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On the fixed point index and the Nielsen fixed point
theorem of symmetric product mappings

by

Samuel Masih (Albany, Ga.)

Abstract. In this paper we study essential fixed point sets of symmetric product maps. We:
define fixed point index of a symmetric product map of a finite polyhedron. In the special case when
G = Sy, the symmetric group, we define fixed point classes and the Nielsen number of a sym-
metric product map and prove the Nielsen fixed point theorem for symmetric product maps of finite
polyhedra.

1. Introduction. Let X be a topological space and X" be the Cartesian product.
with usual topology. A group G of permutations of the numbers [1, 2, ..., n] can be
considered as a group of homeomorphisms on X" by defining, for o€ G and
(X105 X ves X)) € X7, (X0, X2y ooy %) = (Xp(1)s Xu2)s o5 Xoqmy)- The orbit space with

‘identification topology is denoted by X"/G. A map f: X— X"/G is called a symmetric

product map. A point x € X is said to be a fixed point of fif n{z) = f(x) implies that x
is a coordinate of z, where z.e X" and n: X"—>X"/G is the identification map..
C. N. Maxwell defined the Lefschetz number L(f) of a symmetric product map and
proved the Lefschetz fixed point theorem for symmetric product maps in the case

- when X is a compact polyhedron [6]. The Lefschetz fixed point theorem for symmetric

product mappings also hold in the case when X is a metric absolute nelghborhood
retract and f is a compact map [5].

A fixed point x of the map f: X—X"/G is called an essential fixed point if each
map sufficiently close to £ has a fixed point arbitrary close to x. Essential fixed points
and essential fixed point sets for a single valued maps have been investigated by
Fort [3] and O'Neill [7] tespectively.

I this paper we study essential fixed point sets of symmetric product maps.
We define fixed point index of a symmetric product map of a finite polyhedron.
Tn the special case.when G = S, the symmetric group, we define fixed point classes
and the Nielsen number of a symmetric product map and prove the Nielsen fixed
point theorem for symmetric product maps of finite polyhedra.

2. Preliminaries. Let m,: X"—.X be the ith projection and x e G, the for z ¢ X "
0(z) = Tz, Where i=1,2,
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Letdbea n{etric on X and @ be the usual euclidean metric on X™. A metric d may
be defined "on X"/G by defining
d(n(2), n(z)) = inf{d(z, ez’)| o€ G}

where z, z' € X". There is a metric like real valued continuous function o on X'x X*/G
defined by

w(x, 1(2) = inf{d(x, 1) i =1,2,..,1}
where x € X and ze X". The map o satisfies the following inequality
(%, )<, )+, )

for any x € X and y,y' e X"/G.
Let X be a finite polyhedron with a fixed basic triangulation 7: Let K be a sub-
division of the basic triangulation of X. Assume that K is an ordered complex,

that is to say that a partial ordering < is defined on the set ¥, the set of vertices-

of K, which is a linear ordering on any subset of ¥ in S, where § denotes the set of
simplexes of K. A triangulation K" of X" may be obtained as follows ([2], p. 67).
The set of vertices of K" is V™. Let m;: V"=V be the ith projection. For w, w' & V™",
define ww' if mw<m,w’ for alli=1,2, .., n A subset # = (wg, ..., w,) of V" is
a simplex of K™ if it is linearly ordered and the vertices m;wy, ..., T; W, span a simplex
of Kforalli=1,...,n It follows from the definition of K" that the projections are
simplicial and that G is a group of order preserving functions on K". Since each
o€ G is order preserving on V", we have that if (w, aw) is a simplex of K", then
w<ow<a® w<...<o¥w = w for some integer k, hence aw = w.

Let SA(K™ denote the first barycentric subdivision of X" (the set B of vertices
of Sd(K™) consists in all barycenters b, of simplexes ¢ of K"). The group G operates
on Sd(K") by b, = b,, and the simplicial map ¢: Sd(K™)—K" (which associates
to b, the least vertex of 7) commutes with each « € G. Furthermore, if (b, by) and
(b,, ab,) are both simplexes of Sd(K™), then ab, = b, [6].

A triangulation K(n, G) for X"/G can now be defined as follows [6]. The set 4 of
.vertices of K(n, G) is the set of equivalence classes of elements of B under G. A subset
(@g; .. @p) of A form a simplex of K(n, G) if there exists b, € a; so that (b, ..., by)
is a simplex of Sd(K"). If another choice is made, say b; € g; so that (bg, ..., by) is
a simplex of Sd(X"), then b} = a;b; for some a;€ G, i = 0,1, ..., p. For any i we
have (b, b,) and (o;b;, o,b,) simplexes of Sd(K™), and therefore (b;,5,) and
(Bs, 07 *apb,) are simplexes of Sd(K™. By a previous argument, we have o; a,b,
= b;, and hence o,b; = a;b;. Therefore

(D05 +oes BY) = (oD s v dpbp) = (atpbos 45 Apby) = oy(Bo, oo, )

The p-simplexes of K(n, G) are therefore in one to one correspondence with the
equivalence classes of p-simplexes. of Sd(K™).

