fp), k=451

4y @ ”""‘+£r (, A+A>]"’”“ wims, B (Vi) = Ry B> A+1
4, a¥'m oy p? hl’”’mﬂ where B and b satisfy condition (b} of Proposition 4.3
with b = k; h>A-J—1
5. w“"'"‘+ [, +2) 'm0, Vi, & Ring), B> A-+L.
Moreover, the srreducible normal binomials of the given type are
(a) For all A: '
a2 VE, e R;
™ rie®.
(b) For 4 =2:
g"™ 4 rt 2220
alt weakly normal binomials of types 4 and 5 above.
(¢) For A=
2 ey, I/Em eR,ir| #r, Azh>1;
$2‘im L pep2l®,
B, 2 VE, éR g,m‘)
In all cases of irreducible binomials, it is understood that the coeﬁwwm
is not @ g-th power for any qim, ¢ > 1.
- Proof. We divide the proof into four cazes: () h =1, (i) A = h> 1
(iii) » > 4 and even parameber, (iv) k> 4 and odd parameter.
{1} The bLinomial #™+a is weakly normal with parameter omg|m
iff, by 3.2, a = b™™e and R (¢, Vb) = R(%,,). The latter is true iff, by 3.1
(b), R(¥b) = R(VE, ). This gives us cases 1, and 1,.
(ii) Now suppose 4 > k-+j > 1. Then binomial ZHm 4y i We&]ﬂy
j 9 . bzr 1mfmu o J+b2k
normal with parameter 2'm, (melm) iff, by 3.2, a
is wealkly normal with parameter 27 and Bl I/b = R(Czkﬂm). By 3.1
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(8, ¢) and 4.2, the latter implies either (a) V&, € R or (b) [R(VE,): B] = 2.
In ease (a) we have ¢ =1 and case 2 of 4.1 leads us to the present 2,.
In case (b), we have ¢ = 2 which, together with case 2 of 4.1 and 4.2,
yields our present 2, (k < A) and 2, (F =A4).

o (i) If £+5> A4 and 2 Tm g kis weakly normal with parameter
Yy (mgltn, j = 1), then by 3.2 a = b2 mim g3 1 patt weakly normal
with parameter 27 and B{pn ¥b) = B V:Em). This latter implies

[B(2y5): Bn)] =2, VE, € Riny,,)

and & == 1.

Furthermore, mﬂh+bak_l must be one of eases 3, 4 or 5 of Theorem 4.1.
This gives us our present cases 3, 4, and 5. Conversely, it is easy to show
that these cases are weakly normal.

{iv} Finally suppose k> 4 and that mﬂkm+a is weakly mormal with
parameter mglm. By 3.1, this iz so iff & = bgkﬁl’"/mﬂ, o 4 b i weakly
normal. and R({,,, V) =R(Czh,l/5m). Thus our present cases 4,, 4.,

and 4, follow from Proposition 4.3 and the fact that 22" +5*" " must be
case 4 of 4.1. m

5. Examples and applications. In this final section, we would like
to accomplish two things. First, we would like to apply our results to
a class of real fields for which the results of Darbi, Mann and Vélez gen-
eralize more naturally than for the class of all real fields (see 5.1 below).
Secondly, we would like to construct a real field for which the con-
ditions of 4, and 4, (of Theorem 4.4} hold and a real field for which the con-
ditions of 4, hold.

We realize our first wim in

Prorosmrion 5.1. Let Q. be the mawimal abelian emlension of @ and
suppose B is a veal field such that BnQ, c @ly,) for some odd integer t.
Then q(z)=a"+a (a> 0,acR) is weakly normal over B iff q(x) is one
of the following :

(2) #2492 o2 L, Vr ¢ RM; g4 e, phprl g 2 R, gt
=3 m2h+2'~’h'_27““71_1, bz 4™, (In all cases e R, 7> 0.) .
(b} @™ - (p2 &,y g4y (252 £, m odd, myim, n,, € R, v € R.

Moreover, the irreducible binomials consist of the binomials in (a)

 Joltowed by ) plus those binomials in (L) with m = m, and the coefficient
7ot & g-th power for any qlm, ¢ > 1.

Proof. Since 4 = 2, by Theorem 4.1 the binomials in (a) are all
the weakty normal binomials with degree # = power of 2.

