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3.8, COROLLARY. If X is an arcwise connected continuum, then the -set of all

points at which X is colocally connected spans X,

3.9, Rcmark.”The above corollary fails for continua with two ar‘c-components,,‘

The well-known (sin 1/x)-curve is such an example.

3.10. COROLLARY. Let X be a continuum with two arc-components lying in
a strongly Ioéally connected space M. Then' there is a point p € Fry X at which X is
colocally connected.

Proof. Let 4 and B be the arc-components of X. There is a point x € 4 n B.
Let E = {x}. Clearly, Fr) X # @ (otherwise X would be a locally connected con-
tinuum). By 2.1 we have (Fr, X)\E # @. Since there is no surjection from X onto

an indecomposable continuum, by 3.1 we get a point in Fr, X with the desircdl

properties.

3.11. COROLLARY. Every continuum with two arc-components contains a point
at which it is colocally connected. .

3.12. Remark. The above corallary fails for cofitinua with three arc-compo-
nents. The continuum pictured below is such an example.

* In [7] some results similar to the above ones are ‘és‘tablished for contin}la with
countable number of arc-components. : '
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A hereditarily normal strongly zero-dimensional space
eontaining subspaces of arbitrarily large dimension

4 ‘ ' by

Elzbieta Pol and Roman Pol (Warszawa)

Abstract. We construct a hereditarily normal space X with dim X = 0 containing for every
n=1,2,.. a perfectly normal subspace X, such that dimX;, = Ind X, =z and locdim.X;, = 0.

There was an old problem raised by E. Cech [3] whether the covering dimension
dim is monotone in the class of hereditarily normal spaces; the analogous problem
for the large inductive dimension Ind was raised by C. H. Dowker [4] (see also
[1; Ch. VII] and [14; Problem 11-14]).

Under the assumption of an existence of Souslin’s continuum V. V. Filippov [10]
solved these problems in the negative exhibiting a_hereditarily normal space X
with dim X" = 0 containing forn = 1, 2, ... a subspace X, with dim X, = ndX, =n,
and later on the authors [18] constructed (using only the usual set theory) a heredi-
tarily normal space X with dimX = 0 containing a subspace ¥ with dim ¥
=IndY=1("). :

In this paper we improve our previous result [18] by a construction of a heredi~
tarily normal space X with dimX = 0 containing for n = 1,2, ... a subspace X,
with dim X, = Ind X, = n. This construction is in fact very similar to our former
construction [18; Sec. 3]. However, to obtain the stronger result we needed another
approach to the dimensional properties of this construction (exhibited in [17]) and
some special results on the structure of complete metrizable spaces (proved in [20])
to apply this idea. '

1. Terminology, notation and auxiliary results.

L1. Our terminology. follows [5). We shall denote by N the set of natural num-
bers, by [ the real unit interval [0, 1] and by I” the unit n-dimensional cube;
1" stands for the boundary of the cube I, i.e., the points in J” at least one of whose

(.1t is worth while to notice that compact hereditarily normal spaces missing the monotoni-
city of the dimensions dim and Ind were constructed, under some set-theoretical hypothesis stronger
than the continuum hypothesis, by V. V. Fedorduk [6], [7] and A. Ostaszewski [15], and, more
recently, under the continuum hypothesis, by V. V. Fedorduk [8] and E. Pol [16); these examples,
especially those in [6] and [15] have many further very interesting properties.
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coordinates is 0 or 1. If f: X—=Y is a mapping and Z< X then f|Z denotes the
restriction of f to the set Z.

The word “dimension” stands for the covering dimension dim and Ind denotes

the large inductive dimension. A space X is said to be of IocalA dimension ar mosf n
(abbreviated locdim X<n) if each point x € X has an open neighbourhood U with
dimU<n (see [1] or [14]).