Let C(K), C(K™, C(Sd(K") and C(K(n, G)) be the integral chain groups
defined on oriented simplexes of the respective complexes. There exists a chain
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map px: C(K(n, G))~C(K) which is obtained by the following . commutative
diagram ‘

C(Sa(KM) > C(k™)
. ) g . 'i':l Tige

C(K(n, )= C(K)

For an oriented simplex ¢ = (ay, ..., a,), choose any oriented simplex ¢ = (boy wos byp) -
such that #(¢) = £. Then

ux(o) = i:/_jl Ty 40 4(0) «

This definition is independent of the choice of ¢ {6]. If f: :K——)L is an order preserving
simplicial map between two order complexes, then ([6], Lemma 1)

Subx = et
where J: K(n, G)=L(zn, G) is the simplicial map induced by the map f

3. The fixed point index. Let X be a finite polyhedra and f: X— X"/G be a map.
Let K be a 'subdivision of the basic triangulation of X, regarded as an ordered com-
plex. Let f': K'—K(n, G) be a simplicial approximation of f, where K' is a sub-
division of K. Let ¥,: C(K)—C(K') be the usual subdivision chain map. The
'cqrnposi‘tion ufa¥s: C(K)—C(K) is called the chain map induced by the
map f and it will be denoted by f. Let 8° denote the elementary cochain dual'to
the positively oriented simplex o' such that (d’, 5%y = 6/(c") = 8y;.

Let U be an open subset of X and f: X—X"/G be a map which has no fixed
point on the boundary of U. Let fy: C(K)~C(X) be a chain map induced by f.
We define the index of f on U to be the number I(X, f, U) given by -

\ v
X, £, D) =3 Y (=D falon, 6.
. i=1 opeStxlU
where p denotes the dimension of the simplex o,.

(3.1) LemmA, Let X be « finite polyhedron and C be a closed subset of X which
-contains no fixed point of the map f: X—X"|G. Then there exists a positive number
&= o(C) such thar if K is a triangulation of X and mesh|K|<}e/n and if f is a chain
map induced by the map f, and if o, is an oriented simplex such that d{|o,|, C)<}te,
then <f%(ap)’ ap> = 0.

Proof. From definition of the function w, it follows that x € X is a fixed point
of f iff w(x,f()) = 0. Since C contains no fixed point of f, it follows that
o (x, f(x))>0 for all x e C. Since C compact, there exists a number £>0 such that
a(x, f(x))>¢ for all x e C. Since f is uniformly continuous, there exists a number
5>0 such that if x,yeX and d(x,»)<d, then d(f(®),f(x))<%& Let

6 — Fundamenta Mathematicae CII
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& = 8(C) = min(8, +&). Let mesh |K[<a}e\/71' and f': K'—+K(n, G) be a simplicial

approximation to f. We claim that if y e X and d(p, C)<e, then w(y,f’ (3))>e.
There exists an xe C such that d(x,y) = d(y, C)<e<d. It follows that

d(f (%), f(3)) <% Also since mesh| K| <}e\/n and f* is a simplicial approximation

of f, we have d(f(y,f'(»))<mesh|K(n, G)|<}e<%&. It follows that

E<o(x, fF))<olx ,f’(y))+3(f’(y),f(x))
<o, D)+, L) +A(f (), f (%)
<o(x, f()+5E+5¢.
Hence o(x,f'(»))>&-5¢ = 3£
Suppose w(y,f"(¥))<e<§& Let n(z) f'(»)y where ze X", then for some i,
1<ign, o(p,f'() = d(y, n(2))<e<&. It follows that
o(x, () < dx, 7!:(2))

which is a contradiction because w(x > 46 Hence if d(y, C)<e, then
o(y.f (M)>e. o .
Let ¥4: C(K)—>C(K") be the standard subdivision chain map. Let o, be an
oriented p-simplex of K and ¥ 4(¢,) = Y. A;0,,;, where A; = *1and g,;is anoriented
J

d(x, y)+d(y, n(D)<e+e = 2e<%¢

p-simplex of K’ such that |o,|<=|o,|. Let f'(g,;) = n(t,;), where 7,; is a p-simplex
of Sd(K"). Let ¢: Sd(K")—K" be the standard order preserving simplicial map.
Let ¢(7,;) = yp;, Where y,; is a p-simplex of K" such that [t} <|y,|. It follows that

f%(‘fp) = uxf4 ¥ 4(oy) = “Kf#’t(; A'ja.pj)l = ;ijﬂxﬂt("pﬂ .
Since f'(o,,;) = 5(z,)), it follows by definition of p. that
f#(o'p) = ZiZLl,-n.-#'(Pﬁ# (ij) =12‘1; lj”l#ﬁ’pj) .
Tis -

I (fylo,),8,> #0, then there exist i and j such that m(y,) = +a,. If
y€elopl=loyl, then f'(y) €lf (op)| = n(lt,)l) and there exists z € |r,;| such that
n(z) = f'(»). Since |t /<yl and |m(y,)l = |oyl, it follows that 7,(z) € |o,| and

oy f)<d(y, n(D))<iefu<e.
However, if d(lo,|, C)<%}e, then for every yelo,| ol d(¥, C)<~};a+5c\/n<a
and hence w(y,f'(¥))>¢. Tt follows that { fy(a,), 8,> = 0.

