202

[11]
[12]
[13]
[14]
[15]
{16]
[17}

[18]

D. R. Busch

J. Mycielski and S. Swierczkowski, On the Lebesgue measurability and the axiom of
determinateness, Fund. Math. 54 (1964), pp. 67-71.

J. C. Oxtoby, Homeomorphic measures in metric spaces, Proc. Amer. Math. Soc. 24 (1970),
pp. 419-423.

W. Rudin, Real and complex analysis, McGraw Hill, N. Y., 1966.

D. D. Shochat, Capacitability of ; sets, Ph. D. thesis, University of California, Los Angeles.
J. R. Shoenfield, Mathematical Logic, Addison-Wesley, Reading, Mass., 1967.

J. H. Silver, Measurable cardinals and A&} well-orderings, Ann. of Math. 94 (1971),
pp. 414-446.

R. M. Solovay, 4 model of set theory in which every set of reals is Lebesgue measurable,
Ann. of Math, 92 (1970), pp. 1-56.

— On the cardinality of Xy sets of reals, in Foundations of Mathematics, Symposium Papers
Commemorating the Smtleth Birthday of Kurt Gddel, Springer Verlag, Berlin (Heidelberg)
N. Y. 1969, pp. 58-73.

SCHOOL OF HISTORY, PHILOSOPHY AND POLITICS
MACQUARIE UNIVERSITY
North Ryde, N.S. W,

Australia

Accepté par la Rédaction le 13. 9. 1976

A theorem of Borsuk-Ulam type for multifunctions

-

by

M. Ehrlich (Berlin)

Abstract, We prove a generalization of a theorem of Borsuk—Ulam type of Joshi to multifunc-
tions mapping a non necessarily symmetric subset of a locally convex space into a closed hyperplane.

§ 1. Introduction. We shall proove the following generalization of a theorem of
Borsuk-~Ulam type of Joshi [3]:

THEOREM. Let E be a separated locally convex topological vector space, X a closed
and finitely bounded subset of E such that O ¢ X and that the component of O in ENX
is finitely bounded. Then, for every compact multivalued vector field F mapping X into
a closed hyperplane E® of E there are points x,y € X and a number u>0 such that

y=—ux and FX)NFQy) #6O3.

We start by explaining the terminology.

In the following let E be a separated locally convex vector space. A subset
of E is called finitely bounded iff it has a bounded intersection with every finite-
dimensional subspace of E.

If X is a topological space, a mapping f from X into the set 2% of all nonvoid
compact convex subsets of E is called a multivalued function, or multifunction, of X
into E, written f: X—E. Moreover f is called compact iff

(1) f is upper semicontinuous (u.s.c.), i.e. for every xe X and every open
set O=f(x) there is a neighborhood N of x such that

SN) = UNf(x)CO,

(2) F(X) is relatively compact in E.

A multifunction F: X-E is called a multivalued compact Sfieldiff f (x) = x—F(x)
is a compact multifunction.

We shall extend the following result of Joshi [3]:

PRrOPOSITION 1. Let E be a Banach space and let X be a closed, bounded subset
of E such that O ¢ X and that the component of O in ENX is bounded. Then for any -
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single-valued compact field F mapping X into a closed hyperplane of E there are
points x,ye X and a number >0 such that

Y= —pux and F(x)=F(J’)-

Before proving our theorem we want to discuss the condition that X and the
component of O in ENX be finitely bounded. At first we remark that even in Banach
spaces there exist finitely bounded sets which are not bounded: if E = 1%, the set X of
all x = (x)=; € 1* such that }<x;<2 or —1<x;<—%-for all  is an example.
Moreover the component of O in E\X is finitely bounded, but not bounded.

Therefore, introducing finitely bounded sets instead of bounded sets gives
more general results even in Banach spaces. But if we want to consider non-normable
locally convex spaces we are forced to introduce finitely bounded set, because, if X is
closed O ¢ X, and the component C of O in E\X is bounded, E must be normable.
In fact there exists a convex neighborhood of zero U such that UcENX. Since
Uc<C, U is bounded.

If C is only finitely bounded we see by the same argument that there exists
a convex finitely bounded neighborhood of zero U in E. By a result of Pallaschke and
Pantelidis ([8], Lemma 3.2) a convex neighborhood of zero U is finitely bounded
iff Uis radially bounded, i.e. iff U has a bounded intersection with every 1 -dimensional
subspace of E. Landsberg [5] calls E locally radially bounded iff there exists a radially
bounded neighborhood of O in E.

By the preceeding discussion we see that if E contains a subset X subject to the
conditions of the theorem, E-must be locally radially bounded. Landsberg [5] gives
some examples of non-normable locally radially bounded spaces.

