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We conclude

a—b
Xp—r— =: XE X,
4 1+p
Yp = —ppxy—>—pux =:yeX.

Since gr(F) is closed we have x—ae F(x), y—be F(y). From (iv) we get
x—a = y—be F(x) n F(y),

and the theorem is proved.
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Uniform shape and uniform Cech homology and
cohomology groups for metric spaces

by

D. Doitchinov (Sofia)

Abstract. It is proved that the uniform Cech homology and cohomology groups of
a metric space, namely those defined by means of all uniform coverings of the space, are
invariant with respect to uniform shape equivalence understood in the sense of the paper [3]
as well as in the sense of the paper [4].

In paper [3] a concept of uniform shape for metric spaces was introduced.
Another notion of uniform shape equivalence, called uniform fundamental equival-
ence, for complete metric spaces was defined earlier in [4]. The purpose of this paper
is to establish two theorems showing that the uniform Cech homology and coho-
mology groups, namely those defined by means of all unifornicoverings of the
space, are invariant with respect to uniform shape equivalence understood as-either
of the notions mentioned above. As these two theorems are proved in essentially
the same way, only the proof of one of them will be given in detail.

§ 1. Uniform and double-uniform shapes for metric spaces. Let us recall the
definition of uniform shape for metric spaces given in [3]. Every metric space X can
be considered as uniformly embedded in a complete metric space M which is an
absolute uniform neighbourhood extensor for metric spaces — such a space will
be called a UANE-space. The family of all open neighbourhoods of X in M will
be denoted by U(X, M). '

If X and Y arc subsets of the UANE-spaces M and N, respectively, then
a uniform shape map

[+ UX, M)-»U(Y, N)
is a collection of uniformly continuous maps f: U-V, where UeU(X, M )
Ve U(Y, N), provided that the following conditions are satisfied:
a) for every V'e U(Y, N) there exist a Ue U(X, M) and a f: U~V with fef;
b) if fef, /1 U=V, U'cU, V'oV, U'eUX, M), V' eU(Y,N), and if

S =jflw, where j: V-V’ is the inclusion map, then £’ € f;

4%
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¢) if fi,fa€f fi,fo: U=V, then there exists a U'cU, U' e U(X, M) such
that the restriction maps fi|y- and fyly are uniformly homotopic: in V.

The composition gf of two shape maps f: U(X, M) U(Y,N) and
g: U(Y, N\)-U(Z, P) is defined by the family of all maps gf with fe [, g € g, which
have a sense. The identity shape map ixa: U(X, M)—~U(X, M) consists of all
inclusion maps in the neighbourhood system U(X, M). :

Two uniform shape maps f, g: U(X, M)—U(Y, N) are said to be uniformly
homotopic, and this is denoted by f g, if for every two maps fef and g e g with

f,g: UV ithereisa U'e U(X, M), U’ < U, such that the restrictions 7’|, and g|y
are uniformly homotopic in ¥. The uniform homotopy of shape maps, as can easily
be seen, is an equivalence relation which is also compositive.

The metric spaces X and Y are said to be uniformly shape-equivalent if there
are two UANE-spaces M and N uniformly including X and Y, respectively, and two
uniform shape maps f: U(X, M)->U(Y, N), g: U(Y, N)-»U(X, M) such that
9f = ke J9 5l

Then the following statements can be proved:

A.. The relation of uniform shape equivalence defined above does not depend
on the UANE-spaces M and N, or on the respective inclusions of X and Y into M
and N, either. Moreover, it is a proper equivalence relation.

B. Uniform shape equivalence is a relation which is both weaker than the usual
uniform homotopy equivalence and stronger than shape equivalence for metric
spaces in the semse of Fox [1].

C. Uniform shape equivalence coincides with usual uniform homotopy equiv-
alence for the class of UANE-spaces.

The class of all metric spaces uniformly shape-equivalent to a given metnc
space X is called uniform shape of X and is denoted by UShJX.

If in the construction described above U (X, M) is not the system of all neigh-

bourhoods of X in M but the family of its uniform neighbourhoods only, then one
gets another equivalence relation — let us call it double-uniform shape equivalence.
In the case of complete metric spaces it coincides with uniform fundamental equiv-
alence' in the sense of [4]. The class of all metric spaces double-uniform shape
equivalent to a given metric space X will be called double- unlform shape of X and
will be denoted by UUSh.X.

