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1. Introduction. Let k> 1 and let UF, Ut denote the unit cubes
congsisting respectively of points f = (8, ..., f) with 0, <1(j =1,...
...y k) and points & = (a,,..., ;) with 0 <oy <1 (f =1, ..., k). Let 2
be # finite set in U¥. For a in U%, write Z(#; e) for the number of points
of # lying in the box 0 < f; <oy (§ = 1, ..., k) and pub

D(Py a) = D(P; ay, ooy ) = Z(P; a)— iPla ... dg,

where |#7] is the number of elements of 2.

For the background of investigations regarding the funetion DH{#; e),
we refer the reader to [43, [2] [5].

Roth [3] proved that for every 2 in U%,

- [1D(25 @) da> e(k) (log |2,
where ¢{k) is & positive number depending only on %.
Tn the case & = 2, Davenport [1] obtained a result in the opposite
 divection. He made use of the existence of an irraticnal number § with
the property (1) (%)
(1.2} : pid]>e*>0 {»=1,2,..,

(1.1)

to construct, corresponding to every natural number M, a set # in U]
guch that |} = 2H and : '
11

{1.3) jf | D{&P; &, )P dédn< ¢’log 2.
8o

(%) llalj denotes the distance of a from a nearest integer,
) (%) This properby holds if and only i the continued fraction of the lrraticnal
number § has bounded pariial guotients. -
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Thiz showed that (apart from the value of the constant) the inequality
(1.1) iz best possible in the case &k = 2.

In the case k¥ = 3, Davenport showed that the existence of a pair
8, ¢ with the property

(1.4) yipl- el > 0¥ >0 (v =1,2,...)

would enable one to construct, corresponding to cach M, a set # in U}
such that |#] = 23 and

111
(L.5) [ [ [1D@; &9, 0Fasands < o (log 2|

0090
The existence of a palr 8, ¢ with the properby {1.4) is not however known,
and is in fact equivalent to the falsity of a famous (open) conjecture of
Littlewood.

The purpose of the present paper is to establish the existence of

sets # in U with the property (1.5), without the use of any unproved
hypothesis, We shall prove the following result.

THEOREM L. For a suitable absolute constant ¢” there ewisls, corresponding
to every motural number N = 2, a set @ in Ul sueh that |#| — N and (1.5)
holds.

.This establishes that the inequality (1.1) is algo best possible in the
case k = 3. We are at present (°) unable to prove analogous results for
larger k.

Our method makes use of a 2-dimengional result {see § 3) which we
prove by means of Davenport’s technigue. _

The Appendix relates to our previous paper [4]. The method there
can be simplified in an obvious way, after which it becomes clear that
the set £}, whose existence is established in the lemma (the key result)
may be taken to be simply the Set consisting of the 2° points

[] ., 1 3
3 gt g
where each ¢ fakes, independently, the values 0 and 1. (See [4], Imtro-
duction, for a discussion of this set.)
I am indebted to Professor Niederreiter for drawing my attention(*)
to the references [6], [7], and subsequently [8], concerning plane sets.
In these papers sets in U; satisfying (1.3) arc constructed; these

% Sinee this Paper was submitted, the author has succeeded in proving the
analogous results for arbitrary &. The proof will appear in “On irregulavities of distri-
bution, IV, Acta  Arithmetica.

{*) Thiz acknowledgement and the relevant references added after submigsion
of thiz paper. ) :

icm

On drreguloritics of distribution, ITT 37b

proofs, of which [8] contains the earliest; do not make use of Diophantine
approximations.

2. Notation. We will be eoncerned with 3-dimensional Fuclidean
gpace, and use (x, ¥, z) to denote a typical point in this space. We shall
also represent such a point in the vector notation

(2.1) v = wi--yfi-zk
" where
2.2) i=(1,0,0), §=(0,1,0), & ={(0,0,1).

We use 0 for the vector (0,0, 0).