Let m be an 0dd integer with m > 1. We now consider bincmials over &
with degree 2*m for some k> 1. We first note that 4m is the smallest
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integer ¢ such that Vge @ {n,). Thus, since RnQ, c O(y,) for some
-0dd 7, we must have }«'5;,: ¢ B. Furthermore, we claim R(}‘E,;) NE{y,) =R
for all & > 3. For, if not, then by 2.5 ¥'2 e R(V%, ). Thus also ¥2 ¢ R(VE,)
n @, which, by the above cornments, is a subfield of Q(Z,) for some odd g.
But VZ e QL) eontrhadicts the fact that @(n,)nQ{l,) =0 (any &,
any odd ¢). Thus if ¥ ™ 4« is weakly normal over R, a glance at the list
in Theorem 4.4 shows that [R(VE ):R] =2, h< A =2, and that there-
fore only cases 1, and 2, are admissible. We must only determine the
-cocfficients in order to complete the proof of the proposition.

Now [R(]/E):R] = 2 implies [B({y,): B] =4 so that, since B n @,
s Q(n), we have [R{{,,):B]= [E({,): R-[R({,): B]. Thus [B{,):R]=2.
‘Consequently, by Lemma: 2.1 (¢}, ,, € B and hence &, ¢ B. Henee we can
choose ¢ in 1, and 2,3 to be &,. Since 5, +2 = 2, we are done. =

Remark. One obtains the lists Iy and L, (B = @) immediately
gince 7, @ (m odd, m>1) iff m = 3. PFurthermore, 5, = —1 and
§a =4—m3 =3.

The fact that R(I/f—m_)mR(nzk) = R for all % in the above proof, shows
that the situation considered in Proposition 5.1 is an extreme ease of the
following immediate corollary to Theorem 4.4 (and Lemma 2.5).

ProrosrTioN 5.2, If m 45 odd, m > 1 and a2 g weakly normal over R,
then either R(VE,,) = R(n,,) for some g <k or [R(VE,):R(n,)]1= 9. In all
cases R(VE,) is oyclic over R of degree a power of 2.

We would like to construet examples of real fields satisfying the
conclusions of 5.2 for some choice of m and h> 4. In partienlar
we want

{AY an odd integer m > 1 and a field R such that R(V};) = E(n,u)
with &> 4; and

(B} an odd infeger m > 1 and a field B such that

[R(VE):Rins)]=2, B(VE,) # Blng),

R(l/_é;,) cyelic over B with 2> 4 -+1,

(Compare Proposition 4.3.)

As an aid, we have _

LeMwa 5.3. If R (I/Eﬂ;) 48 cyclic over R of degree 2%, ihen there emisis
a prime p such that pim and 2%p —1. _

Proof. G(R(VE,)/R) must be a subgroup of H(Q(VE,)/Q). »

We first seck fo satisfy (A) with £ a subfield of @,, 4 =2, & = 4,
m = 5. Lemma 5.3 i3 not contradicted. Consider the following diagram
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of fields:

xL:a(w/ﬁTz, 5?@)

a=alV7 vz ) B ﬂ.(\ @)—L
anz) alvio) alys)
2}
S ~1+7v5 3+Vs
where 75,5 = 1/5, Ny = l/2+]/§, s = _:l___, & = H; {the

field B to be described later). Now G(K/Q) — Z, and G(L/Q) ~ Z,.
Let the two groups be generated by g, ¢ respectively. Then G(KEL/Q)
= {a> X {p> with p{V§,) = 1/?5 and o(5,,) = n,. Let H be the subgroup
of (o3 X (@, generated by the element (o, p). (H is thus a so-called “diag-
onal” subgroup) and let R be the fixed-field of H. We claim that R satis-
fies (A) with 4 =2, A =4, m = 5. To show this, note that (g} x (&>
=Hx{g) = Hx (o). Thus KL = Q(V&,7,) 15, on the one hand, the
composmlon of B and @Q( 1/55 and, on the other, the compositum of R
and Q(n,). Thus R(VE) = Q(VE, n,) = Riy,). Also, [R(VE):R] = 4
since H has order 4. By a straightforward computation, we arrive at

R= Q(l/io V10) or B = Q(l/10+31/10) depending on the choices
of o, p as generators of their respective groups. (The two posalblhtles for B
arc not the same fields!)

Therefore, by Theorem 4.4, in addition to the binomials on the lists I,
and L, (with the obvious modifications), the only weakly normal bi-
nomials over B are a* 7 and o™ 4[24 ¥™ (m, = 1 or 8, re R).

