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proper subset of A is an arc. Hence, by (6.1), 4 is a confluent image of (— 0, +00).
However, as is known, 4 is not embeddable in the plane. It would be interesting to
know exactly which confluent images of a half-line, or of a line, are embeddable
in the plane. However, this is not known for one-to-one images of [0, + c0) as in (4)
of (5.1).

(2) By (4) of (5.1), each nondegenerate closed connected proper subset of an
indecomposable confluent image of [0, +c0) is an arc. The corresponding state-
ment, for confluent images of (— co, + ), is false. For example, let I' denote the
composant “you see” of the continuum in Example 1 of [3, pp. 204-205]. Then,
I satisfies (4) of (5.1). Now, delete the origin from I" and denote the new space by I'g,

Iy =I\{(0,0}.

Then, it can be seen that each closed connec*ed proper subset of I'y is an arc
or a half-line. Hence, since I'y is arcwise connec'ed, I'y is a confluent image of
(=00, +00) by (6.1). Also, Iy has a closed subset which is a half-line.
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Capacitability and determinacy -
.

Douglas R. Busch * (North Ryde, N.S.W.)

Abstract. We establish a conjecture of Mycielski and show that the Axiom of Determinacy
implies that every set in three-dimensional Euclidean space is capacitable. The capacitability of

_projective sets follows from projective determinacy, but the case of X1 sets requires no determinacy

at all, but only some such weaker assumption as the existence of a measurable cardinal.

Introduction. This paper explores the analogy between (Newtonian) capacity
and Lebesgue measure. Mycielski and Swierczkowski proved that the Axiom of
Determinacy (AD) implies that every set of real numbers is Lebesgue measur-
able [11] (Y). Of course this has to be in the absence of the Axiom of Choice (AC),
in view of the classical derivation due to Vitali of a non-measurable set from AC.
Also, Solovay showed that even without AD, it is at least consistent that every set
of reals be Lebesgue measurable [17]. The model that he obtains by forcing which
satisfies this property, also satisfies the principle of Dependent Choice (DC):

(Vae X)@AP) e, By e 4 = ANV @), f(n+1))ed.

Now the notion of (Newtonian) capacitability (of sets in three-dimensional
Euclidean space R*) has certain analogies with Lebesgue measurability. For example,
Choquet [1] showed that analytic sets are capacitable. Accordingly, Mycielski
conjectured that in Solovay’s model, all sets in R* might be capacitable ([17], p. 2,
Remark 5), and also indicated how this might be proved, via the proposition BC @)
(for “Borel Choice™):

Let X and T be complete separable metric spaces, u a non-negative, non-atomic
Borel measure on X. If Us X' x T, then there is a Borel set B< X and a Borel measur-

* The author wishes to express his gratitude to Professors J. Mycielski, R. M. Solovay, M. Kac
and D. A. Martin for their stimulus and help in the preparation of this paper.

(*) We have not given a statement of AD in the paper, since we do not use it directly. [3] is
a recent comprehensive survey article.

(%) This formulation of BC was conveyed to the author privately by Professor Mycielski.
The version stated in [17] occurs as Proposition 5(a) of Theorem 1 on page 1. This is the special
case for X = T = the real numbers, and # = Lebesgue measure. However, as Mycielski has pointed
out, this case and the general case are both equivalent to the special case when X is the Baire space,
in view of the reduction mentioned just before Theorem 1 in this paper.
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able function f: B—T such that feU and w(U)\B has (exterior) u-measure 0,
where 7: Xx T— X is the projection map on X.