(3.2) DerNiTION. A triple (X, f, U) will be called an admissible triple if X is
a finite polyhedron, f: X—X"/G is a map and U is an open subset of X which has
no fixed points of f on its boundary.
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Let F(f) denote the set of fixed points of the map f: X—-X"/G.
(3.3) LemMA. Let (X, f, U) be an admissible triple and U, , ...
k
disjoint open subsets of U such that {1U— ) U} A F(f)
i=1

» Uy be mutually
= O (empty set). Then
there exists €>0 such that if mesh|K | <te/n, then '

I(X:f: U) =ZI(X’f$ Uj)

Proof. Let C = clU— U U;, then by Lemma (3.1) there exists & = §(C) such
i=1

that if mesh|K|<}e./n and d(lo,], C)<}e, then {f4(0,), &,> = 0, where f,, is the
chain map induced by f. It follows that

1I(X,f,U) = Z )

p=0 JPESIK

(=DX fulop), 8,

E Y (=D felop), 6,
opeStglUy .

r J

Mg n

Y (=D falop), 8,

0 opeStgU;

[

“M’f ﬂMw ng

P

RESAPY
J

If {U,, ..,
for i # j, and F(f)c | U;, then we say that {U,, ...
i=1
have

(3.4) Lemma. Let {U,, ..., Uy} partition the set F(f), the set of fixed p oints
of the map f: X—X"/G. If rlze triangulation K of X is sufficiently fine, then

where L(f) is the Lefschetz number of the map f.

We shall show that the index I(X, f, U) defined above is independent of the
choice of the subdivision X of the basic triangulation .of X and the simplicial map
St K'-K(n, G) provided that K is sufficiently fine. This is accomplished by the
following lemma the proof of which is similar to Lemma 2.2 in [7].

(3.5) LEMMA. Let X be a finite polyhedron and f: X—X"|G be a map. Let
Sy (=1,2) be a simplicial approximation from a triangulation K to K(n, G).
Let B; be a Ki-subpolyhedron of X and A; a Ki-subpolyhedron such that

(1) cISty (B)) N clStk,(B,) = @ and

(2 f(4)=Bj/G,

U,} is a collection of open sets of X such that cl UindlU; =&
x
. Uy} partitions F(f). We

5%
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then f1l4, and f,|d; have a.common extension f' which is a simplicial approximation
of f from a triangulation K' to K(n, G).

Proof. Let C; = clStK,B (i = 1, 2). Since all triangulations are subdivisions of
a common friangulation, we may extend K,|C, and K,|C, 16 a triangulation X,
Simmilarly, extend K}|cIStgi4; and Kj[clSty; 4, to a triangulation K’ and let. K
denotes the jth barycentric subdivision of K’ modulo A; w 4, (that is modify the
usual subdivision by adding no new vertices to A, U 4,). KY is also ari extension
of Ki|4, and Kj|4,. If K is sufficiently fine and the vertex v is not in the Sty;A4,,
then St() has arbitrarily small diameter. Choose K so fine that if v is one of its
vertices in X--(Stx{d; U Stg;d,), then St(v)=f~(St(w)) for some we K(n, G).
Letf'(v) =w. If ve 4,, letf'(v) = fi(v). Finally if v & Stg4,~ 4, then there exists
a vertex v of K such that St(v)=St(v"). Let f'(v) = f(v'). The vertex assignment
above determines the desired §implicial approximation of f.

(3.6) LemMA. If (X, f, U). is admissible 1riple, then the index I(X,f, U) is
independent of the choice of the simplicial approximation and the subdivision K of the
basic triangulation, ;provided K. is sufficiently fine.

Proof. For dckX, let St'(4) = Stcl(St""*(4)), n>2. Let ¢ = $&(0U),
where U denotes the boundary of U and ¢(dU)>0 is the number obtained by
Lemma (3.1) for C = 8U. Let K, and K, 'be the triangulations of X such that
mesh [K;| <den, i = 1,2. Let f;: Ki—K(n, G) be a simplicial approximation of f.
- 'We wish to show thatif f; 4 and f, , ave the chain maps induced by f; and f, respect-
ively, then I(X,fi4,U) = I(X, fz#, 0).

Let U= Uy and U, = X—cISt(V). Let B, = clStg (U). Let 4, = (B /G).
It is easy to see that U2 has no ﬁxed pomt of f op its boundaly and

clStg,(By) N clSth(Bz) =

It follows from Lemma (3.5) that f; |4, and.f5|4, have a common extension f” whlch
is a simplicial approximation from a triangulation K’ to K(n @). Tt follows. that

I(X, f14,U) = KX, f4,Uy) I(X’fzzlh U,) = [(X=fxfr= Uy).
Since {U,, U,} partition F(f), it follows from Lemma (3. 4) that

VL) = IX, fa, UD+I(X, fy, Us) = I(X, fi #s UDHI(X, fry, Uz)