1.2. Given an ;)rdinal & we denote by D(&) the space of all ordinals less than ¢
endowed with the discrete topology. A set Sc o, (we identify w; with the set of all
countable ordinals) is said to be stationary if it intersects every cofinal a?nd clo.secl
with respect to the order topology subset in e (see [12; Appendix 1.5]). An.-lmmed.late
consequence of non-measurability of &; (see [13; Ch. IX, § 3]) is that every st:atlon-
ary set in @, can be split into two disjoint stationary sets (note that all not stationary
sets in w, form a o-ideal containing all singletons).

1.3. For each ordinal ¢<w, we put B({) = DY, i.e., B(E) is ‘the space of
all sequences of ordinals less than & endowed with the pointwise topology; in par-
ticular B(w,) = B(K,) is the so cailed Baire’s space of weight & (see [5]). We put

) i
also :

B, = B(ONUB@ and  B(S)=U{Bs tesS} for Sco,.
a<é

In the sequel we use the following

LemMA (cf. [20; Sec. 3]). Let T be a stationary set in @, and let U be an open set
in B(x,) containing the set B(T). Then the set {£: By U} is not stationary.

The lemma can be justified shortly as follows: the closed set F' = B(¥,)\U does
not contain topologically the space B(x;) ([20; Lemma 3.2]), whence F being a com-~
pletely metrizable space is the union of countably many locally separable subspaces
(A. H. Stone’s theorem [21 ; Theorem 2]) and therefore F intersects only “not station-
ary many” sets B; ([20; Theorem 2.2]); see also the proof of Proposition 3.5
in [20] (). Co

1.4. We shall describe a perfectly normal space B which will be a base for our
construction (this space was also exploited in [18]).

We give the set B = B(w,) a new topology, finer than the metrizable topology
of the Baire’s space, by taking as a base the sets U n B(£), where U is an open, set
in the Baire’s space B(x;) and ¢ <w,. In other words we enrich the topology of B(%,)
by new open sets B(£); see also [18; Sec. 3] and [19; Example] for another description
of the space B. ’ )

The properties of the space B were exactly investigated in [19]; let us recall
that B is perfectly normal (but not paracompact) and that the sets B(&) are open —
and — closed subspaces with a countable base which cover B. Note also that every
set B, is closed in B. ‘

(). The reader is referred to Fleissner [9; Corollary 3.5] for a straightforward combinatorial
proof of this lemma.
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In the sequel the following statement parallel of Lemma 1.3 will play the key
role. :

LemMA. Let S be a stationary set in w, and let H be a Gy-set in B containing the

set B(S). Then the set {¢: Byd-HY} is not stationary, i.e., there exists a not stationary
set Kcw, such that B\B(K)c H.

Tt is easy to see that we can restrict ourselves to the case of open H. By [19;
Lemma 2] there exists an open in B(s,) set UcH such that the set

L ={¢{: By (H\U) # &}

is not stationary (observe, that for the function » defined in [1‘9; Example] we have
x ) = By). Thus U>B(T), where the set T = S\L is stationary in w,, and
therefore by Lemma 1.3 the set {¢: B, H}<{¢: B, U} is not stationary.

2. THEOREM. There cxists for everyn = 1,2, ... a perfectly normal space X, with
locdimX, = 0 and dimX, = IndX, = n. Moreover each X, is locally second-
countable. :

2.1. We begin with some necessary notation. For every 0<m<n let us denote
by R} the set of points in the cube /" exactly m of whose coordinates are rational
and let us denote by Ly’ the set of points in /* at least m of whose coordinates are

n
rational, i.e., Ly = U R} (see [I1; Example IT 12 and TII 6]). °
Jj=m . .

Recal ([I1]) that dim R}’ = 0 and that each set L] is the union of countably

many compact subsets of /. ‘ .

2.2. We pass to the definition of the spaces X,.

Let us split w, into n+1 disjoint stationary sets S, ..., S, (see 1.2) and let us
define (see 1.3 and 1.4) i

X, = UB(S,)xRy=BxI",
m=0 )
where X, is endowed with the subspa{ce topology of the product of the perfectly ’
normal space B defined in 1.4 and the n-dimensional cube I”. Thus X, is perfectly
normal [5; Problem 4.5.16] and locally second-countable.