‘We shall establish Mycielski’s conjecture by showing that BC does imply that
all sets in R® are capacitable. However Solovay has also shown that AD implies BC.
Since it has not. been published elsewhere we reproduce his proof in the appendix
to this paper. Thus our main result Theorem 1 follows once we show that BC implies
all sets in R® are capacitable. ‘

Techrical preliminaries. We shall work throughout in ZF+DC (®). In view of
Solovay’s model this is demonstrably consistent with BC, and it is believed to be
consistent with AD. All the results of potential theory and other “ordinary math-
ematics” that we draw upon require only DC and not the full AC. The projective
hierarchy of sets in a complete separable metric space is defined in [9], but we shall
usually use the modern notation 4}, Zi, I}, 4} ete. The notion of capacity arises
in potential theory. We sketch very briefly the background and terminology that we
need. Details may be found in [5]. If D is an open subset of the Euclidean space R",
nz2, there is an associated Green function G, with certain exceptions in the case
n = 2. For definiteness we take # = 3 and D = R® throughout. Thus our capacity
will be the particular case of Newionian capacity. Let p be any non-negative measure
on D. Then u and G together determine a potential function, written Gu, on D.
For any compact K'< D there is an associated equilibrium potential V and equilibrium
fz’ist{'ibutgon g related by the equation ¥y = Gug. The capacity of K, written ¢(K),
is simply the total “charge” of px: ¢(K) = px(K). For arbitrary 4 <D the interior
and exterior capacities are defined as:

¢ (d) = éup {c(K)| k=4, K compact} ,
c*(4) = inf{e (U)| U24, U open},

and A.is capaci{able if ¢, (A) = e*(4). As lopg as 4 is capacitable, an equilibrium
potential can still be defined: there are compact subsets and open supersets:

K, cK,c..cdc..2G,26,

n-+co

such that ¥,(p) = lim Vg (p) for all p in R, and Va(p) = lita V4 (p) holds quasi-
n-oo

everywhere, i.e. everywhere except possibly on a set of exterior capacity 0 (and
everywhere if 4 is o-compact). ‘

. Now we can state the famous theorem of Doob [2] which gives a probabilistic
interpretation of ¥,. Let 4 be capacitable, so that V4 is defined, and let X be the
space of Brownian trajectories issuing from some arbitrarily ﬁxed, pin R3. X is the
set of continuous functions x: 7R3, T = [0, co), subject to the condition x(0) =
endow.ed with the topology of uniform convergence on compact subsets. Let u 1fe’
the Wiener measure on X [7], [8]. Then if we write A(4, p) for the set of Brownian

() A standard exposition of ZF may be found in [15].
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trajectories issuing from p and meeting A at some time >0, then A(4,p) is
p-measurable, and the equation V,(p) = p(4(4, p)) holds quasi-everywhere with
respect to p. Intuitively: the potential due'to 4 at p = probability that a particle
executing Brownian motion starting from p will meet 4 in a finite time. By [10]
Pp. 93-94 X is a complete separable metric space. p is defined on Borel sets in X,
and it is non-negative, non-atomic and normalized [7], [8]. Thus the hypotheses
of [12] Theorem 2 are satisfied, and the measure u on X can be reduced to the
Lebesgue measure A on the Baire space “ in the following sense: there is a homeo-
morphic embedding /; “w-»X and the measure induced on X by 4 via A coincides
with u. For any Ac X, 4 is p-measurable in X iff h™Y(4) is A-measurable in “o,
and then u(d) = A(A~*(A)).

TueorReM 1. AD implies that any set in' R® is capacitable.

Proof. Solovay’s proof that AD=>BC is given in the appendix. We shall work
from BC. Let 4 be any bounded set in R®. We shall eventually remove this assumption
of boundedness, but in this case we can easily arrange for 4 to be entirely contained
in the interior of some closed ball S. Take p to be any point not in S, let X and 7" be
as above. X x T, with the product topology, is again a complete separable metric
space, so projective and topological terms can be applied to its subsets. Let
@: Xx T—R3 be the evaluation map O (x, 7) = x(f). O is continuous, as is also the
projection map n: Xx T X where n(x, ) = x. Note that BC implies that all sets.
in ®e are Lebesgue measurable [17]. Thus all sets in X are p-measurable with respect
to the Wiener measure p, by the reduction of (X, p) to (", ).

LEMMA. Let US X xT. Then there is o-compact set HSU such that p(m(U))
= u(r(H)).