Slmmﬂarly

and

L(f) =I(X,fr4, UD+1(X, [y, Uy).
It follows that ' '
IX, foas UDHIX, L0, U) = I(X, fog, UD+I(X, £y, Uy) .
Hence ‘ :
I(X)fl#w Ul) = I(Xsfz#: Ul) N
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"(3.7) Lemva. Let H: XxI-X"|G be a: homotopy such that (X, H,, U) is
admissible for every tel, where Hy(x)= H(x,7) for xe€X and tel Then
I(X, HO,U)—I(X Hg, U). )

Proof. Let K be sufficiently fine trlangulatlon of X Since X is a compact
polyhedron there exists a number 6>0 such that if f, g: X— X"/G are two maps such
that d(f(x), g (x))<6 for all x € X, then f and g have a common simplicial approxi-
mation. It follows that if f and g have no fixed points on the boundary of U, then
IX,£,U) = I(X, g, U).

By compactness of I and umform continuity of H we can find a finite
subdivision, 0 = 7,<#, <...<#, = 1, of the interval I such that d(H, (H,,_,(x), H(x)<8,
for all xe X and all i, i = 1, ..., m. It follows that

I(X, Hy,U) = I(X, Hy,, U) = ... = I(X, H,,,, U) = I(X,H, U).

In the proof of Lemma (3.5) we assuined that all triangulations of X are sub-
divisions of the basic triangulation of X. Now we shall show that the index is actually
independent of the choice of the basic triangulation of X.

Let us denote the index I(X, £, U) by I(T, f, U), if T is the basic triangulation
of X used in the definition of the index.

Let (X,f, U) be an admissible triple. As in the proof of Lemma 3.1 we can
find numbers £>0 and 6>0 such that o(x, f())>¢ for all x € dU and if x, yeX
such that d(x, ) <4, then d(f(x),f())<%é Let & = min(3, &). ,

Let T, and T, be two triangulations of X (not necessarily the' subdivisions of
the same basic triangulation of X). Let K and L be the subdivisions of T, and T},
respectively such that mesh|K| and mesh|L| <}e,/n and g: K—L be a simplicial ap-
proximation to the identity map Iy: X— X. Let g: KDL be the barycentric map
defined by g, that is g(b,) = by, where b, is the barycenter of the simplex ¢ of X.
The first barycentric subdivisions K’ and LY are ordered complexes and g is an
order preserving simiplicial map. Let f': L™ —K™(n, G) be a simplicial approximation
of f. Let e: KV—=L") be the rth barycentric map induced by the map g, where K
and L™ are the rth barycentric subdivisions of K and L respectively. Let
G: K¥(n, 6)—»L™(n, G) be the simplicial map induced by the map g [6]. Let |gi,
le]: X=X and |4]: X"/G~X"|G be the topological maps defined by the simplicial
maps ¢, e and § respectively. We have the following lemmas concerning the maps
defined above. ‘

(3.8) LemMA, If (X,f, U) is an admissible triple then (X,fle|, U) and
(X, |4\ f, U) are admissible and

KTy, U) = KTy, flel,U)  and I(Ty,f, U) = I(T, 14|/, U) .

Proof. Since g is a simplicial approximation of the identity map and e is defined
by g, it follows that for each x € X, |e| (x) and x belong to the same closed simplex
of L. Let h: XxI—X be the homotopy defined by, for xe X and 1€ I,
h(x, 1) = t]e}(x)+(1~1)x. Then. H = fh: X xdX"/G is a homotopy between the
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maps f and fle|. Also, for x € X and €I, d(h(x), x) <mesh|L|<Fe/n. Which
implies that d(fh(x),f(x))<3¢ We have ‘

o(x, f X)) <0 (x, fh(x)+d(frx), f () S o (x, H())+5E -

Hence w(x, H(x))>%¢. It follows that (X, H,, U) is admissible for all tel

Similarly, there exists a homotopy §: XxI—X"/G between the maps |§|f
and fsuch that,(X, S, U) is admissible for all ¢ € 1. It now follows from Lemma (3.7)
that

KT, flel, U) = I(T,f,U)  and  I(Ty,f, U) = KT, 141f, U) .

(3.9) LemMA. (i) The following diagram comutes.
i e 1y T (ty
CKD)—Cc(LM) CK®y — c@M)

Xx XL ’ L <8 " AL
) o T* ($
C(K )—B?C(L ) —> C(KM(n, @)—>C(L{n, B))
. ie

where xx and xp are the standard barycentric chain maps.