We now turn to the problem of finding an example satisfying (B).
Fortunately for us, we are able to use the example for (A) given above.

(This is not & coincidence; see 5.4 below.) Indeed, consider the following
diagram of fields:

a(\/2+_\/§, itzﬁ)

a(ﬁ, 5—?@) g(_(2+ﬁ)2(5 +*/§)) a(Vz+VZ, v5)
a(Vio—i) >.'/\a(ﬁ,w/§)><a Vi6+3V0)
a(yo}
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Let B = Q(V10). Then

- Y Mo
R(VE&) = Q(}’ffi,}f "t‘/a) and  Rina) = 0(V2+V2,V5)

are both cyclic of degree & over K. Moveover, E(z,) # R(V’E—S). Thus the
conditions of (B) are satisfied with B = Q(}"'l—O), 4 =20=4 and m =5

On the other hand, the diagram above is exaetly diagram (*) b m
the proof of Proposition 43 with m =5, 4 =2, B =3, E = Q(l”lO
b =10 —V10 or 10--3Y10. (It is easy to check that R(Y10 +3V10)
— R(Y2V10—¥10) by noting that 10--3110 = 2(4 +¥10)2(10 —V/10)/36.)
Thus by Theorem 4.4, the weakly normal binomials over B are

m49+[(10 _;]/ﬁ)4}-8]5i"10 and £4o—{—[24'(10 __},"15)49.815,'1}39
(m, = 1 or 5,7 R) plus those on the lists L, and Dy

The construction of the above examples illustrates the following
general procedure for constructing fields satisfying (A) or (B).

5.4 Given 422, k= 4+1

(1} Choose m such that there exists prime p with pim and gk=din 1.
{Thus G(Q(l/a) /@) has a cyclic factor Z, for some [ > k—4.)

(2) Pick subfield K = QVE,) with G(Q(lfé,;)/lf] Z
Note that GK(yg)/K) = (o) ~Zy-+ and that G(K(ny,VE,) K}
= {es X {a7.

(8) Let R 4, = fixed-field of subgroup ¢ (g, @)y of (o> X <o-> .

(4) k> A +1,1et B 5= fixed-field of subgmup {(o, o) (g~ )N

Then Ry, m, 4, & satisty (A) with h=k; Rz, m, 4, h= kik> A +1}
satisty (B). '

Remark. I B, m, I, 4 satisfy (A) ({B)), then a translation argument
([4], p. 196) shows that RnQ(nai1, VE, ) must be a field construoted
in the above manner.

The number of choices in the procedure 5.4 seems to indicabe that
finding an explicit expression for the “b” in binomial 4, of Theorem 4.4
would be quite difficuls. Nevertheless, we have been explicit in all other
cases; it would be niee if we could be so in this case.

= <0‘> g ng-nd_'

—d—
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1. Einleitung. In der vorliegenden Arvbeit wird eine asymptotische
Formel filr die Anzahl der ganzzahligen Lésungen r(q,#n; 1, m) des dio-
phantischen Gleichungssystems

G(@gy o0y ®g) =1y

(1.1)
gy <aey 1) = my

bei = 5 aufgestellt und untersucht. Hier ist

i
g = q(X) = g, oy &) = ) Guaim, = X7QX
i,k=1
eine positiv definite ganzzahlige guadratische Form mit der symmetri-
schen Matrix @ = {(gg) und der Determinate D = detg; XT = (@1, --.; L),
und

(1.2) =1y =Umy, ..., ®) =Ef’1$i = (07X
i=1
ist eine ganzzahlige lineare Form; 07 = (¢y, ..., &),

Ohne Beschrinkung der Allgemeinheit kann man annehmen, daB
die Blemente der Matrix @ == (g,) ganze Zahlen () und g, 7 primitive
Formen gind, d.h. goTig,) =1, ggT(es, ..., ) = L.

Die Hauptergebnisse dieser Arbeit smd in dem Bericht [10] mltge-
teilts.

I M. Wmogra,dow [13] war der erste, der die Ereismethode auf
Probleme diophantischer Gleichungssysfeme {sogar allgemeinere als (1.1))
angewendet hat. Er hat eine Methode fiir die Aufstellung und Untersuchung
der asymptotischen Formeln fir die Losungszahl solcher Systeme ansge-

() Es ist nicht schwer unsere Ergebnisse auch auf beliebige ganze For-
men ¢ zu tbertragen, d.h, auf homogene Polynome des zweiten Grades mit ganzen
Koeffizienten.
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