The symbol A is regerved for (non-degenerate) latfices in the @, ¥
plane. Thus A denotes a seb of the type consisting of vectors
(23) ﬂ,’u’+ﬂ.”u”,
where #', w0’ are fixed (linearly independent) veetors of the kind w' = (2,
g, 0w’ = (@”, y", 0) and #', »” run independently through the inbegers.
We use A = A{w’, &’') to express the fact that the vectors u', u' generate 4
and write ad for A(aw’, au’). :

If & is any subset of the (3-dimensional) space, we define (for any
vector »*) '

vELF = {p*to; ve .
We reserve the gymbol £ for unions of type
73

(2.4) : U (v +ee, 4 A4),

'ﬂ="p1

where A i a lattice in the #, ¥ plane and the v, are vectors of the type
(25) w, :{mv!yw 0) ("’=P17191‘|‘1;---5P2)-

The symbol B will be reserved for boxes of type
(2.6) o< X", Ysy< ¥, Z'gz<i.

I @ is the set (2.4), B is the box (2.6) and p, € &' << 2" < pa+1,
we write '
(2.7) B[2; B] =Z(2; By—[d(4)|7'V(B),
where Z(2; B) is the number of points of 2 in B, d{) is the determinant
of the lattice 4, and ¥V (B) is the volume of B.

An important special case iz when p, = p; =0, wy =0, 7' =0,
Z'" =1. In this case 2 = A and B = By(R) is of the form

_ (w,y}e R, 0O<e<l,
where B is the rectangle
Y<e<X”, Yy
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Accordingly, we have
 B[4; By(R)] = £(4; B)—1d(4) T A(R),
where Z (A3 R) is the number of points of 4 in B and A (R) is the area of B.
We use {#} to denote the fractional part of #, and || to denote the
distance of x from a nearest inbeger. Thus

&l = min({#}, 1~ {z}).

3. A modification of a result of Davenport., In this section we prove
o result of the same general nafure as one ohfained by Davenport in [13.
Only trivial modifieations of Davenport’s method will be required to
cstablish this result.

Let 8 be an irrational number having o continued fraction with bounded
partial quotiends; so that there exists a positive number ¢; = ¢,(9) such
that .

(3.1). v = e

The number ¢ will remain fived throwghowt, and conslants dmplicit
in the € notadion will depend only on 0.
We define the lattice A, by

(3.2) Ay =A(Bi+j,i),

% = [z]+{z},

(v =1,2,...).

and shall retain this notation also in the subizequent section.

The result to be proved in the present section is the following.
{Although the work in this seetion is 2-dimensional, we express our resuls
in 3-dimensional notation for convenience of reference later.}

THEOREM A'. Lot N be a natural number and suppose that 0 < X, —
~X1<1, 0 < ¥,— ¥, < N. Lt B’ be the bos

XIge<X, T, <y<¥, 0g<z<l.

Then .

1 .
(3.3) [ 1B Ay B2dt < log(2N).
0
We remark that, after the transformation z—+N"'z, y—N 'y, the
- theorem may be restated in the following equivalent form. .
TaworeM A", Let N be o natural number and suppose that 0 < X, —
~X'KN Y 0 ¥,/ =Y<L Tet B be the box
X <o< Xy, Y<

y<¥,, 0ge<<l.

Then

X 1
[IBIN=Y+ N Ay BUJRd <€ log(28);
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that is, ewpressed slightly differently{®)
1
(3.4) [ |Blti-+- N1 4,5 B P& < log(2W).
0
We shall require the following lemma for the proof of Theorem A’
Altheugh the result asgerfed in the lemma was proved by Davenport in
[11, we repeat the (short) proof here for the sake of completeness.
Levma A, -Let V, be an integer, ¥ be a natural nwmber, and wrife

e{a) = exp(2nia) (where i is the square voot of —1). Then

@ T
(3.5) ,4."\..4_"2_| Z ¢ iny) <lug(‘)17)
=] 71:1’1

Proof. We have
TP RT-l
, 2 e(ﬁ-)w)i < min(¥, o)),

n=Fy

80 that the left-hand side of (3.5) is

(3.6) <22—’m > min(¥?, w6y,

me=1 91 gyt

Now for any pair m, p of natural numbers, there are at most two
values of v in the interval 2™ ! < v < 2™ for which

P27 K ] < (p+1)e, 2775

for otherwise there would be two of them, say », and »,, whose differenee
v, —v, would give a contradiction to (3.1).
Thus the expression (3.6) is

(3.7) < ) Dlmin(2™ Y, p7?,

m=i p=1
and (on splitting the owter sum into fwo parts corresponding to the cases
2™V and 2% > V) thig is easily seen to be <€ log(2V) as desired.