2,3, Let us verify that locdim X, = 0. ‘
The sets B(&) form an open — and — closed cover of B (see 1.4) and hence the
sets Vg = B({)x[" form an open — and — closed cover of BxI". Since

n
Ven X, = U U {B,xRy: a<¢ and aeS,}
m=0
and since each set B, x R, is closed in X, (see 1.4) we infer from the sum theorem
([11; Theorem IIT 2]; notice that ¥, is second-countable) that -

dim(Vy n X,)<sup{dim(B,x Ry): a<&,0<m<n} =0  (cf. 2.1).
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2.4. The following lemma is crucial for out further reasonings:
LEMMA. Let G be a Gy-set in the space Bx 1" containing the space X,,. Then there
exists a point x € B such that the set {x}x I" is containéd in G.

Proof. We shall define inductively a sequence X,,, K,,_1 , ..o» K Of not stationary
sets in @, such that the following condition (m) is satisfied for 1<m<n

(m) (B\BE))x Ly <G .

For convenience let us put K, ., = @ = L;**, so condition (n+1) holds, and let
us assume that we have deﬁned the set K., satisfying (m+1); we shall define

the set K,,.
Let us put S = S,,,\K,,,H and let us observe that .

*) B(S)xLy<=G.

Indeed, we have B(S,)x RicX,=G and, by (m+1), (B\B(K,+))x L/ 1 =G;
thus B(S) % (R¥ U LMY <G, but RF U L™t = LY (see 2.1).
Let L) = U Z,, where Z, is a compact set (see 2.1). Since, by (x), we have

B(S)xZ,=G for every k, there exist Gysets Gy in B such' that B(S)<=G, and
G xZ,=G(®). Let H = ﬂ Gy, then

HxLj< U kachG

Since H is a Gyset in B containing the set B(S) with S stauonary, there exists, by
Lemma 1.4, a not stationary set K,, such that B\B(K,)=H which implies that
(B\B(K,))xLi<G, ie., the condition (m) holds. The inductive step is done.

Now, let us look at the set K. By condition (1) we have (B\B(K)))xLr =G
and, because K is not stationary, there exists a point x € B(S0 “K;). We obtain thus
{x}xRlc X,cG and {x}xL;cG and hence {x}x (RS U LHcG; but

ROuLl=L=1"

and this completes the proof.

2.5. LeMMA. Let E be a topological space and let f: F-Z be a continuous mapping
of d closed subset F of E into a compact metrizable space Z. Let A be a dense subset
of E such that the restriction f| F A has a continuous exitension over A with
values in Z. Then there exist a Gy-subset G of E containing A and a continuous exten-
sion g: G—Z of the mapping f| Fn G over G.

Proof. There exist a G5-subset H of E containing 4 and a continuous extension

h: H—Z of the mapping /| F n A (first extend /| F ~ A4 over A and then choose A

and &; see [2; Ch. IX, § 2, 3 and Ch. I, § 8, 5]). The set
W = {xeFn H: f(x) # h(x)}

(®) This follows easily, for example, from the closedness of the projection B x Zy— B parallel
of the compact spagce Z.
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is an F,set in H disjoint . from 4. One can take mnow G = A\W and
g=~h|G.

2.6. We are ready for the proof that dim X, = Ith,, = n.

The inequality Ind X,<Ind(BxI")<n follows from the fact that dimB = 0
(which can be verified easily on the ground of the results of [19]) by some well-
known theorems of the dimension theory (see for example [14; Corollary 11.11 and
Theorem 25.6]). Because dim<Ind for normal spaces it remains to prove that
dim X, >n.