In order to formulate the main assertions of this paper let us denote by
H,(X; G)y (resp. H"(X; G)y) the m-dimensional Cech homology (cohomology)
group over any coefficient group G, defined on the directed set of all uniform
coverings of the metric space X and called uniform Cech homology (cohomology)
group.

In §3 we will prove the following theorems:

TueorReEM 1. If UShX = UShY, then H,(X; G)y =
= H™(Y; G)y for any abelian group G and each m.

H,(Y; G)y and H"(X; G)y
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TaeorEM 2. If UUShX = UUShY,
H"(X; Gy =

thel’l HM(X; G)U = I{,"(Y; G)U an'd
H"(Y; G)y for any abelian group G and each m.

§ 2. Similar extension of uniform coverings. If f = {B;| Ale A} is a covering
of a subspace 4 of a space X, then the family f = {B)| Ae A} of sets in X defined
on the same indexing set A is called an extension of B if B, = B, n A for each A e A.
Moreover, when the nerves of § and f§ coincide, § is said to be a similar extension
of B.

We need the following

LemMa 2.1. Let X be a metric space and A< X. If B is an uniform covering of the
subspace A, then there exists a similar extension f of B which is a uniform covering
of some uniform neighbourhood V of A in X. Moreover, if ¢ is a Lebesgue number
of B, then B can be constructed in such a manner that e is its Lebesgue number.

Proof. If § = {B,| Le A} and if B} = {x e X|o(x, B) <o (x, A\B,}, where g is
the metric in X, then, asitis known [2], B} is open in X and the family ' ={B;| Ae A}
is a similar extension of f.

Let ¢ be a Lebesgue number of the covering B. It is easy to see that
the e-neighbourhood O,,4 = {x e X| o(x, A)<}e} of 4 in X is included in the
union | Bj. Indeed, for every xe X with o(x, A)<}e there is a y, € 4 with

Aed

o(x, y,)<%e. On the other hand, the e-neighbourhood {y e 4| o(y, y;)<e} of y;
in 4 is included in some B, ef. Then it is clear that g(x,B;)<%e and
o(x, ANB,;)>%e. Hence x e B) and thus Oa,zAc U B.

We set V= 0,64 = {xe X| o(x, 4)<%¥e}, ﬁ = El NV Ttis clear that the
family f = {B,] 1 e A} is a similar extension of 8. We will show also that it is a uni-
form covering of the uniform neighbourhood ¥V of 4 in X. Indeed, let x; and x,
be two points in ¥ with g(xy, x;)<%e. There are two points y,,y, in 4 with
o(x1, ) <%, 0(xy, y)<ite It follows that o(y,, y,)<%e. But

{redl o(y,y)<e}<=By,

for some A; € A; hence y, e B,,. Since g(xz,yz)géa, we have g(x,, B;)<%e.
On the other hand,

0(x5, ANB,) 20 (y1, ANBy)— 0 (¥ X2) -
Because of the inequalities ¢(yy, A\B,,)=¢ and

0y, %) <0 (Y1, ¥ +E(¥2s Xa)<het+ e = %’? >

one gets o(x,, ANB;)>%¢e. Then o(x,, By)<e(xy, ANB,,); hence x,€B;,, and
so {xe V| o(x, x,)<3vz:}c:1§,11 Thus it is shown that B is a uniform covering of ¥
with the Lebesgue number +¢, and the lemma is proved.

When g is a uniform covering of the subspace 4 of a metric space X and €'is
a Lebesgue number of 8, then the family B constructed above will be called the stan-
dard similar g-extension of f§ in X.
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Besides, one can easily see that if f and B’ are two uniform coverings
of 4 with the Lebesgue numbers ¢ and ¢’, respectively, such that #’ is a refinement
of B and ¢ <e, then the standard similar ¢'-extension §’ of g’ is a refinement of the
standard similar é-extension § of f.

§ 3. Proof of Theorems 1 and 2. All the statements in this section will be formu-
lated and proved for homology groups only, because analogous statements and
proofs for cohomology groups ‘are obtainable in an obvious way.