Proof. By BC there is a Borel set Bz (U) and a Borel measurable function
f: B—T such that f€ U and p(n(U)) = u(B). By Lusin’s Theorem [13], for any
&>0 there is a compact set FS B such that p(B\F)<¢ and f | Fis continuous. Then
let K = {{x,f(x))| x e F}. K is a compact set in X' x T, and @O —p(rEK))<e.
Now let ¢ run through some countable sequence diminishing to zero, and let H be
the union of the associated K’s.

Now n(©7%(4)) is just the set of Brownian trajectories starting at p which
meet A at some time ¢30; or equivalently, #>0, since p is separated by S from A.
Son(@~ 1(4)) is the same set that we have also called A(4, p). We are trying to show
that 4 is capacitable, but suppose for a moment that we already had. Doob’s Theorem
would apply and we would have V,(p) = u(n(@~*(4))). However, even without
the knowledge that 4 is capacitable the right hand side of this equation is defined,
since 7(©~1(4)) is measurable in any case. (The possibility that p might be an
exceptional point where V,(p) # p(n(©~*(4))) can be shown to be precluded by
the fact that p is separated from A by §')

We now proceed to enclose A between capacitable approximating sets M, N.
To get M we apply the lemma to U = ©~(4), then set M = O(H), where H is
the ¢-compact subset of U given by the lemma, Clearly M is o-compact, since the
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continuous image of a compact set is-compact. Now HS 0~ '(4),s0 O(H) = MS A,
so @~ A=20 " Y(M)=H. Thus

pl(071()) = (r(6~ (M) = w(n(H)).
Next we define a G5 set N=24 such that
p(r(0~(4)) = p(r(@~*(N))).

Consider the set C = X\n(67!(4)). Since BC implies every subset of X is
p-measurable, or alternatively by applying the lemma to Cx T, C has a o-compact

-]
subset P such that u(P) = u(C). Supposing P is [JP;, each P, compact, define
i=1

Py = P;x[0,j]. Then <P;D;; is a sequence of compact subsets of PXT<CxT,
and PxT = |J P;;. Now put Z = @(PxT). Z is o-compact in R®. Finally take

s
N = (RA\Z) n IntS. (We chose S so that 4=IntS.) N is obviously a G;. Since
PxT is disjoint from O~ %(4), O(PxT)=R?\4, whence N2.4. This implies
immediately that.

uln(0~ W) Zn((07 ().

On the other hand, since @ *(Z)2PxT, it follows that @ *(N)2 X xT\PxT.
Thus 7(@*(N))= X\P. But although X\P may properly contain 7(6~(A)),
it has the same p-measure, since u(P) = u(C), and C = X\n(@ *(4)). It follows
that

ulr(@~ )< pfr(071(4)),
and thus

ulre(072() = uln(0 (W)
Thus MSACSN, and by applying Doob’s Theorem to M and N,
Vi) = Va(p) = nlz(071(4))).. -

Note that there are no exceptional points as regards the application of Doob’s
Theorem, since M is o-compact, and p is separated from N as from 4 by S. Clearly
in order to show that 4 is capacitable it will suffice to show ¢(M) = ¢(N). This
follows immediately from what we have done already using details from ordinary
potential theory. One can show that the potentials ¥},, Vy are each generated by
unique measures f,, and py, just as for compact sets, using the Riesz Decomposition
Theorem for superharmonic functions [5], so that Vj = Gy and Vy = Guy.
Then ¢(M) = uy(M) and c(N) = uy(N). Since McN<IntS, 1y, and py each
have their support inside S, and ¥}, and Vy are both harmonic throughout R*\S.
But since Vy > Vy, the difference is also a non-negative harmonic function through-
out R>S. It takes the value O at p, a non-boundary point, and hence must
be @ throughout the domain, i.e. ¥y = Vy everywhere in R>\S. Now apply Gauss’s
Theorem. Let X be a large ball of radius 6 such that X< R3\.S. Then
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average of Vy over X = E&%@ _ I"'NESN)

= average of Vy over X .

Thus ¢(M) = ¢(N).