(i) If o is a p-simplex of StgwU and {ugw fiewix(0), 8> # 0, then
: q(o‘) € St[_u) U. . :

(iii) If © is a p-simplex in Sty U and Lt @i S (D), T # 0, then
@ # ¢ 40) € Stgy U. :

Proof of (i). Commutativity of the right squarefollows from the definition of
and § ([6], Lemma 1). Commutativity of left square is easy to show by using induction
on the order of barycentric subdivision. For r = 2, the result is well known
([4], Prop. 3.59). C

(ii) Let o & Stgew U. It follows that ¢ n U # @. It follows from the hypothesis
in (i) and Lemma (3.1) that d([a]|, 8U)>%e. Since ¢ is connected, we have {o| = U.
Since ¢ is the barycentric map defined by the simplicial approximation to the identity
map, there exists a simplex y of L such that [cly| n [o] % @ 5 |g(o)] A [cly]. Tt
follows that d(ly|, dU)>%e\/n and that |y] n U # @. As before this implies that

Iyl=U. Hence q(o) n U # J.
- (iii) Let t be a p-simplex of Sty U. Let y1() = ¥, 4;7;, where 7, is a p-simplex

j

of L™ such that |7/ <|t| and 4; = +1, for all j. Tt follows from the commutativity
of diagram in (i) that

B fieax() = G 2@ = ;quwﬂfi’k(fj)

where p' = pzen and = pgcs, for simplicity. If y, is a p-si f (L
, s -If y; is a p-simplex of Sd((X“})") such
that n(y;) = f'(z;), then by definition of g, it follows that )

Wy foep(D) = JZ%Q#'Z(E;#(D#(}JJ) =i2 leq%nl#(P('}'j) .
i= . =17 )
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Since {1 4 [ xc(0), 7> # 0, it follows that there exists i and j, 1<<i<n, such that
gamis0(y) = 1. Let m,0(y) = o, then |g(0)] = |t]. As before |1|nU# O
and d(|t|, 8U)>%e implies that |o| 0 U # @. Hence o € ¢~ ()= Stgn U

(3.10) If Ty and T, are two triangulation of X (not necessarily the subdivisions
of the same basic iriangulation of X) and (X,f, U) is an admissible triple, then

I(lefa U) = I(TZaf’ U) .

Proof. Let K and L be the subdivisions of T and T, respectively, as in the proof
«of Lemmas (3.8) and (3.9). Since index is independent of the subdivision of the basic
triangulation (for sufficiently fine subdivisions) and simplicial approximation of f; it
follows that

(T, f,U) = IKD,7,U)  and KTy, £, U) = ILD, £, U).
From Lemma (3.8) we have

KTy, f, U) = Ty, flel, U) = I(K™W, flel, U)
and ) ‘
I(Ty, f, U) = I(Ty, |41 £, U) = ILD, |31 £, U) .

Hence it is sufficient to show that I(K®, flel, U) = I(L™, 14 f, U). _

Let g* denotes the cochain map dual to the chain map ¢4 . It is easy to see that
for any positively oriented simplex v of L, ¢*7 =} 8, where summation is over
all oriented simplexes o of K™ for which g(¢) = 7. It now follows from Lemma (3.9)
that .

KD e, 1) =5 Y (—DXufsenrn(on). 6

p=0 apeSt (U

=.§ Y= %

p=0 tpeSt, (HU q(ap) =t

-5 3

p=0 tpeSt, (U

-3 3

=0 1p sStL(;,)U

oS Y (DX, B

=0 -:,,sStL(x)U

</‘Lf;f‘ €4 XK(O-I)) H 6’p>

(~DXWfbaaastons 5, &

(ap) =Tp

(— 1)p<!€f‘;k XL(Tp) ] q# ’?p>

= Z Z (—' 1)p<1uIQ# f;%XL(Tp): :Ep>
p=0 1peSt, (LU

= ILM, 1415, 0).

This completes the proof of Lemma (3.10).
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‘Some more properties of the index that can be derived from the results in this
section are listed in the following theorem. . ‘ :

(3.11) TuEOREM. Let U and V be open sets of X whose boundaries contain no
fixed points of f: X—X"|G, then the index has the following properties.

11. If U contains no fixed point of f, then I(X,f, U) = 0.

2. ICX, f, Y+ I(X, £, V) = I(X, [, Uu V)+I(X, [, Un V).

13. There exists a number ¢>0 such that if g: X—X"/G and d(f (%), g(x))<s
for all xe X, then (X, g, U) is an admissible triple and I(X,f, U) = J(X, g, U

Proof. If U contains no fixed point of £ and ¥ is an open subset of U and
W< U, then {U, X—ch} partition F(f). It follows from Lemma (3.4) that‘

L(f) = I(X,f, O+ (X, f, X—clW).
Since F(f )éX ~clW, it follows from Lemma (3.3) that
L(f)=](X:fr X;“CIW). Y

Hence we have I(X,f, U) = 0.

To prove I2, we notice that the case when U n ¥ = @ is a direct consequence
of Lemma (3.2). To prove 12 in the case when U n V # @, we consider the following
sets, namely, U—clV, V—clU and U n V. Applying Lemma (3.2) to the collections

{U, U=V, Un VL {V,V=dU;Un P} and {Uu ¥V, U=eV, V~cU, UV}

we obtain
I(X, £, U) = I(X, f, U=d V) +I(X, £, Un V),
IX.f, V) = I(X,f, V=l U)+I(X, f, VA U),
I(X,f, UU V)= I(X, f, V=cdlU)+I(X, f, U=l W)+ I(X, £, U V).
It follows that v :
IX,f, UG VI £, U A V) = KX, £, U+ I(X, £, V).

Proof of I3 is the same as a part of the proof of Lemma (3.7). However, § has
to be chosen more carefully, in order to make sure that (X, g, U) is admissible.