Further we need two lemmas — the first of them is obvious and the latter is
proved in a standard manner.

Lemva 3.1. Let {X,,ni, A} and {¥;, nf, B} be inverse systems with inverse
limits X, and Y, respectively, and let @, ¥ : Xo— Yo be two homomorphisms
defined by the order-preserving functions ¢,W: B—A and by the homomorphisms
®pt Xomy— Yp, Wi Xypy— Yy, respectively. If for every Be B there is an oc 4,
a>@(B), Y(B), such that :

o
PaTomy = YTty »

then @ =Y.

Lemma 3.2. Let X and Y be metric spaces and let the mappings f, g X— ¥ be
uniformly homotopic. Then for every uniform covering B of Y there exists a uniform
covering o of X which is a refinement of the two coverings f~X(B) and g~*(8) an
has the following property: . '

if X Xp-sgy, X,-1y, Yy are the merves of the corresponding coverings,
It Xs-1y— Yy, g*: Xy-1py— Y are the simplicial inclusion maps, and p: X,— Xo-1pys
q: X, X ;-1 are simplicial projections, then for the induced homomorphisms of the
eorresponding homology groups we have

i, =4gla,.

Now we will obtain Theorems 1 and 2 as consequences of some propositions
which follow below.
© In the sequel X, Y, Z are always metric spaces, and M, N, P are complete
metric UANE-spaces. Everywhere we use the definitions and notations given in § 1.
As has been said, we have to do with the uniform Cech homology groups
H,(X; G)y, defined, for any abelian group G and for each m, as the inverse limit of
the inverse system {H,(X,; G), (nf),, 4}. Here 4 is the directed set (ordered by
reﬁning) of all uniform coverings of the space X, X, is the nerve of the covering o
and ny: Xp— X, is a projection.

PROPOSITION 3.1. Every uniform shape map [ U(X, M)>U(Y, N) induces,
Jor any abelian group G and each integer m, a homomorphism f,: H,(X; Gy
—H,(Y; G)y which only depends on the spacés X, Y, M, N (and the embeddings
of X and Y into- M and N, respectively) and on the shape map f itself. i
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Proof. We will prove something more, namely we will show that, if
B = {B,| n=1,2,..} is any monotonous sequence which is cofinal in the directed
set B of all uniform coverings of Y, then the required homomorphism f, can be

defined by means of a map
»{Hm(Xu; G)a (Tc:' *? A}_*{Hm(yﬂn; G): (nﬁ'1_1)*7 B}

where 4 is of course the directed set of the uniform coverings of X.

And so, let the sequence B’ = {,| n = 1,2, ...} be monotonous and cofinal
in B, and, for every n, let &, be a Lebesgue number of the covering B,. Further let f,
be the standard similar g,-extension of f, in N and let ¥, be the uniform neigh-

" bourhood of ¥ in N which is covered by f,. We can assume that e, <é&,; hence

V,+1SV,. In view of the properties of a shape map one finds, for every #,
a U,eUX, M) and a f,: U,—~V,, f,€f Besides, there is such a U,e U(X, M)
with UycU, n U,4q, that fily sz,,H]v,', in ¥,. Let us denote by o, the uniform

covering of X induced by the covering £TYBY of U,, and by .y, that induced by
F4(B) on X. Then, by means of Lemma 3.2, one can find a uniform covering «,
of X which refines both o, and 7, and is such that the equality

® ey = (D

holds. Here fi": X, —~(V,)j, = ¥, and o X, —(V)5, = Y, are the simplicial
inclusion mappings of the corresponding nerves. We can assume besides that
Oprg>0,. Then in the diagram

X,
VAR
/ n J +>L
Xun — X‘i’n Yﬁn

A

In+t
‘)’(th-n———)‘thnxw—_> Yﬂnn

where the projection 5"** is supposed to be defined by the projection nfrt, we have
Slramgtt = sl md @D, = G
Hence, in view of the equality (1), one gets
@ - (frmmintt), = @i sl mont Dy -
If we set @, = (ff"nin),, then the equality (2) is written as follows:

@i, = () Pnss -
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This shows that the order-preserving function ¢: B—4 given by ¢(8,) = «, and
the homomorphisms ¢, H,(X,,; G)-»>H,(Y;,; &) define a map

{Hy(X; @), ), A= {H(Yp,5 @, (1), B} -

If the inverse limit of the countable inverse system {H,(Y},; @), (ng:*")*, B} is
the group Hy, then this map defines a homomorphism

Pt Hm(X; G)U—>HB’ .