Finally, to remove the restriction that 4 be bounded, we use exactly the same
argument as that used in [6] pp. 185-187 to get the capacitability of unbounded
analytic sets from the bounded case. First one shows that unbounded open sets are
capacitable. Then if {4,) is a sequence of capacitable sets, and if for each n G,24,
is an open set, one has '

e( 9 G,)—¢,( LnJ A) <, (G~ e(4,)) .

Given an unbounded set 4, put 4; = 4 N S, S, being the closed ball of radius 7 cen-
tered at the origin, Then A, is capacitable. Let G, be an open set containing 4, such
that ¢(G,)—c(4,)<eg2". Then

C( U Gn) - C*(A) <e

and clearly 4 is capacitable. )

We remark that in view of the proof of Theorem 1, projective determinacy
implies the capacitability of projective sets, since it is a simple matter to keep track
of the projective degree throughout the argument of Solovay’s proof from AD to BC,
and from BC to capacitability. But BC and hence AD can be dispensed with in the
case of Z; sets, since we can use the Kondo-Addison Theorem instead, together
with the assumption that all X} sets in o are Lebesgue measurable. This latter
assumption seems rather unnatural as the hypothesis of a theorem, so we take
instead the assumption that there is a measurable cardinal [16]. Solovay has
shown [18] that this implies that I} sets arc Lebesgue measurable.

THEOREM 2. Assume that there is a measurable cardinal. Then all E}_ sets in R? are
capacitable.

Proof, Let 4 be a bounded X} set in X. (The boundedness can be removed
just as before.) Then @~ *(4) is also Z%, since @ is continuous, and so again is
n(@~%(4)), since m is a projection. Thus n(0~(4)) = n(Q) for some I} set
QX% T. Now apply the Kondo-Addison Theorem [15] to “uniformize” Q: there
is an fe X x T such that

() n(f) = n(Q) = ©(©~ (),

(i) f is 1y,

(i) f is a function on n(©~*(A)).

Since £ is I, the f-preimage of an arbitrary open set in T will be X5 and thus
measurable, so f'is a measurable function. All I% sets in X are p-measurable, by th_e
reduction of (X, ) to (%, A): the h-preimage of a X} set in X will be Zyin “w ashis
continuous, and such sets ate all Lebesgue measurable since there is a measurable
cardinal. n(@~'(4)) is 23, so it is measurable. Lusin’s Theorem applies to f and
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7(@~1(4)) as before, and the construction of M is the same. As for N: since
n(©71(4)) is measurable C = X\n{6@~Y(A) is too, thus the construction of N is
just as before, since it depends only on the fact that C is measurable.

Remarks.

(1) D. D. Shochat [14], also working from suggestions of Mycielski, has shown
independently that Theorem 2 holds, not just for Newtonian capacity but also for
the Choquet capacities which are “alternating of order oo™ (defined in [1] § 30.1).
Mycielski has announced a proof of the corresponding generalization to Choquet
capacities of Theorem 1 (Notices of the American Mathematical Society, Vol. 19,
No. 7, pA-765, 72T-E 104), unfortunately without giving details.

(2) The analogy between capacitability and measurability fails in one
important respect: the complement of a capacitable set need not be capacit-
able. Thus although Choquet showed that X} sets are capacitable, not only for
Newtonian capacity but for his wider class of capacities alternating of order oo,
IT} sets need not be. In fact, assuming V = L [4], Choquet showed that there is a IT}
set which is not f-capacitable for a certain Choquet capacity, and also that there
is a X} set which is not Newtonian capacitable ([1] §§33.1, 34) If V = L? [16] the
same constructionsyield respectively a IT; and a X1 set. Tt is an open question whether
assuming V = L/V = LP there is a IT3/IT} set which is not Newtonian capacitable.

Appendix. With his kind permission we reproduce Solovay’s proof that AD=-BC,
It is a generalization of the Mycielski-Swierczkowski proof that AD implies all
sets are Lebesgue measurable. He takes BC in the form applying to the product
space [0, 1]x “2, but this is equivalent to the formulation-in the paper, in view of
Footnote (2).