Proof of Theorem A'. In view of the periodicity of the integrand
in (3.3), we may suppose that X; == 0; we write X; =0, X; =X (so0
that ¢ < X < 1). We may also suppose 1311:11; [¥]< {Y 1, since otherwise
the vesult is trivial. Teb B* be the box

I <X, [FIy<[¥], O0<e<l.
Then

Bti+Ag; B'] = B# Ay B*]+0(1),

(%) In (3.4) the range of integration is over ¥ complete periods of the integrand.
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and hence the left-hand side of (3.3) is abt most 2I" +0(1), where
i

(3.8) I* = [ |Blti+ Ay; BY)2ds.
[}

Tt remains to estimate I™. Tt p(2) = {#} — } when » is not an integer
and w(z) = 0 when » is an infeger. Then (using 0 < X 1),

e 1-X i o0<{p<X,
pla=D—wle) =) 4 o> X,
and, hence
[¥y]-1
(3.9) Blti+ Ay B = > (p(t+0n—X)—p(t+0n))
n=[¥1}

for all but & finite number of £ in the interval 0 {1 <1,
Now w{2) hag the well known Fourier expansion

-5

»&0

g0 that the 11ght ‘hand side of (3.9) has the expansion

[I’ I-1 . .

Z( _8(M”X) )( Z 6(67-@9:))6(vt).
Dy
il 'n‘:[y’l] )
Tt now follows from Parseval’s theorem that
: [Fq] 1
I* < 5’——' Z ﬂ.@'u)l
= |_171]

so that (3.5) yields the desired estimate for I™.

4. The basic result. Let 6 be the irrational number featuring in
Bection 3, and write

(4.1 o u = Gid-§,
#0 that (3.2) may De expressed in the form
(4.2) Ao = A{u, 1).

We reserve m for non-negative infegers and write

4.3) A, =274, = A(2‘”"d, 27Mg) .
We define '
% =0, q =1u,

9 =¥, @ =iutii,

icm
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2
-3
w

so that for every m,
3

(4 4) Am+1 =J (2wqu+/1m}-

=0

We define £y, &, ... successively by

3
(4.5) 'Qo == AU} ‘QﬂH-l = U {74‘mk+2_leZ+Qiil)'
=0

LENMMA B. 2, has a representation of type (2.4) with Py = 0,p, =4"-1,
A=Ay, Fur the?mow, the projection of 2, onto the z,y plane 45 A,
Proof. Immediate by induction on m.

DErntTron. We say that the hex

0<y<T¥, 0

is admissible with respect to m if

(4.6) I<a< X, 2 Z

(4.7) 0< X2 <X, 0<Z<4m

In the present section we establish the following basic 1‘eét1lt; and
it will e shown in the next section that Theorem 1 is eagily deduced
from it.

TaworEM B. There ewists o number ¢y, depending only on 8, such fhat

for any m,

11
(4.8) [ [ 1B+ 0, ; BlEdsdt < ey(m+1)2
00

Jor every box B of type (4.6} thet is admissible with respect {0 m.

Proof. We suppose that 6, = ¢,(8) is chosen sufficiently Iarge. The
result is trivial when m == 0, and we proceed by induction on m. Accord-
ingly we suppose m > 0 is given and that (4.8) holds for that m for all
boxes admissible with respect to m.

Suppose now we are given a box B, defined by.