4. Fixed point classes and the Nielsen theorem. Let f: X' X"/S), be a map, where S|,
is the group of all permutations of the numbers [1, ..., #]. A point z e X" is called
admissible with respect to x € F(f) if 7(2) = f(x) and 7,(z) = x. Since S, is the
group of all permutations the numbers [1, ..., n], it is easy to see that for every
x e F(f) there exists a point ze X" which is admissible with respect to .

Two points x and x" € F(f) are said to be f-equivalent if there exists points z
and z'e X", which. are admissible with respect to x and x’ respectively, and
a path C: - X" from z to z' such that #C=fr, C. It is easy to show that the relation
of f-equivalence is an equivalence relation if F( f). The equivalence classes are called
the fixed point classes of f.

For ye X"[S, and e>0, let N(y,¢) = {3’ & X"/S,| d(y,y)<e}.
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On the fixed point index and the Nielsen fixed point theorem 153

(4.1) Lemma. If X is a compact Dolyhedron, then there exists a number §>0
such that if C, D: I-N(y, §)c X"/S, are paths, where Y- is any, point of X"/S,, and
C(0) = D(0), C(1) = D(1), then C~D.

Proof. Since a compact polyhedron is an-absolute neighborhood retract, it
follows 'from‘ a known result ([1], Lemma 4) that fo' revery y e X"/S,,, there exists
a-number 6>0 such that if- C, D: I-N(y,8)=X"/S, are two paths and
C(0) = D(0), C(1) = D(1), then C~D. Cover ‘X"/S, by open sets {N(y, 5(»))}.
Let the Lebesgue number of this cover be 25. :

(4.2) Lemma. If X is a compact polyhedron and f: X— X"/S, is a tap, then there
exists a number e>0 such: that if x, x' € F(f) and d(x, x")<e, then x is f-equivalent
to x'. : :

Proof. For-Ac X, let D{d) = Sup{d(x, x)| x, " €.4}. Since X is compact
and locally path connected, it is easy to find a number A>0 such that if x, x' € X
and d(x, x') <%, then'there exists a path connected open set U such that x, x'e U
and D(U)<%5\/E, where ¢ is the number in Lemma (4.1). Since fis uniformly con-
tinuous; there ‘exists a'number 60 such that if x, ' € X and d(x, x")<8, then
d(F():f () <min(FA, $6,/7). Let. &= min(f, $1,46./n). Once again we can
find a number &>0 such that if x, x' € X and d(x,x")<e, then there exists an;open
path connected set ¥ such that D(V)<é& and x,x' € V. .

Let x,x" € F(f) and d(x,x")<e. Let z = (xy,..,x,) and # = (X5 sy XY
be elements of X" such that 7(z) = f(x), #(z') = f x), m(2) =x, = x and
7y (2) ='x7 = x'. Since d(x, x")<z<0 we have d(F (%), f(x))<3A. There exists
xeS, such that d(f(x),f(x)) = d(z, az’) <% It follows that d(x;, X)) <34,
foralli, i'=1,..,n Let 8 € S, be such that fa(l) = 1, B(1) = «(1) and B() = i
for all i, i = 2,...,n and i # a(1), 1. Let-a(j) = 1, for some j, 1<j<n. It follows
that : ‘

d{x;, x1) = d(xg, Xy <d(z, az’) <t
Since [;’a(l) = 1, we have ‘
Aoy, Xpaay) = d(%y, x3) = d(x, x)<e<ii.
It follows that ‘
Ay, ) SACxy, 30+ A, 304y, Xpary)<EA+TA+EA = 2.

Hence d(x;, x(p)<4 for all 4, i=1,..., 7. N

By the choice of the numbers ¢ and 1, there exist open sets O, ..., O, of X such
that D(0,)<¢, D(O)<4é/n for i=2,..,mandz, faz’ € O; x0,%...x 0, = O.
Since O is path connected, there exists a path C: IO such that C(0) = z and

" C() = Poz'. Clearly n; C: -0, =X is a path joining x and x'. Since D(0,)<e<8,

it follows that fr, C(l):N(n(z), 8). Also nC(I)=N(n(z), §). Since
€)= n(z) = (%) = fr, C0)
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and

nC) = n(Bo) = n(z) = 1) = frs )

it follows from Lemma (4.1) that #C = fu; C. Hence x is f-equivalent to x'.

1t follows from Lemma (4.2) that fixed point classes of a map f: X—X"/S, are
open and closed subsets of F(f). Since F(f) is compact, it follows that f has only
finite number of fixed point classes. Hence we have the following theorem.

(4.3) TuEoREM. If X is compact polyhedron, then the map f: X—»X"[S, has only
finite mumber of fixed point classes (compare [1], Theorem 6).

Let I be a fixed point class of f: X—X"/S,. Let U be an open subset of X such
that U A F(f) = I and F(f) n 8U = @. Existence of such an open set U follows
from Lemma (4.2). Let I(IN = I(X, f, U). Then I(I) is called the index of the
_fixed point class I'. It follows from Lemma (3.2) that I(I") is independent of the
choice of the open set U. The fixed point class I' is called essential if I(I") # 0,
.otherwise it is called inessential. :

(4.4) DermTION. The Nielsen number of a symmetric product map /: X—X"/S,
.of a finite polyhedron X is the number of essential fixed point classes of f. The Nielsen
number of the map f is denoted by N(f).