§ 2. Proof of the theorem. We first consider the finite-dimensional case.
If f: X—E is a multifunction we let

gr(f) ={(x,»): xe X,ye E,yef(x)}.

We shall use the following result of Cellina [2]:

PROPOSITION 2. Let E be a normed linear space, X< E and f: X—-E a compact
multifunction. Then, given >0, there exists a continuous single-valued function
g: X—cof(X) such that inf{||x—%| +|lg(x)— z|| X, Degr(f)}< for each x e X.

Now we are able to prove

LemMmA 1. Let E be finite-dimensional and let X be a compact subset of E such
that O ¢ X and that the component of O in EXX is bounded. Then for every compact

multivalued function f mapping X into a hyperplane E° of E there are points x,ye X
and a number pu>0 such that

y=-—px and fX)nf(y)#0.
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Proof. We may suppose that the topology of E is generated by a norm |.|.
Let (3;) be a sequence of positive numbers converging to 0. By Proposition 2 there
are continuous single-valued functions ¢;: X—E° such that
@) inf{flx— X[ +llgix)—z|: (%, 2) e gr()}<4;

By the result of Joshi (Prop. 1) there are points x;, y; € X and numbers ;>0 such
that

for each xe X.

) yo=—mx,  qix) = q(y).
Since X is compact we may suppose (taking subsequences if necessary) x;~x € X,
yi—y e X. Since O ¢ X we infer from (2): -
Iyl Il
= ——— o = >0 and = —ux.
el T reTe

Since X is compact £ (X) is also compact ([1], p. 110) and so is gr(f), being a closed
subset of X'xf(X). Hence there exist points X; € X, z; € f(X;) such that

=%, + g (x)— 2l = inf{]lx;— X[ +|g:(x) — 2l : (%, 2) e gr(S)}.
Taking a subsequence if necessary we may assume z;—z. Because of (1) this implies

X, %(xt)"z

Siﬂge gr(f) is closed ([1], p. 112) X,—x and z, ef (%), z;>z, imply zef(x) In
a similar way we can show
a(y)—z €f(y).
Since g,(x;) = ¢,(»,) it follows
z=2ef()nf().
We want to prove our theorem by approximating the given field F by fields mapping
the intersection of X with some finite-dimensional subspace E'’ of Einto a hyperplane
of E” and then applying Lemma 1.
We first improve a result of Ma ([6], (3.1)).
PRrOPOSITION 3. Let E° be a closed linear .s’ubspace of E of finite codimension
and let
E=E°@E'.
Let py, py be the projections of E onto E® and E*, respectively. Moreover, let X be
a topological space and f: X—~E a compact multifunction.
Then for every neighborhood of zero V there is a compact multifunction fy: X—E
such that fy(X) is contained in a finite dimensional subspace of E and that

frNef@+V, fEfH@+V,  pi(H) =pi(f(¥)

for every xe X.
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Proof. We modify the proof of Ma [6], (3.1). ,

Let ¥ be a convex neighborhood of zero, K = f(X). Since p, is continuous
([4], p. 156) there is a neighborhood of zero U such that po(U)=V. By a result of
Nagumo [7] there is a continuous (single-valued) function Py: K—E such that
x—Pyxe U for all xe K and that Py(K) is contained in some finite-dimensional
subspace Ey of E. Now we define a continuous map Q: K—E by

Qy = po(Pyy)+p1(¥),

and we let f(x) = co Q(f(x)) for xe X. '
Since Q(f(x)) is a compact subset of the finite-dimensional space po(£y)DE L
co(Q(f(x))} is also compact ([9], Satz 3.10). By the same argument the compactness

" of £,(X) can be shown. The upper semicontinuity of f,, can be shown as in the proof
of (3.1) in [6].
For each x e X we have

Pi(() = co(py(Q(F () = co(p:1(f(9)) = ps(f () .
If z e f(x) there exis’; #; =20 and y;ef(x) (i =1,2,..,n) such that

and z = '21 0oy .
This implies ‘

z = 3, k{(PoPuy) +p1(¥) = 3, miPo(Puyi—y)+ 1 Wy
ef )+ wpo(U)=f(¥)+V .

Therefore fi(x)=f(x)+V, and in a similar way we can show f(x)c<fy(x)+ V.

Lemma 2. Let E° be a closed hyperplane in E, X< E and F: X—E° a multivalued
compact field. :

Then for every neighborhood of zero U there exist a finite-dimensional space
EycE and a multivalued compact field Fy: X—E° such that Fy(x)= F(x)+U for
each xe X and Fy(X n Ey)< EJ, where EY is g hyperplane in Ey.