I<o< X 0gKy<Y, 0<z<Z,

which is admissible with vespect to m-+1. We need fo estimate
) 11
(4.9) I = [\Blsu-+tit0,.; BY2dsdt
¢ 0

in order to complete the induction.
Let u Dbe the integer determined by

pd™ < 2 < (1)
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3] « - 1

We may suppose that 0 < p <3, ginee in the case g = 0 the desired Furthermore, since B* is adwissible with respect to m -1 (50 that
estimate for (4.9) is an Immediate consequence of the hypothesis of in- 0 XFL2 ™l 27™ 0 T¥g 1), it follows from Theorerm A of the
duction. We write previous section (with N = 2™) that

-1
(4.10) B = (HU BOUB™, (4.22) M <m+1.

7=

By (4.5), (4.12) (and the definition of
where (for 7 = 0,1,2,3) ’ #)s

(4.11) B® is the box 0 < Xﬂ- 0y < Y*, " L g < (7-1) 4" (s, 1) = E[.§u+ii+2ﬂilgﬂ+ Q. *#47”]:2»-{—_8**],
and Furthermore, this expression is periodic with period 1 in each of s and 1,
' . g0 that
(412) B*™ isthe box 0o <X, 0Ky < T, pd"<2< Z*. .
= A 44 . Mo | S STEE AN
Now, writing Uf Uf [Blsutti+ 0, —pd™k+ B2 dsdt.
p=1 PSR P .
B ~ — g™k 4 B*™ js admissible spect 0 7. ‘
(4.13) B 2 Blsu+ti+ 0, B9, The box —pd™k+ is admissible with respect to m, and Lenee
s (4.23) Iy < oy(m+1)2
; o8, 1) = At ey B .
(4.14) Hofs, 1) = B[su-+1+ Dy J’ It remainsg to estimate J. The integrand in (4.17) is periodie with
we have period 1 in each of s and ¢, and hence
(4.15) _ I=I+1,+2J, .
where . : I = [ [Buls+a27™ 14527 By(s -+ 027", t+-52 ™) ds il
00
(4.16)  I=] [Bs,)2dsdi (x=1,2), _ . _
P — for every @, b. But it follows from (4.13) and the relations (4.18) that
11 K, (s, t) i3 in fact periodic with period 27 in each of s and 1. Thus
(4.17) I = [ [ By (s, ) Bols, D) ds . o
i _ (4.24) 4 = [ [ B(s, ) D(s, V) dsdt,
We proceed to estimate each of I, I,,J. Now 0 b
-1 11 : where
<u X [] |E’[su-{—ti+!2m o BOtds dt it ,
&0 (4.25) Dis, 6y = D D Bals+a2™,i4527").
a=0 b=0
4.11), (4.5) and Lenuna B that . . .
and it follows from (£11), (4.5) and Le In view of (4.16), (4.20}, (4.22), we have by Schwarz’s inequality,
(418)  E[su--ti+ Q.5 B9 = Blsu--#+27"q,+4,;5 Bel, _ -
where _ (4.26) (@) < (m+1) [ [1D(s, t)[2dsds.
) (R
(4.19) B, s the box 0o <% Oy < ¥, 02 <1, Now from {4.14) and (4.25) it follows that (with the meanings of
Thus, in view of the periodieity (in s,1) of the expression (4.18), Z and ¥ as in (2.7))' |
(4.20) L<pr i, - (4.27) D(s,1) = Z(sut+1i+Q'; B™) —4"V(B*™),
where . o _ where '

11 ) S ot giB_1
(421} M= [ [|Blau-tti+ A, Belldsdt. - = 1 (@2 a1 B2 ™4 02, ).
_ J ) _ |

a=0 b:=10
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We note that B™ is contained in the box BW (see (4.11), (4.12)).

In view of (4.5), we may therefore replace 2’ in (4.27) by
(4.28) pATE 427 Mg, R,
where
gy 21
= (@@ ™u-i "+ 02,).
. g=0 b=0
Tt is clear from the first assertion of Lemma B that £2' has & representation
4M—i
2 = U vk t+w,+4,,)
=0

(with w, in the =,y plane), and it then follows from the second assertion
of Lemma B that in fact

A

= U (vk 1 Am)

We slightly modify the box B** (see (412)) by replacing Z* by the
least integer greater than or equal to Z*. This leaves the first term on
the tight-hand side of (4.27) unchanged, and introduces an error of at
mosk 2™ in the second term. Thus, writing

hy = —[—2"],
and using (4.27) with £’ replaced by (4.28), we have

D(sy1) = (hg—T) B2 g+ su-HHi+ 4,5 Byl+0(27),
where B, ig defined by {4.19). Thus

iy = .‘4411?)