Tt is easy to see that if the Lefschetz number L(f) # 0, then N (f)#0and f

bas at least N N fixed points. :

5. H-related classes and the Nielsen fixed point theorem. Let h: X'x I—+X"/S, be
a homotopy. Let C: I- X be a path in X. Then <k; C): I- X"/S, is the path defined
by, for tel, <h; CH() = h(C(,1). A point xye F(ho) is said to be h-reluted
to a point x, € F(h,) if there exists points zy, z; € X", which are admissible with
respect to X, and x, respectively, and a path C: I-X" from z, to z, such that
nC=(h; g C).

(5.1) THEOREM. Let X be a compact polyhedron and h: X x I-+X"|S,, be a homo-
topy. If Xo, xo € F(ho) and x,,x) e F(h,) such that x, is h-related to x;, xp is
h-related to x) and xo is hy-equivalent to xy, then x, is h,-equivalent 1o x\.

Proof. Since x, is h-related to x, and xj is h-related to x}, there exists points
2y, 21, Zo and zj which are admissible with respect to xo, X, X and x} respectively,
and paths 4 and B from z, to z; and from zp to zj respectively, such
that nd ~(h; n 4> and nB=(h; ny B). Since x, is hy-equivalent to xp, there exists
points Z, and Z, which are admissible with respect to x, and xj respectively, and
path E from Z, to Zo such that nE~h,n, E.

_Since 1(zo) = n(Z,) and #n(zp) = n(Zy), there exist o, f & S, such that oz, = Z,
and fzp = Z; and a(l) = 1 = (1). Then

ad(1-3r) for 0<i<4,
C{) = qE(3t-1) for is<tg3,
BB(3t—2) for %<1kl
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is a path from az, to Bzj. Let C': I—X"/S, be a path from hy(xy) to hy(xg) defined
as follows

h(myad(1-30),1-31) for O<i< i,
C'(f) = {h(n, E(31—1), 0) for = i1<rg2,
h(m BB(31—2),31—2) for 2<i<].
Consider the homotopy
h(r ad(1=31), 1~3t(1 —s)) for 0<r<i,
g(t,8) = Sh(m E(B3t~1),5) | for t<r<d,
h(n; BB(3t—2),3(t—N(1~5)+1) for 2<r<I.

It is easy to see that g is a homotopy between C’ and k, 7, C. Since Ty 0= Tyyy = Ty
and 7, f = ny, it follows that

nod = nA={h; g A = Ch; niodd
and o

nBB = nB~(h;nyBY = h; n, BB .
Let P, Q and R be the homotopies between nad and {/; , x4, #nfB and

<h; n,BB) and nE and h,x, E, respectively. Then it is easy to see that the homo-
topy H, defined as follows :

P((1-35),s) for O<t<i,
H(@,s) = <R(Br=1),5) for Iigr<2,
10(Br-2),s) for Z<1g1

is a homotopy between nC and C'. It follows that
nC~C'=h,n,C.

Since C is a path between az; and fz;, which are admissible with respect to Xy
and x} respectively, it follows that x; is h-equivalent to x}.

(5.2) THeOREM. Ler X and h be as in Theorem (5.1). If xo,xheF(f) and
Xy, Xy € F(hy) such that x, is ho-equivalent to x4, xy is hy-equivalent to x| and x, is
h-related to xq, then xy is h-related to x).

The proof of this theorem is similar to the proof of Theorem (5.1), hence
it is omitted. :

Let h: XxI—X"[S, be a homotopy. A fixed point class I' of &, is said to be’
h-related to a fixed point class I'' of hy, if a point of I' is h-related to a point I”.
It is clear from Theorem (5.2) that this definition is independent of the choice of points
in I" and I".

(5.3) Lemma. If X is a finite polyhedron and T, ..., I';, are fixed point classes
of themap f: X~ X"[S,,, then there exists a number e(f)>0 such tharifh: X x I-X /S,

@
&
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is a homotopy such that hy = f and Supg(f, h)<e(f), where @ is the metric. in
tel
(X"[S)*, then
() Every fixed point class T'" of by is h-related 10 a fixed point class I'y of f, for
some j, 1<j<k.

(ii) If a class I'; of f is h-related to a class I' of hy, then I(I'y) = I(I").