On the other hand, the injection .
{Hm( Y/I; G): (7[71')5 B}—*{Hm( Ylin; G)’ (7‘:2:“)* B B‘}

-induces, as is known, a group isomorphism ip: H,(Y; G)—Hy. We set f, = i P
and thus get a homomorphism of the group H,(X; G) into the group H,(¥; G).

‘We will show that the homomorphism f, does not depend on the arbitrariness
in the construction described above. First of all we suppose that a monotonous
sequence B' = {f,| n = 1,2, ..} cofinal in the set B is given, and we will prove
that f, is independent of the choice of ¢,, U,, f, and a,. And so, let two homo-
morphisms ¢q,, @' H,(X; G)~Hy be defined in the manner described, the first
one — by means of some ¢,, U,, fy, an, the second one — by means of some
e, Uys fy's o If 6, = max(e,, &) and if ¥, denotes the Le,-neighbourhood of ¥
in N, then one can assume that f,: U;—~V, and f;,': U;'—V, . Besides, it is clear that
the standard similar ,-extension B, of f, is at the same time a similar extension
of the standard similar g-extensions and &,-extensions of g,. Taking U, e U(X, M)
with U,=U, n U, in such a manner that f,flg"%' Ja'lu,, one finds, according to

Lemma 3.2, for every n such an «,€ A that the equality

(f,(ﬂ"ﬂZ';")* = (fn"”"ﬂ:'{;),,
holds. Here o, and o are the coverings of X induced by the coverings £~ () and
» ~(B,), respectively, while £, and f,"®" are the corresponding inclusion mappings
of the nerves. One can assume besides that «, is a refinement both of o and of «) .
Thus we get

1 all .
(fy:ﬂ"”:’:)*(n:z)* =/, ,:'”"naz,)*(n:';/)* ’
which shows, according to Lemma 3.1, that ¢!, = ¢7..

It remains to see that the definition of the homomorphism J does not depend
on the choice of the sequence {f,| n =1,2,..}. Let B' = {f}{ n =1, 2, ..} and
B?={f}n=1,2,.} be two monotonousxsequences both cofinal in B. For
every n let us denote by B2 the uniform covering of ¥ consisting of all the sets
V' A V", where V' e By, V"' € B2, by &, a Lebesgue number of B2 chosen so that
€n+1<6y by Bu, B3 and B} the standard similar ¢,-extensions of Bi, BZ and B3,
respectively, and by ¥, the ‘Ze,-neighbourhood of ¥ in N. Further we find
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aU,e U(X, M) and an f,: U,~V,, f, e, and denote by ¢*, 62 and &2 the uniform

coverings of X induced by the coverings £, *(B)), £ *(B2) and £, 1(B?), respectively.

Finally, we denote by B> the sequence {f3| n=1,2, ..} and by Hp the inverse
. i

limit of the inverse system {H,( Ypl; G), (nﬁf“) o B} for i=1,2,3.

Let oL H,(X; G)y—Hyp and ¢%: H,(X; Gly—~Hy be two homomorphisms,
the first of them defined by means of the sequence B* and an order-preserving
function @*; B'—A4 and the second by means of the sequence B* and another order-
preserving function ¢*: B*> 4. As has already been proved, we can assume that
P (B1) = @*(P2) = w, and that the homomorphisms ¢% and @2 are induced by the
homomorphisms

2
Ba ot

P
on=(hmD and ol =(fn), (1=1,2,.),

respectively. On the other hand, the function ¢®: B*—>4 given by @3B = oy,

and the homomorphism @2 = ( f:’a‘n:;)* (n=1,2,.) induce another homo-

o,
morphism @3 : H,(X; G)y— Hyps. If the projection T, 18 supposed to.be defined

N [ By ad L H . .
by the projection Ty then we have f, T = Ty £, s which, together with the