11
[ [1D(s, dsat < £™(M+1),
[V 1] .

where A is the integral (4.21), so that in view of (4.22), (4.26),
(4.29) J <€ m+1.
Rince ¢, s sutfieiently large, we obtain I < ¢y(m-+2)* on using our

cstimates for I,,I,,J (see (4.20), (4.22), (4.23), (4.29)) in (4.15). This
establishes the estimate for (4.9) requned to complete the induction.

5. Deduction of Theorem 1. Let the natural number ¥ > 2 be given
and choose m to satisfy 27 < N < 2™ For this m, take B = B(X, ¥, Z)
to be the box {(4.6) and integrate (4 8) with respeet o X, ¥, Z over the
region K given by

0<X<2™™ 0<¥<KNT™, 0<Z<4™

Tt follows from the resulting inequajlitj that there exist s*, ¢* (satisfying
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0<s* <1, 0<<t"< 1) such that

(5.1) fy |B[s*u+1"i+-2,; B(X, Y, 2)]2dXAY 47 < cy(m1-1)2N,
It follows from Lemma B that there are exactly N points of s*u+-t* i+ 2,
in the region
I <c2™™
Let thege be the points
(377}, 27", 475
and let 2 consist of the N poinks
@y ) (v =0,1,..,¥N—1).
Then & is certainly contained in the cube U3, and on making the sub-

stitutions & =27"& Y = N2y, Z = 4™{ in (5.1), we obtain the
desired inequality of type (1.5).

Iy <N2™™, O0<<a<<d™

v =0,1,..., N~1)

Appendix

The purpose of this appendix is to deseribe an obvious simplification
of the lemma in [4].

In the inductive proof of that lemma, we proceeded from a set &5
(already construeted) to sets

FD (a=0,1,..., N—1).

After estimating the average valoe of the expression (2.13) over & = 0, 1,...
., N—1, we deduced that for at least one such a the set #{ has the
property required to complete the induetion.
However, on noting that the firgt term on the right-hand side of
(2.7) hag period N ' in 7, it becomes clear that the value of
1
[BER0);
|
is in fact independent of a. It follows that the expression (2.13) is in-
dependent of @, so that we may take @ = 0 ab each slep of the induction.
The resubling set (2.1) consists simply of the first 2° terms of the well
known van der Corput sequence, magnified by a factor 2°

@, Y1 di
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poetuel on 1. Main results. In this paper we specify all dihedral extensions K

of degree 21 over the rational numbers ¢ which contain non-Galois ex-
tensions of odd prime degree I 543 over Q with class number not divisible
by 1 in terms of the conductor of the eyclic extension X [k of degres I,
where k is & unique quadratic subfield of K. In [3] F. Gerth TI{ completely
gave the discriminants of all (non-Galois) cubic extensions of O whose
clags numbers are not divisible by 8. Our paper extends in essence his
work to all non-Galois extensions of @ of odd prime degree { 3 whose
normal clogures have degree 2 over Q.

Now to state our results we need the fellowing fact proved by J. Mar-
tinet [7].

Lenma 1. Let K be a difedral extension of G of degree 21, where 1 is
an odd prime number = 3, let k be the quadratic subfield of K with disori-
minant d, and let L be a non-Galois extension of Q of degree 1 contained
in K. Then the conductor f of the eyclic ewtension E [k of degree 1 has the

Jollowing form:
F=1* [l [ ]
4 3

where p; and q; are railonal primes such that

Py = (i) =1 (med ),

d
g; = (—) ‘= —1 (mod I};
% =14 1)f and Ifd, 4 = 0 otherwise; and v = 0 or 1.

Furthermore the diseriminant of Lj(Q is V2 f-1,
Our main result is: '