LemMA 1. If BC fails, there is a set U with the following properties:
1 Ueslo, 1]x“2. ) |
(2) For each x in [0, 1] there is a y € “2 such that {x,yy e U.
(3) Let K=[0, 1] be compact and of positive medsure. ’
Let f: K—“2 be continuous. Then for some xe K, {x,f(x)>¢U.
We fix a U as provided in Lemma 1. Let {r;: i=1,2,3,..> be a decreasing
sequence of positive rationals, less than %, such that ii’ ri<o. Let J, be defined

as in [11]. Let S, = [0, 1].

We define a game G:

If # = 2k+1, player I picks S,=S,_, with S,eJ,, and an integer y, €0, 1.
If n = 2k+2, player II picks S,SS,-;. A play of the game determines x € [0, 1]

such that {x} = (_\lSn and y = {¥g, V1» .-y € “2. I wins if and only if {x, y> e U.

Levva 2. I does not win G.

icm
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Proof. As in [I1] construct from a winning strategy for I a pair K, f
contradicting property (3) of U. ’

LeMmma 3. I does not win G.

Proof. We fix a strategy o for II. For each finite sequence s of 0°s and 1°s we
can define a subset A4, of {0, 1] such that (1)-(3) below hold. (This is done as in [11].}

) s=t implies 4,EA4,.
(2) If'length(s) == length(s)+1, and length (?) = n

#lA) = —2r) p(4y)
where k = 2n+1.

o0
(3) Takeye“2,andlet x € () 4,y,. Then there is a play of the game G in which II

n=0 .
plays according to the postulated strategy o that he has, and the outcome is

X, 90
Now set 4 = () 4, By (1) and (2),
L]

wd)z [T (-2r)>0.
k=1

By (3), if x € 4 and y € “2 then <{x, y) is a possible outcome of a play of G with II
playing according to his strategy o. But then by property (2) of U, ¢ cannot be
a winning strategy for I7, For let x € 4 and y be given by property (2) of U so that
Cx, y> & U. Then {x, y> is a possible outcome of a play of G with II using o, and
if ¢ were a winning strategy we would have (x, ¢ U .

From, Lemmas 1-3 the implication AD=+BC is clear (Solovay has also proved
the analogous result where the Baire property replaces Lebesgue measurability).
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A theorem of Borsuk-Ulam type for multifunctions

-

by

M. Ehrlich (Berlin)

Abstract, We prove a generalization of a theorem of Borsuk—Ulam type of Joshi to multifunc-
tions mapping a non necessarily symmetric subset of a locally convex space into a closed hyperplane.

§ 1. Introduction. We shall proove the following generalization of a theorem of
Borsuk-~Ulam type of Joshi [3]:

THEOREM. Let E be a separated locally convex topological vector space, X a closed
and finitely bounded subset of E such that O ¢ X and that the component of O in ENX
is finitely bounded. Then, for every compact multivalued vector field F mapping X into
a closed hyperplane E® of E there are points x,y € X and a number u>0 such that

y=—ux and FX)NFQy) #6O3.

We start by explaining the terminology.

In the following let E be a separated locally convex vector space. A subset
of E is called finitely bounded iff it has a bounded intersection with every finite-
dimensional subspace of E.

If X is a topological space, a mapping f from X into the set 2% of all nonvoid
compact convex subsets of E is called a multivalued function, or multifunction, of X
into E, written f: X—E. Moreover f is called compact iff

(1) f is upper semicontinuous (u.s.c.), i.e. for every xe X and every open
set O=f(x) there is a neighborhood N of x such that

SN) = UNf(x)CO,

(2) F(X) is relatively compact in E.

A multifunction F: X-E is called a multivalued compact Sfieldiff f (x) = x—F(x)
is a compact multifunction.

We shall extend the following result of Joshi [3]:

PRrOPOSITION 1. Let E be a Banach space and let X be a closed, bounded subset
of E such that O ¢ X and that the component of O in ENX is bounded. Then for any -
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