3
equality (n‘:':)* = (n:':)* (n:';)*, implies the equality

1 By 3
Pl = (W, 0%

But we have

I Co-1 -1
(7 u = Pyipiis Ppg s

where p: Hy—H (Y5 6), P Hy,—H (Y, G) are the projections and
ip;: H(Y; G)yy—Hy,, fys: H,(¥; Gy—+Hps are the group jsomorphisms induced
by the corresponding injections. Hence one gets

1 . ,~1 ~1 3
@y = Ppilpiips Pp3 @y

which implies that @b = ipig'e. s

So il = izl ¢%. Analogously one sees that-iz @ = im @y, and hence
“‘1'511([):0 = l.;zl(pi. - . )

Thus, the correctness of the definition of f, is proyed. ‘

In addition to the proved Proposition 3.1 the following remark is to be n‘otea%.\
Every usual uniformly continuous map f: XY, as can ea:sﬂy be seen, mduce's auni-
form shape map f: U(X, M)-U(Y, N), and all the uniform shape maps induced
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by f are uniformly homotopic. The construction of f, given in the proof above
shows that if £ is induced by f; then f, coincides with the homomorphism f,, induced

by f.

ProrosiTioN 3.2. If fi: U(X, M)-U(Y,N) and g: U(Yy, N\)-U(Z,P) are
uniform shape maps and if i+ U(X, M)~ U (X, M) is the identity uniform shape map,
then

@) = gufie and i, = identity .

Proof. The fact that i, is the identity isomorphism‘being clear, it remains to
prove the equality (gf), = g4 fs-

Let 4, B, I' be directed sets of the uniform coverings of the spaces X, ¥, Z,
respectively, and let I” = {y,| n = 1,2,..} be a monotonous sequence cofinal
in I'.

Let us suppose further that the homomorphism g, is defined by means of the
mappings g, € g, gn: Va— W,, where W, is, for every n, a neighbourhood of Z co-
vered by a similar extension ¥, of y,. If 2¢, is a Lebesgue number of the covering
gn 1(5,) of V;, we set

V() ={¥e ¥l e(y,))<&},  Bu={Vu(l yeY}.

Then B, is a uniform covering of Y. For the elements ¥,(y) of the standard similar
¢,~extension f, of B, we have

V(e {y' eN| o(y, Vi) <te}={¥ e Nl o(, ») <28} ;

hence, f, is a refinement of g, *(%,).

We can assume that the numbers ¢, are taken in suich a manner that we have
g,<1/n and ¢,,,<e, for every n, and that the order-preserving function : I'"'—B
in the definition of g, is given by ¥/(y,) = B,. If 4, is the covering of ¥ induced by
the covering g, '(5,) of ¥,, and if gi*: ¥, —(W,);5,= Z,, is the inclusion map of
the nerve of A, into the nerve of 'y,,, theng, is deﬁned by means of the homomorphisms

(gn 7!1,. 'y

Now the sequence B’ = {8, n = 1,2, ..} is. monotonous and cofinal in B.
We denote by ¥, the neighbourhood of ¥ in N covered by f, and note that ¥, =V},
One supposes that f, is defined by an order-preserving function ¢: B'—4 and some
mappings f,: U,~V,, f, €f, inducing the homomorphisms ¢, = (f"x o), Where
a, = @(B,), o, is the covering of X induced by f; *(5,) and ff: X~ (Vi. = Yy,
is the inclusion map of the nerve of ¢, into the nerve of §,.

On the other hand, we have g, f, € gf. Therefore, if we set ©(y,) = a,, if y, is
the covering of X, induced by (g,/) *(§,), and if (g,f,)": X, (W, = Z, s
the corresponding simplicial inclusion map, then the order-preservmg function
7: "4 and the homomorphlsms 7, = (g )" mn « define the homomorphism

(@l
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Consider the diagram

Xeg =X g2 (Vi)g, = ¥, 2>y 5> (W)

x ntn

If we first define a projection of the nerve of §, into the nerve of g, *(§,), and by
means of that projection we define the projection n4": ¥, — Y, , then it is easy to
see that the simplicial mappings gnfr ffr 22 and (g, S)"m are contiguous. Hence
we have V¢, = 7,.