(i) If a class I'; of f is not h-related to any class of hy, then IIry) =0

(iv) N(f) = N(hy). '

Proof. Let A>0 and 6>0 are the numbers as in the proof of Lemmas (4.2)
and (4.1) respectively. Let #>0 be a number such that if x, x" € X and d(x, x')<0,
then d(f(x),f(x"))<min(%4,%8). Let &= min(§4,34,0). Since Iy, .., I', are
mutually disjoint compact subset of X, there exist open sets Uy, ..., U, such .that
I ,cU;foralli,i=1,..,k and U,n U; = @, i # j. Let m be a large positive
integer such that d(I';, X— U})> &/m for all i. For x € I';, let U(x) be an open con-
nected set such that D(U(x))<é/m. Cover I'; with a finite number of sets

: . ' H

U(xy), .., U(x,), where xy, .., x,eI;. Let G; = U1 U(x)). Then Gy, ..., G; are
i= B )

mutually disjoint open sets such that: I';,=Gy, for all i, i=1,..,k and

k
F(f)e UG; = V. Let e(X—V)>0 be'a number such that o(x,f(x))>e(X—V)
i=1 . ! o s, . o )
for all xe X—V. Let &(f) = min{¢, ¢(X—V)). We claim that F(h)=V for all
te I If not, there exists x € F(h,) N (X~ V) such that
o(x, f(X))<o(x, hx)+d(f (), h(x))<0+e(f)<e(X~V)

which is a contradiction, Hence F(h,)=V for all.zel.

Let x € G; n F(hy), then there exists x; € I'; and an open connected set U(x;)
- such that D(U(x;)) < &/m and x € U(x;). Let C: I- U(x;) be path such that C(0) = x;
and C(1) = x. If z, z; € X" are points which are admissible with respect to x and x;
respectively, then for rel, we have

d(n(z), <h; ©M) = A(f (), k(D) = A(f (%), F(C@))+ 07(]'(C(t)), h(@)
<$64+e(f)<36+16 = 4.
Hence <; CY>(I)=N(n(z), §). Also

d(n(z), (@) = A(£ ), by () <A(F ), £ () +A(f (), hy(x))
A <gtA+e(f)<ii+di =11,
It follows, as in the proof of Lemma (4.2), that there exist open path connected
sets Oy, .., O, of X and an element €S, such that D(0)< 48 ./n, for all i,
i=1,.,n ma=mn and z, 0z 0;x 0,..x 0, = 0. Since O is path connected,
it easy to constructa path C': I-O< X" from z; to.az such that n, C' = C, It follows
that #(C)=N(n(z;), 6). Since '

C'0) = n(z) = 1 (x)) = hyC(O) = <h; C3(0)

)
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and C
nC'(1) = n(uz) = hy(x) = h; C(1) = <h; CH(1).

It follows from Lemma (4.1) that nC’=<h; C) = (h; m, C'>. Hence x is h-related
to x;, that is, I' is h-related to I';, whete I is the fixed point class of /  contain-
ing x. We claim that I" = G; n F(h,). If x' € I such that x' ¢ Gy~ F(hy), then
there exists i, 7 # j, 1<i<k, such that x' & G; N F(h,)., As before this implies
that x is k-related to some point x of I';. It follows from Theorem (5:1) that x" is
Sf-equivalent to x;, but this is a contradiction, for; I', A Iy =@, I's j. Hence
I"sG; n F(hy). Similatly G; n F(h,)SI". Thus every fixed point class I" of hy is
h-related to one and only one fixed point class of f. It follows from Lemma (3.7)
that

I(I) =I(X,f,G) = I(X, hy, G) = I(I").

If, however, a fixed class I'; of fis not A-related to any fixed point class of A;, then
it follows that F(4) N G; = @. By property Il of Theorem (4.11) we have

I(T)) = I(X.f, Gy) = I(X, hy, G) = 0.

We. see that there is a one to one correspondence between the set of essential
fixed point classes of f and h,. Hence N(f) = N(h,).

(3.4) TuEOREM. If X is a finite polyhedron and f, g: X—X /S, are maps such
that feg, then N(f) = N(g). ‘

Proof. Let h: X'xI-X"[S, be a homotopy between f and 'g. We shall show
that for r e I, the Nielsen number of the map #4,: X— X"/S,, where h(x) = h(x, r),
is a constant in a neighborhood of 7 in I Let C: I-»(X’ *S.)* be the map defined
by, for seJ, C(s) = h,. Let reI and H,: I-R (R is the field of real numbers) be
the map defined by, H,(s). = g(#,, ), where g is the metric of (X’ */S,)¥ and s € I
Let g: XxI->X"[S, be a homotopy between 4, and k, defined by '

g(x,8) = h(x,(1=t)r+1s) for reland xeX.

Let g(h,)>0 be the number of Lemma (5.3) for the map #,. Since A, is continuous
and H,(r) = 0 it follows that there exists a number §(*)>0 such that if se I and
[r—s|<é(r), then H/(s)<e(h,). Since [r—((1 ~Dr+15)) = || [r—s]<|r—s] <5
for all r e 7, it follows that Supg(#,, g,)<&(h,). Hence from Lemma (5.3), we have
N(h) = N(h,) for all s € I and |r—s]<5(r). This proves that N(k,) is a constant in
a neighborhood of r in 7, for all r e I. Since I is connected, it follows that N h,)
is constant for all re . Hence N(f) = N(h) = N(g).

‘We state the Nielsen fixed point theorem for symmetric product map of a finite
polyhedron as follows.

(5.5) THEOREM. If X is a finite polyhedron and f: X—X"/S, is a map, then one
can associate a number N( f') with the map f such that if the Lefschetz number L(f) # 0,
then N(f) # 0 and if g: X—X"/S, is a map homoropic to f, then g has at least N( f)
fixed points.
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