Proof. Let E! be a 1-dimensional subspace of E such that
E=E'@E"

and let p, be the projection of E onto E!. Moreover, let U be a convex neighborhood

of zero. )
Since f(x) = x—F(x) is a compact multifunction, there are by Proposition 3

a finite dimensional space Ey and a compact multifunction f;: X—Ey such that

(+) FRsfD)+U  and py(fu(x) = pu(£ (%))

for every x e X. Obviously we may suppose Ey>E?,
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Let Fy(x) = x—fy(x). (+)implies Fy(x)cF(x)+ U for each x e X. Moreovef
pl(FU(x)) = Pi(x)“f)i(fv(x)> = le(x) -P1(f(x)) = P1(F(x)) =0.

Therefore Fy(X)c E°.

Let ES = E,; n E°. ES is clearly a hyperplane in Ey, and we have for each
xe X n Ey: ‘ .
Fy(x) = x—fy(x) € Ey+Ey = Ey.
Therefore FX A E)cEy n E® = ES.

Proofofthetheorem. Given a neighborhood of zero ¥ we choose a symmetric

neighborhood U such that U+ U< V. From Lemma 2 we get a finite-dimensional
space E, and a multivalued compact field F,: X—E° such that

Fy(x)eF(x)+U for all xe X and F(X n E,)<Eyp,

where Ey is a hyperplane in Ej. -
Our hypotheses on X imply that
() X n Ey is compact,
(ii) the component of O in E,\(X N Ey) is bounded.

Therefore there exist by Lemma 1 points vy, ¥y € X n Ey and a number py >0
such that

Y= —ppxy and  Fxy) nF(y) # 9.
We conclude that
(iif) Feo) o (FO)+V) # .
Now, since F is a compact field,
fx) = x—F(x)

is a compacf multifunction. Because of (iii) there are points ay € f(xy), by €f (¥y)
such that
@iv) Xp—ay € yy—by+ V.
Let ¥ be the filterbase of all symmetric neighborhoods of zero and consider the
nets (¢y)yey and (by)pey. Since f is compact we may suppose (taking subnets if
necessary) that
ap—a and  by—b.

From (iv) we get

(L pp)xy = Xp—yp € ap—by+ V.

Therefore (1 + sip)xy~a—b. This implies j,-+>+ co, because otherwise x,—0 which
is impossible since X is closed and O ¢ X. Hence there exists a subnet of (T
converging to some u0. To simplify the notation, this subnet is also denoted
by (uy). )

4 — Fundamenta Mathematicae t, CIX
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We conclude

a—b
Xp—r— =: XE X,
4 1+p
Yp = —ppxy—>—pux =:yeX.

Since gr(F) is closed we have x—ae F(x), y—be F(y). From (iv) we get
x—a = y—be F(x) n F(y),

and the theorem is proved.
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Uniform shape and uniform Cech homology and
cohomology groups for metric spaces

by

D. Doitchinov (Sofia)

Abstract. It is proved that the uniform Cech homology and cohomology groups of
a metric space, namely those defined by means of all uniform coverings of the space, are
invariant with respect to uniform shape equivalence understood in the sense of the paper [3]
as well as in the sense of the paper [4].

In paper [3] a concept of uniform shape for metric spaces was introduced.
Another notion of uniform shape equivalence, called uniform fundamental equival-
ence, for complete metric spaces was defined earlier in [4]. The purpose of this paper
is to establish two theorems showing that the uniform Cech homology and coho-
mology groups, namely those defined by means of all unifornicoverings of the
space, are invariant with respect to uniform shape equivalence understood as-either
of the notions mentioned above. As these two theorems are proved in essentially
the same way, only the proof of one of them will be given in detail.

§ 1. Uniform and double-uniform shapes for metric spaces. Let us recall the
definition of uniform shape for metric spaces given in [3]. Every metric space X can
be considered as uniformly embedded in a complete metric space M which is an
absolute uniform neighbourhood extensor for metric spaces — such a space will
be called a UANE-space. The family of all open neighbourhoods of X in M will
be denoted by U(X, M). '

If X and Y arc subsets of the UANE-spaces M and N, respectively, then
a uniform shape map

[+ UX, M)-»U(Y, N)
is a collection of uniformly continuous maps f: U-V, where UeU(X, M )
Ve U(Y, N), provided that the following conditions are satisfied:
a) for every V'e U(Y, N) there exist a Ue U(X, M) and a f: U~V with fef;
b) if fef, /1 U=V, U'cU, V'oV, U'eUX, M), V' eU(Y,N), and if

S =jflw, where j: V-V’ is the inclusion map, then £’ € f;
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