Let Hy and Hy be the inverse limits of the inverse systems

(H(Y35 §), (a0, BY  and  {H(Z,:6), @i, '},

respectively, let ¢ 1 H,(X; Gy—Hy, ¥ o H,(Y; Oy— Hy and 1,2 H,(X; G)y—Hy-

“be the homomorphisms defined above, and let ip: H,(Y; G)y—Hp and

and ip: H,(Z; G)y— Hy+ be the isomorphisms induced by the corresponding injec-
tions. From the proved equality t, =, ¢, one gets

=10 .
T = l/’w’B’ Poos

hence irt Ty, = iptWwipg Py, OF, Which is the same,
@ = guts-

ProrosiTioN 3.3 If f,g: UX, M)-U(Y, N), then f%/g implies f, = g,,.

Proof. Let A and B be again the directed sets of the uniform coverings of the
spaces X and Y, respectively. We assume that a sequence B’ = {8,| n = 1,2, ...},
monotonous and cofinal in B, is given. One supposes the homomorphisms f, and g, ,
the first of them defined by means of an order-preserving function ¢: B'—A4 and

, some functions f,: Us=V,, f,€f, and the second by means of another order-

preserving function y: B'—4 and some functions g, Uy —V,, g, € g, where ¥, is
a neighbourhood of ¥ in N covered by a similar extension f, of §,. Let g, be the
covering of X induced by the covering ST MR, of V, and let 2, be that induced by
g7 (B,). Then the homomorphisms ¢, = (f; ”"n""”"))* define f, and the homomor-
plmms Wy = (g x4, define g, . Here of course f!": X,,— Yy, and gi™: X, —Y,,
are the simplicial inclusion maps of the nerves.
For each n there is a U, € U(X, M) with U,< U, n U, such that the restriction
maps f;)y, and g,)y, are uniformly homotopic. Then, according to Lemma 3.2, one
finds, for each n, a uniform covering a, of X such that the equality

(firmey = (@ a3y
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holds. We can assume that o, is a refinement both of o (B,) and of ¥ (B,), so that
one gets

@u(Tign) = Valmyie)s -

‘Then one concludes by means of Lemma 3.1 that f, = g,.

Now Theorem 1 follows immediately from Propositions 3.1, 3.2 and 3.3. As
regards Theorem 2, it follows from the same propositions, accordingly reformulated
for double-uniform shape maps. Their proof remains essentially the same — it
suffices to remark that standard similar e-extension f, constructed in §2, of a uniform
covering § of a subspace always covers uniform neighbourhood of that subspace.
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Paracompact box products in forcing extensions
by

Judy Roitman (Wellesley, Mass.)

Abstract. In an iterated ccc extension with length x, where » has uncountable cofinality, [0 Xi
i<o
is paracompact if each X; is compact metrizable; if in addition x is regular and no bigger than the

cardinality of the continuum in the ground model, then [ Xj is paracompact if each X; is
i<o
compact first countable.

§ 0. Introduction. The question of when box products are normal is an old one
(see, e.g., [R;]). Van Douwen and Kunen each showed that the box product of
countably many spaces need not be normal if the spaces are not compact or are of
large character. Known positive results are all consistency results and proceed by
proving paracompactness. Thus attention has focused between the parameters of:
is there an absolute proof that at least [1°(w+1) is paracompact? Is it consistent

that some [ X, is not normal where each X; is compact first countable?
i<a

The positive consistency results have been: that MA = the box product of
countably many compact first countable spaces is paracompact (Rudin, Kunen);
that 3 a A-scale =[1°(w+1) is paracompact (Williams); that 3 a A-scale = [1 X;

i<w

is paracompact if each X, is compact metrizable (Van Douwen. This is an improve--
ment of Williams® result using a different technique).
 Using a criterion inspired by Williams® method, we show that the codverse of
Van Douwen’s result is false, and that, in fact, in many models of set theory both
with and without A-scales, the box product of countably many compact first count-
able spaces is paracompact. v

More precisely, we have that if cf(x)> o, then in a forcing extension by a ccc
iterated algebra of length 2 in a ground model M, the following hold:

7 X, is paracompact if each X; is compact first countable of weight <cf(x);

i<w

hence if each X, is compact metrizable.

[ X, is paracompact if each X, is compact first countable and M k% = cf()=¢;
i<w

in particular if M F (% regular uncountable and ¢ = ).
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