Let F= BxdI" and let f: F—~0I" be the projection parallel of the space B.
‘We shall verify that the mapping f| F n X, cannot be extended continuously over X,
to a mapping with values in 81", Indeed, in the opposite case, by Lemma 2.5 (where
E = BxI",Z = 0I"and 4 = X,), there would exist G, a Gs-set in E containing X,
and a continuous mapping g: G—8I" which extends f| Fn G. However, by
Lemma 2.4, there exists a point x € B such that the'set {x} x I" is contained in G-
Since f| {x} x 0I" is in fact the identity of 81", the mapping r: I"—»dI" defined by
r(#) = g(x, ) provides a retraction of the n-dimensional cube onto its boundary,
a contradiction.

Thus X, admits a continuous mapping of a closed subset into AI" which is not
extendable over X, and hence, by a classical theorem of P. 8. Aleksandroff (see [11
or [14]), dim X, >n,

3. THEOREM. There exists a hereditarily normal space X such that dim X = 0
and X contains for every m = 1,2, .. a subspace X, with dimX, = IndX, = n.
Moreover, X is a Lindeléf space and there exists a point p € X such that the space
X\{p} is perfectly normal and locally second-couniable.

Proof (cf. [14, Theorem 11.17] and [18; Example 2]). Let us add to the free

union U = ED X, of the spaces X constructed in the precede section a point p which
n=1

does not belong to U, i.e., X = {p} u (—B X,. We give X a topology letting U to

be an open subspace in X and taking as a basc of neighbourhoods of the point p the
sets {p} U ¥, where ¥ is an open — and — closed set in U and the space UN\V has
a countable base. All the properties of the space X stated in Theorem are easily
verified (cf. [18; Example 2]).

Added in Proof. The reader is referred for a brief exposition of the main idea of this

paper o a mote of the authors in Proceedings of the Fourth Prague Top. Symp., 1976, Part B,
Contributed Paper, pp. 357-359.
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On the fixed point index and the Nielsen fixed point
theorem of symmetric product mappings

by

Samuel Masih (Albany, Ga.)

Abstract. In this paper we study essential fixed point sets of symmetric product maps. We:
define fixed point index of a symmetric product map of a finite polyhedron. In the special case when
G = Sy, the symmetric group, we define fixed point classes and the Nielsen number of a sym-
metric product map and prove the Nielsen fixed point theorem for symmetric product maps of finite
polyhedra.

1. Introduction. Let X be a topological space and X" be the Cartesian product.
with usual topology. A group G of permutations of the numbers [1, 2, ..., n] can be
considered as a group of homeomorphisms on X" by defining, for o€ G and
(X105 X ves X)) € X7, (X0, X2y ooy %) = (Xp(1)s Xu2)s o5 Xoqmy)- The orbit space with

‘identification topology is denoted by X"/G. A map f: X— X"/G is called a symmetric

product map. A point x € X is said to be a fixed point of fif n{z) = f(x) implies that x
is a coordinate of z, where z.e X" and n: X"—>X"/G is the identification map..
C. N. Maxwell defined the Lefschetz number L(f) of a symmetric product map and
proved the Lefschetz fixed point theorem for symmetric product maps in the case

- when X is a compact polyhedron [6]. The Lefschetz fixed point theorem for symmetric

product mappings also hold in the case when X is a metric absolute nelghborhood
retract and f is a compact map [5].

A fixed point x of the map f: X—X"/G is called an essential fixed point if each
map sufficiently close to £ has a fixed point arbitrary close to x. Essential fixed points
and essential fixed point sets for a single valued maps have been investigated by
Fort [3] and O'Neill [7] tespectively.

I this paper we study essential fixed point sets of symmetric product maps.
We define fixed point index of a symmetric product map of a finite polyhedron.
Tn the special case.when G = S, the symmetric group, we define fixed point classes
and the Nielsen number of a symmetric product map and prove the Nielsen fixed
point theorem for symmetric product maps of finite polyhedra.

2. Preliminaries. Let m,: X"—.X be the ith projection and x e G, the for z ¢ X "
0(z) = Tz, Where i=1,2,
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